Special Numbers in the Ring \mathbb{Z}_n

Samuel S. Gross
Noblis, Inc.
Falls Church, VA 22042
USA
samuel.gross@noblis-nsp.com

Joshua Harrington
Department of Mathematics
Cedar Crest College
Allentown, PA 18104
USA
Joshua.Harrington@cedarcrest.edu

Abstract

In a recent article, Nowicki introduced the concept of a special number. Specifically, an integer d is called special if for every integer m there exist solutions in non-zero integers a, b, c to the equation $a^2 + b^2 - dc^2 = m$. In this article we investigate pairs of integers (n, d), with $n \geq 2$, such that for every integer m there exist units a, b, c in \mathbb{Z}_n satisfying $m \equiv a^2 + b^2 - dc^2 \pmod{n}$. By refining a recent result of Harrington, Jones, and Lamarche on representing integers as the sum of two non-zero squares in \mathbb{Z}_n, we establish a complete characterization of all such pairs.

1 Introduction

The following definition was recently stated by Nowicki [4].

Definition 1. We call a positive integer d special if for every integer m there exist non-zero integers a, b, c so that $a^2 + b^2 - dc^2 = m$.

The necessary conditions of the following theorem were proven by Nowicki, while Lam [3] later provided the sufficient conditions.
Theorem 2. An integer \(d \) is special if and only if \(d \) is of the form \(q \) or \(2q \) where either \(q = 1 \) or \(q \) is a product of primes all congruent to 1 modulo 4.

With this complete representation of special numbers, the following theorem follows from Dirichlet’s theorem on primes in arithmetic progression (see Theorem 8 below) and the Chinese remainder theorem. For completeness, we provide a proof of this theorem in Section 4.

Theorem 3. For any odd integer \(n \geq 3 \), any \(d \) with \(\gcd(d,n) = 1 \), and any integer \(m \), there exist integers \(a, b, \) and \(c \) such that \(a^2 + b^2 - dc^2 \equiv m \pmod{n} \).

In light of Theorem 3, we give the following definition, which imposes a unit restriction on \(a, b, \) and \(c \).

Definition 4. We say that \(d \) is unit-special in \(\mathbb{Z}_n \) if for an integer \(m \), there exist units \(a, b, \) and \(c \) in \(\mathbb{Z}_n \) with \(a^2 + b^2 - dc^2 \equiv m \pmod{n} \).

We note that the requirement that \(a, b, \) and \(c \) be units in \(\mathbb{Z}_n \) ensures that \(a^2, b^2, \) and \(c^2 \) are non-zero in \(\mathbb{Z}_n \). Although one could loosen this restriction to just require \(a^2, b^2, \) and \(c^2 \) to be non-zero, this is not the setting that we investigate in this article. Among the results in this article, we provide the following complete characterization of unit-special numbers in \(\mathbb{Z}_n \).

Theorem 5. Let \(n \) be a positive integer. An integer \(d \) is unit-special in \(\mathbb{Z}_n \) if and only if the following three conditions hold:

- \(n \) is not divisible by 2 or 3.
- If \(p \equiv 3 \pmod{4} \) is prime and \(p \) divides \(n \), then \(\gcd(d,p) = 1 \).
- If 5 divides \(n \), then \(d \equiv \pm 2 \pmod{5} \).

To establish Theorem 5 we first refine a recent result of Harrington, Jones, and Lamarche [2] on representing integers as the sum of two non-zero squares in the ring \(\mathbb{Z}_n \), stated below.

Theorem 6. Let \(n \geq 2 \) be an integer. The equation
\[
x^2 + y^2 \equiv z \pmod{n}
\]
has a non-trivial solution \((x^2, y^2 \neq 0 \pmod{n})\) for all \(z \) in \(\mathbb{Z}_n \) if and only if all of the following are true.

1. \(q^2 \) does not divide \(n \) for any prime \(q \equiv 3 \pmod{4} \).
2. 4 does not divide \(n \).
3. \(n \) is divisible by some prime \(p \equiv 1 \pmod{4} \).
4. If \(n \) is odd and \(n = 5^k m \) with \(\gcd(5, m) = 1 \) and \(k < 3 \), then \(m \) is divisible by some prime \(p \equiv 1 \pmod{4} \).

At the end of their article, Harrington, Jones, and Lamarche ask the following question.

Question 1. Theorem 6 considers the situation when the entire ring \(\mathbb{Z}_n \) can be obtained as the sum of two non-zero squares. When this cannot be attained, how badly does it fail?

In this article, we address Question 1 in a slightly refined setting. In particular, we prove the following theorem.

Theorem 7. Let \(n \geq 2 \) be an integer. For a fixed integer \(z \), there exist units \(a \) and \(b \) in \(\mathbb{Z}_n \) such that \(a^2 + b^2 \equiv z \pmod{n} \) if and only if all of the following hold:

- If \(p \equiv 3 \pmod{4} \) is a prime dividing \(n \), then \(\gcd(z, p) = 1 \).
- If \(5 \) divides \(n \), then \(z \not\equiv \pm1 \pmod{5} \).
- If \(3 \) divides \(n \), then \(z \equiv 2 \pmod{3} \).
- If \(2 \) divides \(n \) and \(4 \) does not, then \(z \equiv 0 \pmod{2} \).
- If \(4 \) divides \(n \) and \(8 \) does not, then \(z \equiv 2 \pmod{4} \).
- If \(8 \) divides \(n \), then \(z \equiv 2 \pmod{8} \).

We again note that the requirement that \(a \) and \(b \) are units in \(\mathbb{Z}_n \) ensures that \(a^2 \) and \(b^2 \) are non-zero in \(\mathbb{Z}_n \). Since Question 1 does not have the unit restriction, Theorem 7 does not give a complete answer to the question. However, it does provide sufficient conditions in the setting of Question 1. Although the majority of this article focuses on the refined setting where \(a \) and \(b \) are units in \(\mathbb{Z}_n \), we do briefly investigate the more general setting of Question 1 and provide a result in this direction.

2 Preliminaries and notation

We will make use of the following results and definitions from classical number theory (see, for example [1]).

Theorem 8 (Dirichlet). Let \(a, b \) be integers such that \(\gcd(a, b) = 1 \). Then the sequence \(\{ak + b\} \), over integers \(k \), contains infinitely many primes.

Definition 9. Let \(p \) be an odd prime. The **Legendre symbol** of an integer \(a \) modulo \(p \) is given by

\[
\left(\frac{a}{p} \right) = \begin{cases}
1, & \text{if } a \text{ is a non-zero square modulo } p; \\
-1, & \text{if } a \text{ is not a square modulo } p; \\
0, & \text{if } a \equiv 0 \pmod{p}.
\end{cases}
\]
Theorem 10. Let \(p \geq 7 \) be a prime. There exist non-zero elements \(t, u, v, \) and \(w \) in \(\mathbb{Z}_p \) such that
\[
\begin{align*}
\left(\frac{u}{p} \right) &= \left(\frac{u+1}{p} \right) = 1, & \left(\frac{v}{p} \right) &= \left(\frac{v+1}{p} \right) = -1, \\
\left(\frac{w}{p} \right) &= -\left(\frac{w+1}{p} \right) = 1, \quad \text{and} & \left(\frac{t}{p} \right) &= -\left(\frac{t+1}{p} \right) = -1.
\end{align*}
\]

The following result can be found in a book of Suzuki’s [5] and is originally due to Euler.

Theorem 11. A positive integer \(z \) can be written as the sum of two squares if and only if all prime factors \(q \) of \(z \) with \(q \equiv 3 \pmod{4} \) occur with even exponent.

The following theorem, which follows immediately from the Chinese remainder theorem, appears in Harrington, Jones, and Lamarche’s article.

Theorem 12. Suppose that \(m_1, m_2, \ldots, m_t \) are all pairwise relatively prime integers \(\geq 2 \), and set \(M = m_1 m_2 \cdots m_k \). Let \(c_1, c_2, \ldots, c_t \) be any integers, and let \(x \equiv c \pmod{M} \) be the solution of the system of congruences \(x \equiv c_i \pmod{m_i} \) using the Chinese remainder theorem. Then there exists a \(y \) such that \(y^2 \equiv c \pmod{M} \) if and only if there exist \(y_1, y_2, \ldots, y_t \) such that \(y_i^2 \equiv c_i \pmod{m_i} \).

3 Sums of squares in \(\mathbb{Z}_n \)

We begin by examining when integers are a sum of two unit squares modulo \(n \). Later we shall relax this condition and only require both squares to be non-zero modulo \(n \).

Let us first examine the case when the modulus is a power of 2.

Theorem 13. Let \(k \) be a positive integer. For a fixed integer \(z \), there exist units \(a \) and \(b \) in \(\mathbb{Z}_{2^k} \) such that \(a^2 + b^2 \equiv z \pmod{2^k} \) if and only if one of the following is true:
- \(k = 1 \) and \(z \equiv 0 \pmod{2} \);
- \(k = 2 \) and \(z \equiv 2 \pmod{4} \);
- \(k \geq 3 \) and \(z \equiv 2 \pmod{8} \).

Proof. We computationally check that the theorem is true for \(k \leq 3 \).

Suppose \(k > 3 \). If \(a^2 + b^2 \equiv z \pmod{2^k} \), then \(a^2 + b^2 \equiv z \pmod{2^8} \). Thus, we deduce that \(z \equiv 2 \pmod{8} \).

Conversely, suppose that \(z \equiv 2 \pmod{8} \). We proceed with a proof by induction on \(k \). We have already established the base case \(k \leq 3 \). Suppose that the theorem holds for \(k - 1 \) so that there are units \(a \) and \(b \) in \(\mathbb{Z}_{2^{k-1}} \) such that \(a^2 + b^2 \equiv z \pmod{2^{k-1}} \). Then for some odd integer \(t \) and some integer \(r \geq k - 1 \) we can write
\[
a^2 + b^2 = z + t2^r.
\]
If \(r \geq k \), then \(a^2 + b^2 \equiv z \pmod{2^k} \), as desired. So suppose that \(r = k - 1 \). Then
\[
a^2 + (b + 2^{k-2})^2 = a^2 + b^2 + b2^{k-1} + 2^{2k-4}
\]
\[
= z + t2^{k-1} + b2^{k-1} + 2^{2k-4}
\]
\[
= z + 2^{k-1}(t + b) + 2^{2k-4}.
\]

Since \(k \geq 4 \), we know that \(2^{2k-4} \equiv 0 \pmod{2^k} \). Also, since \(b \) was chosen to be a unit in \(\mathbb{Z}_{2^{k-1}} \), then \(b \) must be odd. Thus, \(t + b \) is even and we deduce that \(2^{k-1}(t + b) \equiv 0 \pmod{2^k} \). Hence,
\[
a^2 + (b + 2^{k-2})^2 \equiv z \pmod{2^k}.
\]
It follows that \(b + 2^{k-2} \) is an odd integer and is therefore a unit in \(\mathbb{Z}_{2^k} \), as desired. \(\square \)

We next treat the case where the modulus is a power of an odd prime. The following is an application of Hensel’s Lifting Lemma. We provide the proof here for completeness.

Lemma 14. For an odd prime \(p \) and integer \(z \), suppose there are non-zero elements \(a \) and \(b_1 \) in \(\mathbb{Z}_p \) such that \(a^2 + b_1^2 \equiv z \pmod{p} \). Then for any positive integer \(k \), the integer \(a \) is a unit in \(\mathbb{Z}_{p^k} \) and there exists a unit \(b_k \) in \(\mathbb{Z}_{p^k} \) such that \(a^2 + b_k^2 \equiv z \pmod{p^k} \).

Proof. Suppose that \(a^2 + b_1^2 \equiv z \pmod{p} \) for some non-zero elements \(a \) and \(b_1 \) in \(\mathbb{Z}_p \). Then for some integer \(t_1 \), \(a^2 + b_1^2 = z + t_1p \). Let \(b_2 \equiv b_1 - t_1p(2b_1)^{-1} \pmod{p^2} \), and note that \(b_2 \) is a unit in \(\mathbb{Z}_{p^2} \). It follows that
\[
a^2 + b_2^2 \equiv a^2 + (b_1 - t_1p(2b_1)^{-1})^2 \pmod{p^2}
\]
\[
\equiv a^2 + b_1^2 - t_1p \pmod{p^2}
\]
\[
\equiv z + t_1p - t_1p \pmod{p^2}
\]
\[
\equiv z \pmod{p^2}.
\]
Since \(a \) is also a unit modulo \(p^2 \), this proves the result for \(k = 2 \). The remainder of the theorem now follows by induction on \(k \) with
\[
a^2 + b_{k+1}^2 \equiv z \pmod{p^{k+1}},
\]
where \(b_{k+1} \equiv b_k - t_kp(b_k)^{-1} \pmod{p^k} \) with \(t_k \) satisfying \(a^2 + b_k^2 = z + t_kp^k \). \(\square \)

An appropriate converse for Lemma 14 can be stated, however the information contained in such a statement varies with the modulus. Specifically, we can easily prove the following two theorems after verifying the base case \(k = 1 \) and applying Lemma 14.

Theorem 15. Let \(k \) be a positive integer. For a fixed integer \(z \), there exist units \(a \) and \(b \) in \(\mathbb{Z}_{3^k} \) with \(a^2 + b^2 \equiv z \pmod{3^k} \) if and only if \(z \equiv 2 \pmod{3} \).

Theorem 16. Let \(k \) be a positive integer. For a fixed integer \(z \), there exist units \(a \) and \(b \) in \(\mathbb{Z}_{5^k} \) with \(a^2 + b^2 \equiv z \pmod{5^k} \) if and only if \(z \neq \pm 1 \pmod{5} \).
For powers of primes that are 1 modulo 4, we have the following theorem which is a bit more general then Lemma 14.

Theorem 17. Let \(p \geq 13 \) be a prime with \(p \equiv 1 \pmod{4} \) and let \(k \) be a positive integer. For every integer \(z \), there exist units \(a \) and \(b \) in \(\mathbb{Z}_{p^k} \) such that \(a^2 + b^2 \equiv z \pmod{p^k} \).

Proof. We show that the result holds for \(k = 1 \) and the remainder of the proof will follow from Lemma 14. So let \(k = 1 \). First suppose that \(z \equiv 0 \pmod{p} \). Since \(p \equiv 1 \pmod{4} \), we know that \(-1 \) is a square modulo \(p \). Thus, we can let \(a^2 \equiv 1 \pmod{p} \) and \(b^2 \equiv p - 1 \pmod{p} \) so that \(a^2 + b^2 \equiv z \pmod{p} \), where \(a \) and \(b \) are units modulo \(p \).

Now suppose that \(z \not\equiv 0 \pmod{p} \). Since \(p \geq 7 \), we can use Theorem 10 to choose \(u \) such that \(\left(\frac{u}{p} \right) = \left(\frac{u - 1}{p} \right) = \left(\frac{z}{p} \right) \).

It follows that \(\left(\frac{uz}{p} \right) = \left(\frac{-(u - 1)z}{p} \right) = 1 \).

Thus, letting \(a^2 \equiv uz \pmod{p} \) and \(b^2 \equiv -(u - 1)z \pmod{p} \) proves the result for \(k = 1 \) since \(u, u - 1, \) and \(z \) are all units modulo \(p \). \(\square \)

In the next corollary, which provides an extension of Theorem 6 to our new unit-setting, we piece together the information in Theorem 17 using the Chinese remainder theorem as stated in Theorem 12.

Corollary 18. Let \(n \geq 13 \) be an odd integer not divisible by 5 and with all prime divisors congruent to 1 modulo 4. Then for any fixed integer \(z \), there exist units \(a \) and \(b \) in \(\mathbb{Z}_n \) with \(a^2 + b^2 \equiv z \pmod{n} \).

We now turn our attention to primes that are 3 modulo 4.

Theorem 19. Let \(p \geq 7 \) be a prime with \(p \equiv 3 \pmod{4} \) and let \(k \) be a positive integer. For a fixed integer \(z \), there exist units \(a \) and \(b \) in \(\mathbb{Z}_{p^k} \) with \(a^2 + b^2 \equiv z \pmod{p^k} \) if and only if \(z \) is a unit in \(\mathbb{Z}_{p^k} \).

Proof. First suppose that the \(a \) and \(b \) are units modulo \(p^k \) with \(a^2 + b^2 \equiv z \pmod{p^k} \). If \(z \) is not a unit modulo \(p^k \), then \(z \equiv xp \pmod{p^k} \) for some integer \(x \), whence \(z \equiv 0 \pmod{p} \). It follows that \(a^2 \equiv -b^2 \pmod{p} \). However, this leads to a contradiction since

\[
\left(\frac{-b^2}{p} \right) = \left(\frac{-1}{p} \right) \cdot \left(\frac{b^2}{p} \right) = -1.
\]
For the converse, we show that the result holds for $k = 1$ and the remainder of the proof will follow from Lemma 14. In this case, choose u from Theorem 10 such that

$$\left(\frac{u}{p} \right) = -\left(\frac{u - 1}{p} \right) = \left(\frac{z}{p} \right).$$

It follows that

$$\left(\frac{uz}{p} \right) = \left(-\frac{(u - 1)z}{p} \right) = 1.$$

Thus, letting

$$a^2 \equiv uz \pmod{p} \quad \text{and} \quad b^2 \equiv -(u - 1)z \pmod{p}$$

proves the result for $k = 1$ since $u, u - 1,$ and z are all units modulo p. \hfill \blacksquare

Piecing together Theorems 13, 15, 16, 17, and 19 using the Chinese remainder theorem as stated in Theorem 12 provides a proof for Theorem 7. We note once more that Theorem 7 provides some insight into Question 1.

The following two corollaries are immediate consequences of Theorem 7.

Corollary 20. Suppose n is odd and not divisible by 3 or 5. If z is a unit modulo n, then there exist units a and b in \mathbb{Z}_n such that $a^2 + b^2 \equiv z \pmod{n}$.

Corollary 21. If n is even, then no unit can be written as the sum of two square units.

To further address Question 1, in the following theorem we loosen the restriction that a and b are units in \mathbb{Z}_{p^k} and instead only require a^2 and b^2 to be non-zero modulo p^k.

Theorem 22. Let $p \geq 7$ be a prime with $p \equiv 3 \pmod{4}$ and let k be a positive integer. For a fixed non-zero element $z \in \mathbb{Z}_{p^k}$, there exist elements a and b with a^2 and b^2 each non-zero in \mathbb{Z}_{p^k} such that $a^2 + b^2 \equiv z \pmod{p^k}$ if and only if $z \equiv xp^r \pmod{p^k}$ for some unit x in \mathbb{Z}_{p^k} and some non-negative even integer $r < k$.

Proof. Suppose that a^2 and b^2 are non-zero elements in \mathbb{Z}_{p^k} with $a^2 + b^2 \equiv z \pmod{p^k}$. If z is a unit in \mathbb{Z}_{p^k}, then we may write $z \equiv xp^0 \pmod{p^k}$ which proves the result. Suppose, then, that z is not a unit in \mathbb{Z}_{p^k}. Since $z \not\equiv 0 \pmod{p^k}$, then we can write $z \equiv xp^r \pmod{p^k}$ for some unit $x \in \mathbb{Z}_{p^k}$ and some positive integer $r < k$. Thus,

$$a^2 + b^2 = xp^r + cp^k = p^r(x + cp^{k-r}),$$

for some $c \in \mathbb{Z}$. It follows that p divides $a^2 + b^2$, but p does not divide $x + cp^{k-r}$ since x is a unit in \mathbb{Z}_{p^k}. Hence, p^r divides $a^2 + b^2$, but p^{r+1} does not. Since $p \equiv 3 \pmod{4}$, it follows by Theorem 11 that r must be even.

Conversely, suppose that $z \equiv xp^r \pmod{p^k}$ for some unit $x \in \mathbb{Z}_{p^k}$ and some non-negative even integer $r < k$. Since x is a unit in \mathbb{Z}_{p^k}, it follows by Theorem 19 that there exist units
and v such that $u^2 + v^2 \equiv x \pmod{p^k}$. Since r is an even integer, we may define $a \equiv u p^{r/2} \pmod{p^k}$ and $b \equiv v p^{r/2} \pmod{p^k}$. Notice that a^2 and b^2 are non-zero in \mathbb{Z}_{p^k} since $r < k$.

Furthermore,

\[
\begin{align*}
 a^2 + b^2 &\equiv (u p^{r/2})^2 + (v p^{r/2})^2 \pmod{p^k} \\
 &\equiv u^2 p^r + v^2 p^r \pmod{p^k} \\
 &\equiv x p^r \pmod{p^k}.
\end{align*}
\]

This completes the proof of the theorem. \qed

The Chinese remainder theorem as stated in Theorem 12 along with Theorems 6 and 22 partially answers Question 1 when n is not divisible by 2 or 3.

4 Special numbers in \mathbb{Z}_n

For convenience and completeness, we restate and prove Theorem 3.

Theorem. For any odd integer $n \geq 3$, any unit d in \mathbb{Z}_n, and any integer m, there exist integers $a, b, \text{ and } c$ such that $a^2 + b^2 − dc^2 \equiv m \pmod{n}$.

Proof. Let $n \geq 3$ be an integer and let d be a unit in \mathbb{Z}_n. By the Chinese remainder theorem and Theorem 8 there exists some prime p satisfying

\[
p \equiv 1 \pmod{4} \quad \text{and} \quad p \equiv d \pmod{n}.
\]

It follows from Theorem 2 that such a prime must be a special number. Therefore, for any integer m, there exist integers $a, b, \text{ and } c$ such that $a^2 + b^2 − pc^2 = m$. In this case $a, b, \text{ and } c$ will satisfy

\[
a^2 + b^2 − dc^2 \equiv m \pmod{n}.
\]

This proves the theorem. \qed

Our main goal in this section is to prove Theorem 5. To do this, we first establish three lemmas.

Lemma 23. Let k be a positive integer. Then there are no unit-special numbers modulo 2^k or 3^k.

Proof. The theorem can be checked computationally for $k = 1$. Let $p \in \{2, 3\}$ and $k > 1$. Suppose that d is unit-special in \mathbb{Z}_{p^k}. Then there exist units $a, b, \text{ and } c$ in \mathbb{Z}_{p^k} such that $a^2 + b^2 − dc^2 \equiv z \pmod{p^k}$ for all $z \in \mathbb{Z}_{p^k}$. It follows that $a^2 + b^2 − dc^2 \equiv z \pmod{p}$. However, since d is not unit-special in \mathbb{Z}_p, there is some element $z \in \mathbb{Z}_p$ that cannot be written in this form. Therefore d cannot be unit-special in \mathbb{Z}_{p^k}. \qed
Lemma 24. Let k be a positive integer. An integer d is unit-special in \mathbb{Z}_{5^k} if and only if $d \equiv \pm 2 \pmod{5}$.

Proof. The theorem can be verified computationally for $k = 1$. If d is unit-special in \mathbb{Z}_{5^k} for some $k > 1$, then d is also unit-special modulo 5 whence $d \equiv \pm 2 \pmod{5}$.

Conversely, suppose that $k > 1$ and $d \equiv \pm 2 \pmod{5}$. Let m be any fixed integer. Then there exist units $a, b,$ and c modulo 5 such that $a^2 + b^2 - dc^2 \equiv m \pmod{5}$. As such, by Lemma 14 there exists a unit $b_k \in \mathbb{Z}_{5^k}$ with

$$a^2 + b_k^2 \equiv m + dc^2 \pmod{5^k}.$$

Therefore the result holds for all positive integers k. \qed

Lemma 25. For an odd positive integer n not divisible by 3 or 5, if d is a unit in \mathbb{Z}_n, then d is unit-special in \mathbb{Z}_n.

Proof. Let d be a unit modulo n, and fix $m \in \mathbb{Z}_n$. We proceed with two cases as to whether or not $m + d$ is a unit modulo n.

Suppose $m + d$ is a unit modulo n, then by Corollary 20 we may obtain units a and b modulo n such that

$$a^2 + b^2 \equiv m + d \pmod{n}.$$

The result follows by choosing $c \equiv 1 \pmod{n}$.

Now suppose that $m + d$ is not a unit modulo n. Factor n as

$$n = \left(\prod_{i=1}^{t} p_i^{e_i} \right) \cdot \left(\prod_{j=1}^{r} q_j^{f_j} \right)$$

where each p_i is distinct with $m + d \not\equiv 0 \pmod{p_i}$, and each q_j is distinct with $m + d \equiv 0 \pmod{q_j}$. Then it follows from Corollary 20 that there exist units a_i and b_i in $\mathbb{Z}_{p_i^{e_i}}$ such that $a_i^2 + b_i^2 \equiv m + d \pmod{p_i}$. Now, notice that since d is a unit modulo n, then d is also a unit modulo q_j. We deduce that $m + 4d \not\equiv 0 \pmod{q_j}$, since otherwise

$$m + d \equiv 0 \pmod{q_j} \equiv m + 4d \pmod{q_j}$$

would imply that $4 \equiv 1 \pmod{q_j}$. This cannot happen since n is not divisible by 3. Thus, $m + 4d$ is a unit in \mathbb{Z}_{q_j}. It follows from Corollary 20 that there exist units a_i' and b_i' in $\mathbb{Z}_{q_j^{f_j}}$ such that

$$(a_i')^2 + (b_i')^2 \equiv m + 4d \pmod{q_j^{f_j}}.$$

Next, we use the Chinese remainder theorem to choose $a, b,$ and c which satisfy the system of congruences

$$a \equiv a_i \pmod{p_i^{e_i}}, \quad a \equiv a_i' \pmod{q_j^{f_j}}$$

$$b \equiv b_i \pmod{p_i^{e_i}}, \quad b \equiv b_i' \pmod{q_j^{f_j}}$$
and

\[c \equiv 1 \pmod{p_i^{e_i}} \quad c \equiv 2 \pmod{q_j^{f_j}}. \]

This ensures that \(a, b,\) and \(c\) are units in \(\mathbb{Z}_n\) with \(a^2 + b^2 - dc^2 \equiv m \pmod{n}\). \(\Box\)

The following Corollary follows from Lemma 25 and Theorem 3.

Corollary 26. Let \(n\) be an odd positive integer with \(n \notin \{1, 3, 5, 9, 25\}\). Then every integer can be written as the sum of three non-zero squares in \(\mathbb{Z}_n\).

Proof. Write \(n = 3^r 5^t m\) with \(m\) relatively prime to 3 and 5. First suppose that \(m \neq 1\). Since \(-1\) is a unit in \(\mathbb{Z}_m\), it follows from Lemma 25 that for any integer \(z\) there exist units \(a_1, b_1,\) and \(c_1\) in \(\mathbb{Z}_m\) such that \(a_1^2 + b_1^2 + c_1^2 \equiv z \pmod{m}\). Theorem 3 implies that there exist integers \(a_2, b_2,\) and \(c_2\) such that \(a_2^2 + b_2^2 + c_2^2 \equiv z \pmod{3^r 5^t}\). Using the Chinese remainder theorem as stated in Theorem 12, there exist \(a, b,\) and \(c\) such that \(a^2 + b^2 + c^2 \equiv z \pmod{n}\). Such a choice of \(a\) ensures that \(a^2 \equiv a_1^2 \pmod{m}\). Since \(a_1\) is relatively prime to \(m\) we see that \(m\) does not divide \(a^2\). Thus, \(n\) does not divide \(a^2\). This shows that \(a^2\) is non-zero in \(\mathbb{Z}_n\). Similar arguments show that \(b^2\) and \(c^2\) are non-zero in \(\mathbb{Z}_n\).

Now suppose that \(m = 1\) so that \(n = 3^r 5^t\). Following the Hensel Lifting argument of Lemma 14, it is easy to show that for a positive integer \(k,\) if \(z\) can be written as the sum of three non-zero squares in \(\mathbb{Z}_{3^k-1}\), then it can also be written as the sum of three non-zero squares in \(\mathbb{Z}_{3^k}\). We check computationally that every integer can be written as the sum of three non-zero squares in \(\mathbb{Z}_{3^3}\). Thus, for \(k \geq 3\), we can write every integer as the sum of three non-zero squares in \(\mathbb{Z}_{3^k}\). The same argument shows that we can also write every integer as the sum of three non-zero squares in \(\mathbb{Z}_{5^t}\). Using an argument similar to the one in the first paragraph of the proof, it then follows that if \(r \geq 3\) or \(t \geq 3\), every integer can be written as the sum of three non-zero squares in \(\mathbb{Z}_n\). The remaining finite number of cases can easily be confirmed computationally. \(\Box\)

We are now in a position to prove Theorem 5.

Proof of Theorem 5. Lemma 23 implies that if \(d\) is unit-special in \(\mathbb{Z}_n\), then \(n\) is not divisible by 2 or 3. It follows from Lemma 24 that if 5 divides \(n\), then \(d \equiv \pm 2 \pmod{5}\). Now suppose that \(n\) is divisible by some prime \(p \equiv 3 \pmod{4}\). If \(d\) is unit-special in \(\mathbb{Z}_n\), then we may obtain units \(a, b, c\) modulo \(n\) such that

\[a^2 + b^2 - dc^2 \equiv 0 \pmod{n}. \]

It would then follow that

\[a^2 + b^2 - dc^2 \equiv 0 \pmod{p}. \]

If \(d \equiv 0 \pmod{p}\), then this would contradict Theorem 19. As such, we conclude \(\gcd(d, p) = 1\).

To prove the converse, we first show that if \(n\) is odd, 5 does not divide \(n\), and \(n\) is not divisible by any prime \(p \equiv 3 \pmod{4}\), then every integer is unit-special in \(\mathbb{Z}_n\). To see this,
let m and d be fixed integers. By Corollary 18, there exist units a and b in \mathbb{Z}_n such that $a^2 + b^2 \equiv m + d \pmod{n}$. Since m is chosen arbitrarily, this shows that d is unit-special in \mathbb{Z}_n since
\[a^2 + b^2 - d \cdot (1)^2 \equiv m \pmod{n}. \]
This observation together with Theorem 12, Lemma 24, and Lemma 25 finishes the proof of the theorem. \qed

5 Acknowledgments

The authors would like to thank the anonymous referee for suggestions that improved this article.

References

2010 Mathematics Subject Classification: Primary 11E25; Secondary 11A07.

Keywords: sum of squares, ring of integers modulo n, congruence.

Received August 1 2015; revised versions received September 18 2015; September 30 2015. Published in *Journal of Integer Sequences*, November 25 2015. Order of authors switched, January 11 2016.

Return to *Journal of Integer Sequences* home page.