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Abstract

In this paper, we prove a closed form for a sequence motivated by the search for

new generalized quadrangles of odd order. We present two proofs: a direct proof to

explain the closed form’s derivation and a shorter inductive argument. The sequence

in question is derived from congruences that arise from applying the Hermite-Dickson

criterion to a permutation polynomial that is related to the girth of monomial graphs.

1 Introduction

In this section, we first present some definitions and notation that we will need (Section 1.1).
Then we provide some background and motivation for the results presented in this paper
(Section 1.2).

1.1 Fundamental definitions and notation

We begin with some definitions. A graph G = (V,E) consists of a set V of vertices and a set
E of edges. The order of a graph is the number of vertices it contains (namely |V |). Edges
are two-element subsets of V ; if {u, v} ∈ E for some u, v ∈ V , then u and v are said to be
adjacent. The degree of a vertex v is the number of vertices adjacent to v. If every v ∈ V
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has the same finite degree t, then G is called a t-regular graph. A uv-walk of length k ≥ 1
is a sequence (u = v0, e1, v1, e2, v2, . . . , ek, vk = v) of alternating vertices and edges, where
ei = {vi−1, vi} for i = 1, . . . , k. For every vertex u, we define (u) to be a uu-walk of length
0. A graph G is connected if for every pair of vertices u and v, there exists a uv-walk in
G. In a connected graph, the distance from vertex u to vertex v is the length of a shortest
uv-walk. The diameter of a connected graph G is the largest distance between any two of
its vertices. A k-cycle Ck is a uv-walk of length k ≥ 3 where u = v, but no other vertices
repeat. If G contains any cycles, the girth of G is the length of a shortest cycle in G. A
connected graph that does not contain any cycles is called a tree. A graph G is bipartite if its
vertex set may be partitioned into two sets, say P and L, such that every edge {x, y} has the
property that x ∈ P and y ∈ L (or vice versa). Two graphs G1 = (V1, E1) and G2 = (V2, E2)
are isomorphic if there exists a bijection ϕ : V1 → V2 such that x, y ∈ V1 are adjacent if and
only if ϕ(x), ϕ(y) ∈ V2 are adjacent. Other standard graph theory definitions may be found,
for example, in Bollobás [2].

Let Fq denote the finite field of order q. A permutation polynomial of Fq is a polynomial
f ∈ Fq[x] whose induced function on Fq, defined by a 7→ f(a), is a bijection. Let f2, f3 : F

2
q →

Fq be functions. An algebraically defined graph Gq(f2, f3) of dimension three is a bipartite
graph with partite sets P = F3

q = L, and (x1, x2, x3) ∈ P is adjacent to [y1, y2, y3] ∈ L
if xi + yi = fi(x1, y1) for i = 2, 3. If both f2 and f3 are monomials, we call Gq(f2, f3) a
monomial graph.

1.2 Motivation

One reason for studying monomial graphs is the desire to construct new generalized quadran-
gles of odd prime power order. While typically viewed as incidence geometries (see Payne
and Thas [13], Van Maldeghem [15], and Benson [1] for additional information), we will
view generalized quadrangles from the perspective of their point-line incidence graphs, also
known as Levi graphs. In other words, for the remainder of this paper, we will adopt a
purely graph-theoretical viewpoint. Hence, we define a finite generalized quadrangle of order
q, denoted GQ(q), to be a bipartite (q + 1)-regular graph of girth eight and diameter four.
No GQ(q) of non-prime power order is currently known. Many examples of nonisomorphic
GQ(q) are known when q is a power of 2. However, for a given odd prime power q, only one
GQ(q) is known (up to graph isomorphism).

The affine part of a generalized quadrangle is the subgraph induced by all vertices at
distance three from a fixed edge. In all known GQ(q) for odd prime powers q, the affine part
is simply an isomorphic copy of Gq(xy, xy

2), which we denote by Γ3(q).
Now, a primary motivation for Dmytrenko, Lazebnik, and Williford [5] and Kronenthal

[10] was to construct a new GQ(q) of odd prime power order as follows. First, construct a
q-regular girth eight graph that is not isomorphic to Γ3(q), and has vertex partition P ∪ L
such that |P | = q3 = |L|. Next, “attach” a tree to it in such a way that the result is a new
generalized quadrangle.

To address the first step, we note that our goal is to find an algebraically defined graph
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with many of the same properties as Γ3(q), a monomial graph. Therefore, it is logical to
first search for a replacement among monomial graphs. This strategy was investigated by
Dmytrenko, Lazebnik and Williford [5], who conjectured that a suitable monomial graph
does not exist.

Conjecture 1. [5] Let q = pe be an odd prime power. Then every monomial graph over Fq

of girth at least eight is isomorphic to Γ3(q).

This conjecture is of particular interest because it stands in stark contrast to the case
when q is a power of 2, where the described strategy of constructing nonisomorphic gener-
alized quadrangles succeeds. See Payne [12], Van Maldeghem [15], and Cherowitzo [3] for
additional information.

Working towards a proof of Conjecture 1, Dmytrenko, Lazebnik and Williford [5] proved
the following result:

Theorem 2. Let q = pe be an odd prime power. Then every monomial graph of girth at
least eight is isomorphic to the graph Gq(xy, x

ky2k), where k is not divisible by p. If q ≥ 5,
the following statements also hold:

1. 1 ≤ k < q−1

2
, gcd(k, q − 1) = 1, and k ≡ 1 (mod p− 1).

2. ((x+ 1)2k − 1)xq−1−k − 2xq−1 ∈ Fq[x] is a permutation polynomial of Fq.

The permutation polynomial from part 2 of Theorem 2 was then used in conjunction
with the Hermite-Dickson criterion:

Theorem 3 (Hermite-Dickson criterion). (See Hermite [8] and Dickson [4]; see also Lidl and
Niederreiter [11].) Let Fq be of characteristic p. Then f ∈ Fq[x] is a permutation polynomial
of Fq if and only if the following two conditions hold:

1. f has exactly one root in Fq; and

2. for each integer t with 1 ≤ t ≤ q − 2 and p ∤ t, the reduction of f t (mod xq − x) has
degree at most q − 2.

Indeed, let e ≥ 1 be an integer, p an odd prime, and q = pe ≥ 5. Let G be a monomial
graph of girth at least eight. Then by Theorem 2, G is isomorphic to Gq(xy, x

ky2k) and

F = ((x+ 1)2k − 1)xq−1−k − 2xq−1 ∈ Fq[x]

is a permutation polynomial of Fq. The Hermite-Dickson criterion implies that the coefficient
of xq−1 in F t (mod xq − x) must be zero for all 1 ≤ t ≤ q − 2. This yields

t
∑

j=0

(−2)j
(

t

j

) ⌊ t−j

2
⌋

∑

h=0

(−1)h
(

t− j

h

)(

2k(t− j − h)

k(t− j)

)

≡ 0 (mod p); (1)
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for details of this derivation, see Kronenthal [10].
We now consider instances of (1) for some small values of t; the result is a sequence of

congruences. We use (κi) to denote the congruence resulting from the substitution t = i.
When t = 1, (1) yields −2 +

(

2k
k

)

≡ 0 (mod p), and so

(

2k

k

)

≡ 2 (mod p). (κ1)

When t = 2, we have 2−4
(

2k
k

)

+
(

4k
2k

)

≡ 0 (mod p); substituting (κ1) implies 2−4·2+
(

4k
2k

)

≡ 0
(mod p), and therefore

(

4k

2k

)

≡ 6 (mod p). (κ2)

Continuing this process of evaluating (1) for subsequent values of t, and back-substituting
previous congruences at each step, yields the following:

(

6k

3k

)

− 3

(

4k

3k

)

≡ 8 (mod p) (κ3)

(

8k

4k

)

− 4

(

6k

4k

)

≡ 10 (mod p) (κ4)

(

10k

5k

)

− 5

(

8k

5k

)

+ 10

(

6k

5k

)

≡ 32 (mod p) (κ5)

(

12k

6k

)

− 6

(

10k

6k

)

+ 15

(

8k

6k

)

≡ 84 (mod p) (κ6)

(

14k

7k

)

− 7

(

12k

7k

)

+ 21

(

10k

7k

)

− 35

(

8k

7k

)

≡ 128 (mod p) (κ7)

(

16k

8k

)

− 8

(

14k

8k

)

+ 28

(

12k

8k

)

− 56

(

10k

8k

)

≡ 186 (mod p) (κ8)

...

In general, we obtain that for every integer t ≥ 1,

⌊ t−1

2
⌋

∑

h=0

(−1)h
(

t

h

)(

2k(t− h)

kt

)

≡ bt (mod p), (κt)

where the integer bt represents the terms in (1) not involving k (after back-substituting
(κ1), . . . , (κt−1)). The sequence (bt)t≥1 appears in Sloane’s Online Encyclopedia of Integer
Sequences as sequence number A247984 [14]:

2, 6, 8, 10, 32, 84, 128, 186, 512, 1276, 2048, 3172, 8192, 19816, 32768, 52666,
131072, 310764, 524288, 863820, 2097152, 4899736, 8388608, 14073060, 33554432,
77509464, 134217728, 228318856, 536870912, 1228859344, . . . .
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The following theorem, our main result, states a closed form for bt.

Theorem 4. For all positive integers t, let bt be as defined in (κt). Then

bt =







2t, if t is odd;

2t − (−1)t/2
(

t

t/2

)

, if t is even.

Theorem 4 first appeared as a comment, without proof, in Kronenthal [10]. The purpose
of this paper is to prove Theorem 4 in two ways. In Section 2, we prove the theorem
directly (much like how we originally derived it). In Section 3, we present a shorter inductive
argument.

However, before ending this section, we note that after the change of variables g = t− j,
(1) may be rewritten as

t
∑

g=0

(−2)t−g

(

t

g

) ⌊g/2⌋
∑

h=0

(−1)h
(

g

h

)(

2k(g − h)

kg

)

≡ 0 (mod p). (2)

This will be used both in Section 2 and in Section 3.

2 A direct proof

In this section, we prove Theorem 4 directly. We begin with a number of preliminary results.

Lemma 5. (Graham, Knuth, and Patashnik [7, Equation 5.10]) Let n and k be non-negative
integers. Then

n
∑

j=0

(

j

k

)

=

(

n+ 1

k + 1

)

.

Lemma 6. (Graham, Knuth, and Patashnik [7, Equation 5.5]) Let k 6= 0 be an integer.
Then

(

n

k

)

=
n

k

(

n− 1

k − 1

)

.

Lemma 7. (Gould [6, Equation 1.47 with x = 1]) For all j ≤ n,

n
∑

k=1

(−1)k
(

n

k

)

kj

k + 1
= (−1)j

1

n+ 1
.

In the following, let N = {1, 2, 3, . . .} denote the set of natural numbers.
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Lemma 8. Let j, n ∈ N. Then

∑

y1+···+yj=n

y1,...,yj∈N

(

n

y1, y2, . . . , yj−1, yj

)

=

j
∑

k=1

(−1)j−kkn

(

j

j − k

)

.

Lemma 8 follows directly from Kao and Zetterberg [9, Theorem 2.2].

Lemma 9. Let i, t ∈ N such that i < t. Then

t−i
∑

j=1

∑

t>x1>···>xj=i

(−1)j+1

(

t

x1

)(

x1

x2

)

· · ·

(

xj−1

i

)

= (−1)t+i−1

(

t

i

)

,

where xi ∈ N for all i = 1, 2, . . . , j.

Proof. We have
t−i
∑

j=1

∑

t>x1>···>xj=i

(−1)j+1

(

t

x1

)(

x1

x2

)

· · ·

(

xj−1

i

)

=

(

t

i

) t−i
∑

j=1

(−1)j+1
∑

t>x1>···>xj=i

(

t− i

t− x1, x1 − x2, . . . , xj−2 − xj−1, xj−1 − i

)

=

(

t

i

) t−i
∑

j=1

(−1)j+1
∑

y1+···+yj=t−i

y1,...,yj∈N

(

t− i

y1, y2, . . . , yj−1, yj

)

=

(

t

i

) t−i
∑

j=1

(−1)j+1

j
∑

k=1

(−1)j−kkt−i

(

j

j − k

)

(by Lemma 8 with n = t− i)

=

(

t

i

) t−i
∑

k=1

(−1)k−1kt−i

t−i
∑

j=0

(

j

k

)

=

(

t

i

) t−i
∑

k=1

(−1)k−1kt−i

(

t− i+ 1

k + 1

)

(by Lemma 5)

= −

(

t

i

)

(t− i+ 1)
t−i
∑

k=1

(−1)k
(

t− i

k

)

kt−i

1 + k
(by Lemma 6)

= −

(

t

i

)

(t− i+ 1)

(

(−1)t−i 1

t− i+ 1

)

(by Lemma 7 with n = t− i and j = t− i)

=

(

t

i

)

(−1)t+i−1.
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Lemma 10. (Graham, Knuth, and Patashnik [7, Equation 5.24]) Let l ≥ 0, m, and n be
integers. Then

∑

k

(

l

m+ k

)(

s+ k

n

)

(−1)k = (−1)l+m

(

s−m

n− l

)

.

We now use (2) and the above lemmas to prove Theorem 4. Define

Ct =

⌊t/2⌋
∑

g=0

(−1)t−g2t−2g

(

t

2g

)(

2g

g

)

,

Lt =

⌊ t−1

2
⌋

∑

h=0

(−1)h
(

t

h

)(

2k(t− h)

kt

)

,

and

at,u = (−2)t−u

(

t

u

)

.

Note that on the left-hand side of (2), Ct is the constant term (i.e., the term not involving
k, which comes from the terms with h = g/2 followed by the change of variables g 7→ 2g), Lt

consists of all non-constant terms containing binomial coefficients of the form
(

x
kt

)

for some
x (Lt is the left-hand side of (κt)), and at,u is the coefficient of Lu when it appears in the
calculation of (κt). Then (2) is equivalent to

Ct +
t−1
∑

g=1

at,gLg +

⌊ t−1

2
⌋

∑

h=0

(−1)h
(

t

h

)(

2k(t− h)

kt

)

≡ 0 (mod p),

and therefore congruence (κt) may be rewritten as

⌊ t−1

2
⌋

∑

h=0

(−1)h
(

t

h

)(

2k(t− h)

kt

)

≡ −Ct −

t−1
∑

g=1

at,gLg (mod p).

In other words,

Lt ≡ −Ct −
t−1
∑

g=1

at,gLg (mod p).

Expanding and back-substituting for some small values of t, we have:
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L1 ≡ −C1 (mod p)

L2 ≡ −a2,1 · L1 − C2 ≡ a2,1C1 − C2 (mod p)

L3 ≡ −a3,2 · L2 − a3,1 · L1 − C3

≡ −a3,2(a2,1C1 − C2) + a3,1C1 − C3

≡ (a3,1 − a3,2a2,1)C1 + a3,2C2 − C3 (mod p)

L4 ≡ −a4,3 · L3 − a4,2 · L2 − a4,1 · L1 − C4

≡ −a4,3
(

(a3,1 − a3,2a2,1)C1 + a3,2C2 − C3

)

− a4,2(a2,1C1 − C2) + a4,1C1 − C4

≡ (a4,1 − a4,3a3,1 − a4,2a2,1 + a4,3a3,2a2,1)C1 + (a4,2 − a4,3a3,2)C2 + a4,3C3 − C4 (mod p)

In general, congruence (κt) may be written as

Lt =

⌊ t−1

2
⌋

∑

h=0

(−1)h
(

t

h

)(

2k(t− h)

kt

)

≡ −Ct +
t−1
∑

i=1

Ci

t−i
∑

j=1

∑

t>x1>···>xj=i

(−1)j+1at,x1
ax1,x2

· · · axj−1,i (mod p).

(3)

We are now ready to prove our main result.

Proof of Theorem 4. From (3), the right-hand side of congruence (κt) is

bt = −Ct +
t

∑

i=1

Ci

t−i
∑

j=1

∑

t>x1>···>xj=i

(−1)j+1at,x1
ax1,x2

· · · axj−1,i

= −

⌊t/2⌋
∑

g=0

(−1)t−g2t−2g

(

t

2g

)(

2g

g

)

+
t−1
∑

i=1





⌊i/2⌋
∑

g=0

(−1)i−g2i−2g

(

i

2g

)(

2g

g

)





t−i
∑

j=1

∑

t>x1>···>xj=i

(−1)j+1

(

(−2)t−x1

(

t

x1

))(

(−2)x1−x2

(

x1

x2

))

· · ·

(

(−2)xj−1−i

(

xj−1

i

))

= −

⌊t/2⌋
∑

g=0

(−1)t−g2t−2g

(

t

2g

)(

2g

g

)

+ (−2)t
t−1
∑

i=1





t−i
∑

j=1

∑

t>x1>···>xj=i

(−1)j+1

(

t

x1

)

· · ·

(

xj−1

i

)





⌊i/2⌋
∑

g=0

(−4)−g

(

i

2g

)(

2g

g

)
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= −

⌊t/2⌋
∑

g=0

(−1)t−g2t−2g

(

t

2g

)(

2g

g

)

+ (−2)t
t−1
∑

i=1

((

t

i

)

(−1)t+i−1

) ⌊i/2⌋
∑

g=0

(−4)−g

(

i

2g

)(

2g

g

)

(by Lemma 9)

= (−2)t
t

∑

i=1

((

t

i

)

(−1)t+i−1

) ⌊i/2⌋
∑

g=0

(−4)−g

(

i

2g

)(

2g

g

)

= (−1)t−1(−2)t
⌊t/2⌋
∑

g=0

(−4)−g

(

2g

g

) t
∑

i=1

(−1)i
(

t

i

)(

i

2g

)

= −2t





t
∑

i=1

(−1)i
(

t

i

)

+

⌊t/2⌋
∑

g=1

(−4)−g

(

2g

g

) t
∑

i=1

(−1)i
(

t

i

)(

i

2g

)





= −2t



−1 +

⌊t/2⌋
∑

g=1

(−4)−g

(

2g

g

) t
∑

i=1

(−1)i
(

t

i

)(

i

2g

)





= −2t



−1 +

⌊t/2⌋
∑

g=1

(−4)−g

(

2g

g

)

(−1)t
(

0

2g − t

)



 (by Lemma 10)

=







2t, if t is odd;

−2t
(

−1 + (−4)−t/2

(

t

t/2

)

(−1)t
)

, if t is even;

=







2t, if t is odd;

2t − (−1)t−t/22t(22)−t/2

(

t

t/2

)

, if t is even;

=







2t, if t is odd;

2t − (−1)t/2
(

t

t/2

)

, if t is even.

3 An inductive proof

In this section, we prove Theorem 4 inductively. We begin by reorganizing the terms of (2).
The left-hand side of congruence (κt) will be those terms with g = t and h 6= g/2, namely

⌊ t−1

2
⌋

∑

h=0

(−1)h
(

t

h

)(

2k(t− h)

kt

)

.
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We partition the remaining terms into two sums:

t
∑

g=0

(−1)g/22t−g

(

t

g

)(

g

g/2

)

=

⌊t/2⌋
∑

g=0

(−1)t−g2t−2g

(

t

2g

)(

2g

g

)

contains all terms such that h = g/2, and

t−1
∑

g=1

(−2)t−g

(

t

g

) ⌊ g−1

2
⌋

∑

h=0

(−1)h
(

g

h

)(

2k(g − h)

kg

)

contains all remaining terms (i.e., all terms such that g 6= t and h 6= g/2). Note that the
inner sum is the left-hand side of congruence (κg). Hence, we rewrite (2) as

⌊ t−1

2
⌋

∑

h=0

(−1)h
(

t

h

)(

2k(t− h)

kt

)

≡ −

⌊t/2⌋
∑

g=0

(−1)t−g2t−2g

(

t

2g

)(

2g

g

)

−
t−1
∑

g=1

(−2)t−g

(

t

g

)

bg (mod p),

which proves

bt = −

⌊t/2⌋
∑

g=0

(−1)t−g2t−2g

(

t

2g

)(

2g

g

)

−
t−1
∑

g=1

(−2)t−g

(

t

g

)

bg. (4)

Now, before proving our main result, we state a well-known lemma.

Lemma 11. Let t be a positive integer. Then

⌊t/2⌋
∑

g=0

(

t

2g

)

= 2t−1 and

⌊t/2⌋
∑

g=1

(

t

2g − 1

)

=

{

2t−1, if t is even;

2t−1 − 1, if t is odd.

Proof of Theorem 4. We proceed by induction. When t = 1, (4) implies that

b1 = −(−1)(2)

(

1

0

)(

0

0

)

= 2.
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Now, suppose the result holds for all positive integers less than t. Then from (4),

bt = −

⌊t/2⌋
∑

g=0

(−1)t−g2t−2g

(

t

2g

)(

2g

g

)

−
t−1
∑

g=1

(−2)t−g

(

t

g

)

bg

= −

⌊t/2⌋
∑

g=0

(−1)t−g2t−2g

(

t

2g

)(

2g

g

)

−

⌊ t−1

2
⌋

∑

g=0

(−2)t−2g

(

t

2g

)(

22g − (−1)g
(

2g

g

))

−

⌊t/2⌋
∑

g=1

(−1)t+12t
(

t

2g − 1

)

= −

⌊t/2⌋
∑

g=0

[

(−1)t−g2t−2g

(

t

2g

)(

2g

g

)

+ (−2)t−2g

(

t

2g

)(

22g − (−1)g
(

2g

g

))]

+

(

1 + (−1)t

2

)(

2t − (−1)t/2
(

t

t/2

))

−

⌊t/2⌋
∑

g=1

(−1)t+12t
(

t

2g − 1

)

= −

⌊t/2⌋
∑

g=0

(−2)t
(

t

2g

)

+

(

1 + (−1)t

2

)(

2t − (−1)t/2
(

t

t/2

))

−

⌊t/2⌋
∑

g=1

(−1)t+12t
(

t

2g − 1

)

= (−1)t+12t
⌊t/2⌋
∑

g=0

(

t

2g

)

+

(

1 + (−1)t

2

)(

2t − (−1)t/2
(

t

t/2

))

+ (−2)t
⌊t/2⌋
∑

g=1

(

t

2g − 1

)

= (−1)t+122t−1 +

(

1 + (−1)t

2

)(

2t − (−1)t/2
(

t

t/2

))

+ (−2)t
(

2t−1 −
1− (−1)t

2

)

(by Lemma 11)

=







2t, if t is odd;

2t − (−1)t/2
(

t

t/2

)

, if t is even.

4 Concluding remarks

In this paper, we have provided direct and inductive proofs of Theorem 4. One interesting
future direction is as follows:

Open Problem 12. Prove Theorem 4 using a combinatorial argument.

We conclude by stating two results that were proven using Theorem 4. Theorem 13 used
b1 and b2, while Theorem 14 relied on Theorem 4 in its entirety.
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Theorem 13. (Dmytrenko, Lazebnik, and Williford [5]) Let q = pe be an odd prime power,
with p ≥ 5 and e = 2a3b for integers a, b ≥ 0. Then every monomial graph over Fq of girth
at least eight is isomorphic to Γ3(q) and has girth eight. Furthermore, for 3 ≤ q ≤ 1010,
every monomial graph over Fq nonisomorphic to Γ3(q) has girth at most six.

Theorem 14. (Kronenthal [10]) Let q = pe be an odd prime power and e ≥ 2. Then there
exists p0 such that for all p ≥ p0, every monomial graph over Fq of girth at least eight is
isomorphic to Γ3(q), and hence has girth exactly eight. Furthermore, p0 depends only on the
largest prime divisor of e. In particular:

1. if e = 2a3b5c with a, b, c ≥ 0, then p0 = 7.

2. if e = 2a3b5c7d with a, b, c, d ≥ 0, then p0 = 11.

3. if e = 2a3b5c7d11y with integers a, b, c, d, y ≥ 0, then p0 = 13.
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