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Abstract

In a recent article, Nowicki introduced the concept of a special number. Specifically,
an integer d is called special if for every integer m there exist solutions in non-zero
integers a, b, c to the equation a2 + b2 − dc2 = m. In this article we investigate pairs of
integers (n, d), with n ≥ 2, such that for every integer m there exist units a, b, and c

in Zn satisfying m ≡ a2 + b2 − dc2 (mod n). By refining a recent result of Harrington,
Jones, and Lamarche on representing integers as the sum of two non-zero squares in
Zn, we establish a complete characterization of all such pairs.

1 Introduction

The following definition was recently stated by Nowicki [4].

Definition 1. We call a positive integer d special if for every integer m there exist non-zero
integers a, b, and c so that a2 + b2 − dc2 = m.

The necessary conditions of the following theorem were proven by Nowicki, while Lam
[3] later provided the sufficient conditions.
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Theorem 2. An integer d is special if and only if d is of the form q or 2q where either q = 1
or q is a product of primes all congruent to 1 modulo 4.

With this complete representation of special numbers, the following theorem follows
from Dirichlet’s theorem on primes in arithmetic progression (see Theorem 8 below) and
the Chinese remainder theorem. For completeness, we provide a proof of this theorem in
Section 4.

Theorem 3. For any odd integer n ≥ 3, any d with gcd(d, n) = 1, and any integer m, there
exist integers a, b, and c such that a2 + b2 − dc2 ≡ m (mod n).

In light of Theorem 3, we give the following definition, which imposes a unit restriction
on a, b, and c.

Definition 4. We say that d is unit-special in Zn if for an integer m, there exist units a, b,
and c in Zn with a2 + b2 − dc2 ≡ m (mod n).

We note that the requirement that a, b, and c be units in Zn ensures that a2, b2, and c2

are non-zero in Zn. Although one could loosen this restriction to just require a2, b2, and c2

to be non-zero, this is not the setting that we investigate in this article. Among the results
in this article, we provide the following complete characterization of unit-special numbers in
Zn.

Theorem 5. Let n be a positive integer. An integer d is unit-special in Zn if and only if the
following three conditions hold:

• n is not divisible by 2 or 3.

• If p ≡ 3 (mod 4) is prime and p divides n, then gcd(d, p) = 1.

• If 5 divides n, then d ≡ ±2 (mod 5).

To establish Theorem 5 we first refine a recent result of Harrington, Jones, and Lamarche
[2] on representing integers as the sum of two non-zero squares in the ring Zn, stated below.

Theorem 6. Let n ≥ 2 be an integer. The equation

x2 + y2 ≡ z (mod n)

has a non-trivial solution (x2, y2 6≡ 0 (mod n)) for all z in Zn if and only if all of the
following are true.

1. q2 does not divide n for any prime q ≡ 3 (mod 4).

2. 4 does not divide n.

3. n is divisible by some prime p ≡ 1 (mod 4).
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4. If n is odd and n = 5km with gcd(5,m) = 1 and k < 3, then m is divisible by some
prime p ≡ 1 (mod 4).

At the end of their article, Harrington, Jones, and Lamarche ask the following question.

Question 1. Theorem 6 considers the situation when the entire ring Zn can be obtained as
the sum of two non-zero squares. When this cannot be attained, how badly does it fail?

In this article, we address Question 1 in a slightly refined setting. In particular, we prove
the following theorem.

Theorem 7. Let n ≥ 2 be an integer. For a fixed integer z, there exist units a and b in Zn

such that a2 + b2 ≡ z (mod n) if and only if all of the following hold:

• If p ≡ 3 (mod 4) is a prime dividing n, then gcd(z, p) = 1.

• If 5 divides n, then z 6≡ ±1 (mod 5).

• If 3 divides n, then z ≡ 2 (mod 3).

• If 2 divides n and 4 does not, then z ≡ 0 (mod 2).

• If 4 divides n and 8 does not, then z ≡ 2 (mod 4).

• If 8 divides n, then z ≡ 2 (mod 8).

We again note that the requirement that a and b are units in Zn ensures that a2 and b2

are non-zero in Zn. Since Question 1 does not have the unit restriction, Theorem 7 does
not give a complete answer to the question. However, it does provide sufficient conditions
in the setting of Question 1. Although the majority of this article focuses on the refined
setting where a and b are units in Zn, we do briefly investigate the more general setting of
Question 1 and provide a result in this direction.

2 Preliminaries and notation

We will make use of the following results and definitions from classical number theory (see,
for example [1]).

Theorem 8 (Dirichlet). Let a, b be integers such that gcd(a, b) = 1. Then the sequence
{ak + b}, over integers k, contains infinitely many primes.

Definition 9. Let p be an odd prime. The Legendre symbol of an integer a modulo p is
given by

(

a

p

)

=











1, if a is a non-zero square modulo p;

−1, if a is not a square modulo p;

0, if a ≡ 0 (mod p).
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Theorem 10. Let p ≥ 7 be a prime. There exist non-zero elements t, u, v, and w in Zp such
that

(

u
p

)

=
(

u+1

p

)

= 1,
(

v
p

)

=
(

v+1

p

)

= −1,

(

w
p

)

= −
(

w+1

p

)

= 1, and
(

t
p

)

= −
(

t+1

p

)

= −1.

The following result can be found in a book of Suzuki’s [5] and is originally due to Euler.

Theorem 11. A positive integer z can be written as the sum of two squares if and only if
all prime factors q of z with q ≡ 3 (mod 4) occur with even exponent.

The following theorem, which follows immediately from the Chinese remainder theorem,
appears in Harrington, Jones, and Lamarche’s article.

Theorem 12. Suppose that m1,m2, . . . ,mt are all pairwise relatively prime integers ≥ 2,
and set M = m1m2 · · ·mk. Let c1, c2, . . . , ct be any integers, and let x ≡ c (mod M) be the
solution of the system of congruences x ≡ ci (mod mi) using the Chinese remainder theorem.
Then there exists a y such that y2 ≡ c (mod M) if and only if there exist y1, y2, . . . , yt such
that y2i ≡ ci (mod mi).

3 Sums of squares in Zn

We begin by examining when integers are a sum of two unit squares modulo n. Later we
shall relax this condition and only require both squares to be non-zero modulo n.

Let us first examine the case when the modulus is a power of 2.

Theorem 13. Let k be a positive integer. For a fixed integer z, there exist units a and b in
Z2k such that a2 + b2 ≡ z (mod 2k) if and only if one of the following is true:

• k = 1 and z ≡ 0 (mod 2);

• k = 2 and z ≡ 2 (mod 4);

• k ≥ 3 and z ≡ 2 (mod 8).

Proof. We computationally check that the theorem is true for k ≤ 3.
Suppose k > 3. If a2 + b2 ≡ z (mod 2k), then a2 + b2 ≡ z (mod 8). Thus, we deduce

that z ≡ 2 (mod 8).
Conversely, suppose that z ≡ 2 (mod 8). We proceed with a proof by induction on k.

We have already established the base case k ≤ 3. Suppose that the theorem holds for k − 1
so that that there are units a and b in Z2k−1 such that a2 + b2 ≡ z (mod 2k−1). Then for
some odd integer t and some integer r ≥ k − 1 we can write

a2 + b2 = z + t2r.
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If r ≥ k, then a2 + b2 ≡ z (mod 2k), as desired. So suppose that r = k − 1. Then

a2 + (b+ 2k−2)2 = a2 + b2 + b2k−1 + 22k−4

= z + t2k−1 + b2k−1 + 22k−4

= z + 2k−1(t+ b) + 22k−4.

Since k ≥ 4, we know that 22k−4 ≡ 0 (mod 2k). Also, since b was chosen to be a unit in
Z2k−1 , then b must be odd. Thus, t+ b is even and we deduce that 2k−1(t+ b) ≡ 0 (mod 2k).
Hence,

a2 + (b+ 2k−2)2 ≡ z (mod 2k).

It follows that b+ 2k−2 is an odd integer and is therefore a unit in Z2k , as desired.

We next treat the case where the modulus is a power of an odd prime. The following is
an application of Hensel’s Lifting Lemma. We provide the proof here for completeness.

Lemma 14. For an odd prime p and integer z, suppose there are non-zero elements a and
b1 in Zp such that a2 + b21 ≡ z (mod p). Then for any positive integer k, the integer a is a
unit in Zpk and there exists a unit bk in Zpk such that a2 + b2k ≡ z (mod pk).

Proof. Suppose that a2 + b21 ≡ z (mod p) for some non-zero elements a and b1 in Zp. Then
for some integer t1, a

2 + b21 = z + t1p. Let b2 ≡ b1 − t1p(2b1)
−1 (mod p2), and note that b2 is

a unit in Zp2 . It follows that

a2 + b22 ≡ a2 + (b1 − t1p(2b1)
−1)2 (mod p2)

≡ a2 + b21 − t1p (mod p2)

≡ z + t1p− t1p (mod p2)

≡ z (mod p2).

Since a is also a unit modulo p2, this proves the result for k = 2. The remainder of the
theorem now follows by induction on k with

a2 + b2k+1 ≡ z (mod pk+1),

where bk+1 ≡ bk − tkp
k(2bk)

−1 (mod pk) with tk satisfying a2 + b2k = z + tkp
k.

An appropriate converse for Lemma 14 can be stated, however the information contained
in such a statement varies with the modulus. Specifically, we can easily prove the following
two theorems after verifying the base case k = 1 and applying Lemma 14.

Theorem 15. Let k be a positive integer. For a fixed integer z, there exist units a and b in
Z3k with a2 + b2 ≡ z (mod 3k) if and only if z ≡ 2 (mod 3).

Theorem 16. Let k be a positive integer. For a fixed integer z, there exist units a and b in
Z5k with a2 + b2 ≡ z (mod 5k) if and only if z 6≡ ±1 (mod 5).
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For powers of primes that are 1 modulo 4, we have the following theorem which is a bit
more general then Lemma 14.

Theorem 17. Let p ≥ 13 be a prime with p ≡ 1 (mod 4) and let k be a positive integer.
For every integer z, there exist units a and b in Zpk such that a2 + b2 ≡ z (mod pk).

Proof. We show that the result holds for k = 1 and the remainder of the proof will follow
from Lemma 14. So let k = 1. First suppose that z ≡ 0 (mod p). Since p ≡ 1 (mod 4), we
know that −1 is a square modulo p. Thus, we can let

a2 ≡ 1 (mod p) and b2 ≡ p− 1 (mod p)

so that a2 + b2 ≡ z (mod p), where a and b are units modulo p.
Now suppose that z 6≡ 0 (mod p). Since p ≥ 7, we can use Theorem 10 to choose u such

that
(

u

p

)

=

(

u− 1

p

)

=

(

z

p

)

.

It follows that
(

uz

p

)

=

(

−(u− 1)z

p

)

= 1.

Thus, letting

a2 ≡ uz (mod p) and b2 ≡ −(u− 1)z (mod p)

proves the result for k = 1 since u, u− 1, and z are all units modulo p.

In the next corollary, which provides an extension of Theorem 6 to our new unit-setting,
we piece together the information in Theorem 17 using the Chinese remainder theorem as
stated in Theorem 12.

Corollary 18. Let n ≥ 13 be an odd integer not divisible by 5 and with all prime divisors
congruent to 1 modulo 4. Then for any fixed integer z, there exist units a and b in Zn with
a2 + b2 ≡ z (mod n).

We now turn our attention to primes that are 3 modulo 4.

Theorem 19. Let p ≥ 7 be a prime with p ≡ 3 (mod 4) and let k be a positive integer. For
a fixed integer z, there exist units a and b in Zpk with a2 + b2 ≡ z (mod pk) if and only if z
is a unit in Zpk .

Proof. First suppose that the a and b are units modulo pk with a2 + b2 ≡ z (mod pk). If z
is not a unit modulo pk, then z ≡ xp (mod pk) for some integer x, whence z ≡ 0 (mod p).
It follows that a2 ≡ −b2 (mod p). However, this leads to a contradiction since

(

−b2

p

)

=

(

−1

p

)

·

(

b2

p

)

= −1.
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For the converse, we show that the result holds for k = 1 and the remainder of the proof
will follow from Lemma 14. In this case, choose u from Theorem 10 such that

(

u

p

)

= −

(

u− 1

p

)

=

(

z

p

)

.

It follows that
(

uz

p

)

=

(

−(u− 1)z

p

)

= 1.

Thus, letting

a2 ≡ uz (mod p) and b2 ≡ −(u− 1)z (mod p)

proves the result for k = 1 since u, u− 1, and z are all units modulo p.

Piecing together Theorems 13,15,16,17, and 19 using the Chinese remainder theorem as
stated in Theorem 12 provides a proof for Theorem 7. We note once more that Theorem 7
provides some insight in to Question 1.

The following two corollaries are immediate consequences of Theorem 7.

Corollary 20. Suppose n is odd and not divisible by 3 or 5. If z is a unit modulo n, then
there exist units a and b in Zn such that a2 + b2 ≡ z (mod n).

Corollary 21. If n is even, then no unit can be written as the sum of two square units.

To further address Question 1, in the following theorem we loosen the restriction that a
and b are units in Zpk and instead only require a2 and b2 to be non-zero modulo pk.

Theorem 22. Let p ≥ 7 be a prime with p ≡ 3 (mod 4) and let k be a positive integer. For
a fixed non-zero element z ∈ Zpk , there exist elements a and b with a2 and b2 each non-zero
in Zpk such that a2 + b2 ≡ z (mod pk) if and only if z ≡ xpr (mod pk) for some unit x in
Zpk and some non-negative even integer r < k.

Proof. Suppose that a2 and b2 are non-zero elements in Zpk with a2 + b2 ≡ z (mod pk). If
z is a unit in Zpk , then we may write z ≡ zp0 (mod pk) which proves the result. Suppose,
then, that z is not a unit in Zpk . Since z 6≡ 0 (mod pk), then we can write z ≡ xpr (mod pk)
for some unit x ∈ Zpk and some positive integer r < k. Thus,

a2 + b2 = xpr + cpk = pr(x+ cpk−r),

for some c ∈ Z. It follows that p divides a2 + b2, but p does not divide x+ cpk−r since x is a
unit in Zpk . Hence, p

r divides a2 + b2, but pr+1 does not. Since p ≡ 3 (mod 4), it follows by
Theorem 11 that r must be even.

Conversely, suppose that z ≡ xpr (mod pk) for some unit x ∈ Zpk and some non-negative
even integer r < k. Since x is a unit in Zpk , it follows by Theorem 19 that there exist units
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u and v such that u2+ v2 ≡ x (mod pk). Since r is an even integer, we may define a ≡ upr/2

(mod pk) and b ≡ vpr/2 (mod pk). Notice that a2 and b2 are non-zero in Zpk since r < k.
Furthermore,

a2 + b2 ≡
(

upr/2
)2

+
(

vpr/2
)2

(mod pk)

≡ u2pr + v2pr (mod pk)

≡ xpr (mod pk).

This completes the proof of the theorem.

The Chinese remainder theorem as stated in Theorem 12 along with Theorems 6 and 22
partially answers Question 1 when n is not divisible by 2 or 3.

4 Special numbers in Zn

For convenience and completeness, we restate and prove Theorem 3.

Theorem. For any odd integer n ≥ 3, any unit d in Zn, and any integer m, there exist
integers a, b, and c such that a2 + b2 − dc2 ≡ m (mod n).

Proof. Let n ≥ 3 be an integer and let d be a unit in Zn. By the Chinese remainder theorem
and Theorem 8 there exists some prime p satisfying

p ≡ 1 (mod 4) and p ≡ d (mod n).

It follows from Theorem 2 that such a prime must be a special number. Therefore, for any
integer m, there exist integers a, b, and c such that a2 + b2 − pc2 = m. In this case a, b, and
c will satisfy

a2 + b2 − dc2 ≡ m (mod n).

This proves the theorem.

Our main goal in this section is to prove Theorem 5. To do this, we first establish three
lemmas.

Lemma 23. Let k be a positive integer. Then there are no unit-special numbers modulo 2k

or 3k.

Proof. The theorem can be checked computationally for k = 1. Let p ∈ {2, 3} and k > 1.
Suppose that d is unit-special in Zpk . Then there exist units a, b, and c in Zpk such that
a2+b2−dc2 ≡ z (mod pk) for all z ∈ Zpk . It follows that a

2+b2−dc2 ≡ z (mod p). However,
since d is not unit-special in Zp, there is some element z ∈ Zp that cannot be written in this
form. Therefore d cannot be unit-special in Zpk .
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Lemma 24. Let k be a positive integer. An integer d is unit-special in Z5k if and only if
d ≡ ±2 (mod 5).

Proof. The theorem can be verified computationally for k = 1. If d is unit-special in Z5k for
some k > 1, then d is also unit-special modulo 5 whence d ≡ ±2 (mod 5).

Conversely, suppose that k > 1 and d ≡ ±2 (mod 5). Let m be any fixed integer. Then
there exist units a, b, and c modulo 5 such that a2 + b2 − dc2 ≡ m (mod 5). As such, by
Lemma 14 there exists a unit bk ∈ Z5k with

a2 + b2k ≡ m+ dc2 (mod 5k).

Therefore the result holds for all positive integers k.

Lemma 25. For an odd positive integer n not divisible by 3 or 5, if d is a unit in Zn, then
d is unit-special in Zn.

Proof. Let d be a unit modulo n, and fix m ∈ Zn. We proceed with two cases as to whether
or not m+ d is a unit modulo n.

Suppose m + d is a unit modulo n, then by Corollary 20 we may obtain units a and b

modulo n such that
a2 + b2 ≡ m+ d (mod n).

The result follows by choosing c ≡ 1 (mod n).
Now suppose that m+ d is not a unit modulo n. Factor n as

n =

(

t
∏

i=1

peii

)

·

(

r
∏

j=1

q
fj
j

)

where each pi is distinct with m + d 6≡ 0 (mod pi), and each qj is distinct with m + d ≡ 0
(mod qj). Then it follows from Corollary 20 that there exist units ai and bi in Zpei such that
a2i + b2i ≡ m+ d (mod pi). Now, notice that since d is a unit modulo n, then d is also a unit
modulo qj. We deduce that m+ 4d 6≡ 0 (mod qj), since otherwise

m+ d ≡ 0 (mod qj) ≡ m+ 4d (mod qj)

would imply that 4 ≡ 1 (mod qj). This cannot happen since n is not divisible by 3. Thus,
m+ 4d is a unit in Zqj . It follows from Corollary 20 that there exist units a′i and b′i in Z

q
fj
j

such that
(a′i)

2 + (b′i)
2 ≡ m+ 4d (mod q

fj
j ).

Next, we use the Chinese remainder theorem to choose a, b, and c which satisfy the system
of congruences

a ≡ ai (mod peii ) a ≡ a′i (mod q
fj
j )

b ≡ bi (mod peii ) b ≡ b′i (mod q
fj
j )
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and
c ≡ 1 (mod peii ) c ≡ 2 (mod q

fj
j ).

This ensures that a, b, and c are units in Zn with a2 + b2 − dc2 ≡ m (mod n).

The following Corollary follows from Lemma 25 and Theorem 3.

Corollary 26. Let n be an odd positive integer with n 6∈ {1, 3, 5, 9, 25}. Then every integer
can be written as the sum of three non-zero squares in Zn.

Proof. Write n = 3r5tm with m relatively prime to 3 and 5. First suppose that m 6= 1.
Since −1 is a unit in Zm, it follows from Lemma 25 that for any integer z there exist units
a1, b1, and c1 in Zm such that a21+ b21+ c21 ≡ z (mod m). Theorem 3 implies that there exist
integers a2, b2, and c2 such that a22 + b22 + c22 ≡ z (mod 3r5t). Using the Chinese remainder
theorem as stated in Theorem 12, there exist a, b, and c such that a2 + b2 + c2 ≡ z (mod n).
Such a choice of a ensures that a2 ≡ a21 (mod m). Since a1 is relatively prime to m we see
that m does not divide a2. Thus, n does not divide a2. This shows that a2 is non-zero in
Zn. Similar arguments show that b2 and c2 are non-zero in Zn.

Now suppose that m = 1 so that n = 3r5t. Following the Hensel Lifting argument of
Lemma 14, it is easy to show that for a positive integer k, if z can be written as the sum
of three non-zero squares in Z3k−1 , then it can also be written as the sum of three non-zero
squares in Z3k . We check computationally that every integer can be written as the sum of
three non-zero squares in Z33 . Thus, for k ≥ 3, we can write every integer as the sum of three
non-zero squares in Z3k . The same argument shows that we can also write every integer as
the sum of three non-zero squares in Z53 . Using an argument similar to the one in the first
paragraph of the proof, it then follows that if r ≥ 3 or t ≥ 3, every integer can be written
as the sum of three non-zero squares in Zn. The remaining finite number of cases can easily
be confirmed computationally.

We are now in a position to prove Theorem 5.

Proof of Theorem 5. Lemma 23 implies that if d is unit-special in Zn, then n is not divisible
by 2 or 3. It follows from Lemma 24 that if 5 divides n, then d ≡ ±2 (mod 5). Now suppose
that n is divisible by some prime p ≡ 3 (mod 4). If d is unit-special in Zn, then we may
obtain units a, b, c modulo n such that

a2 + b2 − dc2 ≡ 0 (mod n).

It would then follow that
a2 + b2 − dc2 ≡ 0 (mod p).

If d ≡ 0 (mod p), then this would contradict Theorem 19. As such, we conclude gcd(d, p) =
1.

To prove the converse, we first show that if n is odd, 5 does not divide n, and n is not
divisible by any prime p ≡ 3 (mod 4), then every integer is unit-special in Zn. To see this,
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let m and d be fixed integers. By Corollary 18, there exist units a and b in Zn such that
a2 + b2 ≡ m+ d (mod n). Since m is chosen arbitrarily, this shows that d is unit-special in
Zn since

a2 + b2 − d · (1)2 ≡ m (mod n).

This observation together with Theorem 12, Lemma 24, and Lemma 25 finishes the proof of
the theorem.
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