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Abstract

This paper is about counting lattice paths. Examples are the paths counted by

Catalan, Motzkin or Schröder numbers. We identify lattice paths with walks on some

path-like graph. The entries of the nth power of the adjacency matrix are the number

of paths of length n with prescribed start and end position. The adjacency matrices

turn out to be Toeplitz matrices. Explicit expressions for eigenvalues and eigenvectors

of these matrices are known. This yields expressions for the numbers of paths in the

form of trigonometric sums. We give many examples of known sequences that have

such expressions.

We also deal with cases where no explicit expressions for eigenvalues and eigenvec-

tors of the relevant matrices are known. In some of these cases it is possible to use the

characteristic polynomial to get linear recurrence relations for the numbers in question.

1 Introduction

Let Pn(α) be the path of n + 1 vertices with a loop of weight α at each vertex and path-
edges of weight 1, see Figure 1. We label the vertices from one end to the other, starting
with vertex 0 and ending with vertex n. A walk in a graph is a list x0, e1, x1, . . . , em, xm of
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vertices xi and edges ej, such that edge ei has endpoints xi−1 and xi. A walk is oriented;
it starts with x0 and ends with xm. We say that the walk is from x0 to xm. The length
of a path is the number of edges traversed, and it is m in the example. For a walk in an
edge-weighted graph we define its weight as the product of the weights of its edges. Example:
1 → 2 → 3 → 3 → 2 is a walk from 1 to 2 in P5(α). Its length is 4 and its weight is α.
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Figure 1: The path Pn(α) with n+ 1 vertices and loops of weight α.

Counting walks on Pn(α) enables us to count Motzkin paths in a strip: Motzkin paths of
length n are lattice paths with steps of three types (x, y) → (x+1, y+1), (x, y) → (x+1, y),
and (x, y) → (x + 1, y − 1) that start in (0, 0) end in (n, 0) and stay above the x-axis, i.e,
y ≥ 0. A Motzkin path is in the strip [0, k] iff its y-coordinate never exceeds k.

Figure 2: The 9 Motzkin paths of length 4; the first eight are in the strip [0, 1].

Other types of lattice walks in a strip (for example Dyck paths or Schröder paths) can
also be interpreted as walks on paths, see Section 3. We use the weighted adjacency matrix
of Pn(α) as a tool to enumerate classes of such lattice paths. In principle, this is nothing
but a variant of the traditional transfer-matrix method. Results similar to ours but tailored
towards an audience of physicists and with a focus on random walks have been obtained by
by Cicuta et al. [4].

The enumeration of classes of lattice paths is a classical topic originating from Bertrand’s
ballot problem. They are investigated in probability theory in the context of the gambler’s
ruin problem [7, Chapter XIV], but also in their own right. The monograph by Mohanty [12]
gives a valuable overview. An survey on more recent aspects of lattice path enumeration was
given by Humphrey [10].

2 The counting approach

Let us start with two simple facts about the enumeration of walks in graphs.

Fact 1. Let G be a graph with weights on the edges and let A be its weighted adjacency
matrix. The sum of the weights of walks of length m from vertex i to vertex j is

eTi · Am · ej.
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From now on we focus on the graph Pn = Pn(1) and its weighted version Pn(α) re-
spectively. With A(n,α) we denote the weighted adjacency matrix of Pn(α); clearly A(n,α) ∈
R

(n+1)×(n+1).

Definition 2.

Zn
i,j(m, ℓ) := #(walks from i to j of length m, using ℓ loops in Pn).

The following is obtained from Fact 1 and simple combinatorial reasoning.

Fact 3.

Zn
i,j(m, ℓ) =

(
m

ℓ

)

· Zn
i,j(m− ℓ, 0) (1)

m∑

ℓ=0

Zn
i,j(m, ℓ) α

ℓ = eTi · Am
(n,α) · ej (2)

From these fact we can deduce explicit expressions for Zn
i,j(m, ℓ) as trigonometric sums.

Theorem 4.

Zn
i,j(m− ℓ, 0) =

2

n+ 2

n+1∑

k=1

(

2 cos

(
k · π

n+ 2

))m−ℓ

sin

(

i
k · π

n+ 2

)

sin

(

j
k · π

n+ 2

)

(3)

eTi · Am
(n,α) · ej =

2

n+ 2

n+1∑

k=1

(

α + 2 cos

(
k · π

n+ 2

))m

sin

(

i
k · π

n+ 2

)

sin

(

j
k · π

n+ 2

)

(4)

To prove the two formulas given in the theorem we begin with simple linear algebra. The
first proposition is well known:

Proposition 5. Let A ∈ R
(n+1)×(n+1) be a matrix and assume that A admits an orthonormal

basis (v1, . . . , vn+1) of eigenvectors. Also let λi ∈ C be the eigenvalue corresponding to
vi = (v1,i, . . . , vn+1,i). Then

eTi · Am · ej =
n+1∑

k=1

λmk vi,kvj,k.

Proof. Consider the matrix S = [v1, . . . , vn+1], i.e., S · ei = vi for all i. From orthogonality
we obtain ST = S−1. This implies ei = ST ·vi and S

T ·A ·S = diag(λ1, . . . , λn+1) =: D. Now
Am = (S ·D ·S−1)m = S ·Dm ·S−1 = S ·Dm ·ST and hence, eTi ·Am · ej = eTi S ·Dm ·ST ej =
(ST ei)

T ·Dm · (ST ej) = (vi,1, . . . , vi,n+1)
T ·Dm · (vj,1, . . . , vj,n+1) =

∑n+1
k=1 λ

m
k vi,kvj,k.

Since A(n,α) is a real symmetric matrix it has a real orthonormal basis (v1, . . . , vn+1) ∈
R

n+1 of eigenvectors. The next lemma relates eigenvalues and eigenvectors of A(n,α) and of
A(n,0).
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Lemma 6. Let λ1, . . . , λn+1 be the eigenvalues of A(n,0) and (v1 . . . , vn+1) a corresponding
orthonormal basis of eigenvectors. Then all eigenvalues of A(n,α) are of the form λi + α and
(v1, . . . , vn+1) is an orthonormal basis of eigenvectors of A(n,α).

Proof. Let v be an eigenvector of A(n,0) with respect to λ, then A(n,α) ·v = (A(n,0)+α ·In)·v =
A(n,0) ·v+α·v = (λ+α)·v. Hence, v is an eigenvector of A(n,α) w.r.t. the eigenvalue λ+α.

Our next aim is to determine the orthonormal basis of eigenvectors of A(n,0). The struc-
ture of this matrix is captured by the next definition.

Definition 7. (Toeplitz matrix)

A matrix A = (aij) ∈ R
(n+1)×(n+1) is called a Toeplitz matrix if there exist

c−n, c−(n−1), . . . , c0, . . . cn ∈ R

such that
aij = ci−j for all i, j = 1, 2, . . . , n+ 1

i.e., A is constant on all diagonals. We will denote A as toep(c−n, . . . , cn) to have a short
notation for A. If c−k = ck the matrix A is a symmetric Toeplitz matrix.

Fact 8. A(n,α) = toep(0, . . . 0, 1, α, 1, 0, . . . 0) is the adjacency matrix of Pn(α).

Proposition 9. The eigenvalues λk and (right) eigenvectors vk of A(n,0) are

λk := 2 · cos

(
k · π

n+ 2

)

and

vk :=

(

sin

(

1 ·
k · π

n+ 2

)

, sin

(

2 ·
k · π

n+ 2

)

, . . . , sin

(

(n+ 1) ·
k · π

n+ 2

))

for k = 1, . . . , n+ 1. Moreover, ‖vk‖
2
2 =

n+2
2

for all k.

Proof. Since A(n,0) is a tridiagonal Toeplitz matrix with diagonals 1, 0, and 1, the eigenvectors
and eigenvalues are known, see e.g. [2]. Replacing (a, b, c) in the given formula on page 35
of that book by (1, 0, 1) yields the result.

Now it is easy to complete the proof of formulas (3) and (4):

Proof. (Theorem 4) For (3) first replace Zn
i,j(0,m− ℓ) by eTi ·A

m−ℓ
(n,0) · ej, a consequence of (2).

The proof of the formulas now follows from a combination of Proposition 5, Lemma 6 and
Proposition 9.
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The eigenvalues in Proposition 9 are closely related to the roots of Chebyshev polynomials
of the second kind. Connections between these polynomials and the counting of Motzkin
paths have surfaced before. The work of Chow and West [3] contains relations between the
Chebyshev polynomials, their roots, and 123-avoiding permutations, which are closely linked
to Motzkin paths. Starting out from continued fractions expressions à la Flajolet, Elizalde
and Mansour [6] have uncovered more explicit connections.

Besides the exact enumeration in terms of trigonometric sums, the numbers Zn
i,j(m, ℓ)

can also be related to linear recurrences and generating functions. An approach to obtaining
the generating function can be found in [14, Chapter 4, Theorem 4.2.7]. A linear recurrence
can be derived from the characteristic polynomial of the weighted adjacency matrix or any
other polynomial, which has the weighted adjacency matrix as a root:

Fact 10. Let A ∈ R
(n+1)×(n+1) be a matrix and χA(x) be the characteristic polynomial of

A. The Cayley-Hamilton Theorem states that χA(A) = 0. The polynomial χA(n,α)
(x) =

xn+1 +
∑n

k=0 akx
k leads to the linear recurrence:

(A(n,α))
n+1 = −

n∑

k=0

ak(A(n,α))
k.

With Fact 3(2) we obtain

Zn
i,j(m, ℓ) = −

n∑

k=0

akZ
n
i,j(m− n+ j, ℓ).

The characteristic polynomial of A(n,α) is known to be determined by the n+1-th Chebyshev
polynomial of second kind Un+1(x) as

χA(n,α)
(x) = Un+1(

x−α
2
).

From this the explicit expressions for the coefficients ak can be obtained. This then leads to
an explicit linear recurrence for Zn

i,j(m, ℓ).

3 Interesting special cases

In this section we show that the numbers Zn
i,j(m, ℓ) are quite universal. Special combinations

of their parameters lead to a multitude of well known and not so well known sequences. In
many cases we refer to a sequence by using its number from the The On-Line Encyclopedia
of Integer Sequences (OEIS).

Example 11. (Binomial Coefficients)

Zn
k,n−k(n, 0) =

(
n

k

)
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Proof. The start and end for the walks on Pn are such that any sequence of k steps down
and n− k steps up stays on Pn.

The choice of the parameters is not unique. Indeed for all k′ ≥ k and n′ ≥ k′ + n− k we
have

Zn′

k′,k′+n−2k(n, 0) = Zn−k
k,n−k(n, 0) =

(
n

k

)

.

Example 12. (Bounded Binomial Coefficients)
Let C(n, k, b) be the number of {0, 1}-strings of length n with k times 1 such that for each
initial segment of the string the number of 0’s and the number of 1’s differ at most by b. It
is easy to verify that

C(n, k, b) = Z2b
b,2k+b−n(n, 0).

For b = 1, we have Z2
1,1(2n, 0) = 2n = Z2

1,2(2n+1, 0) and for b = 2 we have Z4
2,2(2n, 0) = 2·3n.

Since the sequence an := Z6
3,3(2n, 0) fulfills the recursion an = 4an−1 − 2an−2 and has the

same initial values it is A006012. The sequence bn = Z8
4,4(2n, 0) seems to be A147748.

Example 13. (Catalan numbers)

Zn
0,0(2n, 0) =

1

n+ 1

(
2n

n

)

= Cn

Proof. Catalan numbers count Dyck paths from (0, 0) to (0, 2n), i.e., lattice paths with steps
i → i + 1 and i → i − 1 from (0, 0) to (0, 2n), which stay above the x-axis. Dyck paths
correspond to walks on Pn without loops, starting at vertex 0 and returning to 0 after 2n
steps.

Again, this can be generalized to all n′ ≥ n since Zn′

0,0(2n, 0) = Zn
0,0(2n, 0). Also Dyck

paths can be restricted in height.

Example 14. (Bounded Catalan numbers)
Bounded Catalan numbers in our sense count the number of Dyck paths, which do not exceed
a given level k. When k = 2 we obtain Z2

1,1(2(m − 1), 0) = Z2
0,0(2m, 0) = 2m−1. For bigger

k some of the sequences are also well known, as the corresponding entries from the OEIS
show:

Z3
0,0(2m, 0) → A001519 Z5

0,0(2m, 0) → A080937 Zm−2
0,0 (2m, 0) → not listed

Z4
0,0(2m, 0) → A124302 Z6

0,0(2m, 0) → A024175 Zm−1
0,0 (2m, 0) → not listed

Bounded Dyck paths have also been counted by Owczarek and Prellberg [13]. They derive
a closed formula for a q-analog, where q is taking the area under the path into account.

Example 15. (Fibonacci Numbers)

Z2
0,gcd(m,2)(m, 0) = Fm
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Proof. Fn = number of Catalan paths from (0, 0) to (n, gcd(n, 2)) that stay between the
lines y = 0 and y = 3. In the On-Line Encyclopedia of Integer Sequences this is attributed
to Kimberling.

Example 16. (Motzkin numbers)
n∑

ℓ=1

Z
⌊n/2⌋
0,0 (n, ℓ) =Mn

Proof. Motzkin numbers count Motzkin paths, i.e., lattice paths from (0, 0) to (0, n), using
only steps up-left, horizontal or down-left, see Figure 2. These paths can be counted as walks
with loops on Pn(1).

The refined counting for Motzkin numbers allows us to control the maximal height of the
corresponding path as well as the number of horizontal steps allowed (or at least used).

Example 17. (Bounded Motzkin numbers)
Bounded Motzkin numbers are defined similarly to bounded Catalan numbers but on the
basis of Motzkin paths instead of Dyck paths.

∑

ℓ Z
1
0,0(m, ℓ) → 2m−1

∑

ℓ Z
5
0,0(m, ℓ) → A094287

... →
...

∑

ℓ Z
2
0,0(m, ℓ) → A024537

∑

ℓ Z
6
0,0(m, ℓ) → A094288

∑

ℓ Z
⌊m
2
⌋−1

0,0 (m, ℓ) → n.l.
∑

ℓ Z
3
0,0(m, ℓ) → A005207

∑

ℓ Z
7
0,0(m, ℓ) → not listed

∑

ℓ Z
⌊m
2
⌋−2

0,0 (m, ℓ) → n.l.
∑

ℓ Z
4
0,0(m, ℓ) → A094286

... →
... →

Example 18. (Delannoy numbers)

a∑

ℓ=0

Zb+a
a,b−a(a+ b− ℓ, ℓ) =

a∑

ℓ=0

(
a

ℓ

)(
b+ ℓ

b

)

= D(a, b)

Proof. Delannoy numbers describe the number of lattice paths from (0, 0) to (a, b) which
use steps up, right and diagonal (i.e., steps with the effect of up+right). We do a refined
counting (by counting the paths with a fixed number of diagonal steps and therefore a fixed
number of total steps). The Delannoy paths from (0, 0) to (a, b) with ℓ ≤ a diagonal steps
have length a + b − ℓ, they use b − ℓ up-steps and a − ℓ right-steps. Modeling right-steps
as decreasing-steps in the path, diagonals as loops and up-steps as increasing-steps, we see
that the number of these paths is Zb+a

a,b−a(a+ b− ℓ, ℓ).

Example 19. (Schröder numbers)

n∑

ℓ=0

Zn
0,0(2n− 2ℓ, ℓ) = S(n)
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Proof. Schröder numbers count lattice paths from (0, 0) to (n, n) with steps up, right and
diagonal, which do not exceed the diagonal. Again, a counting, refined by fixing the number
of diagonal steps (to fix the number of steps in the path) yields the result. All we have to
change is the start and endpoint of our walks to ensure, that the path does not exceed the
diagonal.

Example 20. (Pell numbers)
Another example are Pell numbers (A000129), which can be computed using bn =

∑n
ℓ=0 Z

2
0,2(n, ℓ),

since the bn then satisfy the recursion bn = 2bn−1 + bn−2.

4 Refined Counting

In this section we derive linear recursions for a refined version of the ballot problem. A turn
is a change of direction from up to down or vice versa (the up step and the down step need
not be consecutive, they may enclose some loops, respectively horizontal steps). Figure 3
shows an example.

Figure 3: A lattice walk of length 12 with 4 turns (red double-arrows) and 2 straight steps

(green) in ~P3(α) from u0 to u2.

Refined counting is going to keep track of the number of turns of the paths. As in
Section 2 we identify lattice walks with walks on some graph. The relevant graph ~P+

n (α)

is obtained from the graph ~Pn(α) shown in Figure 4 by adding the vertices u0 and dn with
their loops and the edges u0 → u1 and dn → dn−1.

The graph ~Pn(α) consists of two directed paths of length n − 1 with loops which are
connected by bidirectional edges in such a way, that the i-th vertex of the first path is linked
to the (n− i)-th vertex of the second one. The weight of the loops is α. The weight of the
bidirectional edges is β and the weight of the directed edges on the two paths is 1. Note
that the vertices u0 and dn are omitted, they have no incoming edges and do not play a role
in the counting of lattice walks unless one of them represents the starting vertex.

Now, let

~Zn
v,w(m, ℓ, t) := #( walks on ~Pn(α) from v to w of length m

with ℓ loops and t turns),

~Zn
v,w(m) :=

∑

ℓ,t

~Zn
v,w(m, ℓ, t)α

ℓβt.
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Figure 4: The directed path ~Pn(α) with 2n vertices and loops of weight α and turning-edges
of weight β

Krattenthaler counted some instances of these lattice paths. See [11], especially The-
orem 3.4.4 for details. However, his work does not cover straight steps (or loops in our
language).

Theorem 21. (Characteristic polynomial of ~Pn(α) )

Let χ~Pn(α)
(x) be the characteristic polynomial of the adjacency matrix of the graph ~Pn(α).

Then: ∞∑

n=0

χ~Pn(α)
(x)λn =

(α− x)2(λ− 1)− β2

1 + (β2 − 1 + (α− x)2(λ− 1))λ

and

~Zn
v,w(m) =

−1

cn2n
·

2n∑

k=1

cn2n−k · ~Z
n
v,w(m− k),

where

cnk = (−1)k
n∑

j=0

n−j
∑

l=0

j
∑

i=0

(
n− l − j − 1

j − 1

)(
l + j

j

)(
j

i

)(
2i

k

)

(−β2)l+j−iα2i−k

are the coefficients of the characteristic polynomials χ~Pn(α)
(x) of the graphs ~Pn(α).

To prove this theorem, we use a well known connection between cycle covers and deter-
minants of the adjacency matrix of the covered (di-)graphs.

Definition 22. Let ~G be a directed graph with weighted edges. A cycle cover C of ~G
consists of |V ( ~G)| edges, such that every vertex has one incoming and one outgoing edge. In
other words it is a set of simply directed cycles which contains every vertex exactly once.

Further, the weight ω(C) of the cycle cover C is the product of all edge-weights of C

multiplied with (−1)# even cycles. Finally C( ~G) is the set of all cycle covers of ~G.
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Lemma 23. (Cycle covers and determinants)

Let ~G be a digraph with edge weights and adjacency matrix A = (aij). We have

det(A) =
∑

σ∈Sn

(

sgn(σ) ·
n∏

i=1

ai,σ(i)

)

=
∑

C∈C( ~G)

ω(C) = ω(C( ~G)).

Proof. A permutation σ ∈ Sn can be seen as a subset of n directed edges C = {(i, σ(i)) | i =
1 . . . , n}, which form a cycle cover. This cycle cover has weight sgn(σ) ·

∏n
i=1 ai,σ(i). If one of

the edges is not present in ~G, the weight is 0, since the corresponding entry of A is 0. The
sign of σ is the product of the signs of individual cycles. Even cycles contribute a factor of
−1, odd cycles a factor +1.

Proposition 24. (Theorem 4.7.2 of [14] or Proposition V.9 of [8])
Let A be the adjacency matrix of a graph G. Further, let Ni,j(k) be the number of walks from
i to j of length k and wij =

∑∞
k=0Ni,j(k) · t

k. Then W = (wij) = (I − t · A)−1, where I is
the identity matrix of the right size.

With this we are ready for the proof of the theorem:

Proof. (Theorem 21) To find the generating function for the characteristic polynomials χ~Pn(α)

of the adjacency matrix of the graph ~Pn(α), we count weighted cycle covers of the graph
~Pn(α−x). According to Lemma 23 the sum of their weights is the polynomial we are looking
for. Now, we partition the set of all cycle covers, according to the edges they use, to cover
the vertices dn−1 and un. Let An be the set of all cycle covers of ~Pn(α − x), such that the
vertices un and dn−1 are both covered by loops and let Bn be the set of all remaining cycle
covers. Cycle covers in Bn contain the edge (un, dn−1), since apart from the loop this is the
only outgoing edge of un. Further, let an := ω(An) =

∑

C∈An
ω(C) and bn := ω(Bn). This

implies ω(C(~Pn(α−x))) =
∑

C∈C(~Pn(α−x)) ω(C) = an+ bn. Now, every cycle cover of ~Pn−1(α)

can be extended with two loops of weight (α−x)2 or a two-cycle of weight −β2. Further for
every cycle cover in Bn−1, we can replace the edge un−1, dn−2 by the path un−1, un, dn−1, dn−2.
This leads to a cycle cover in Bn with the same weight. Conversely, from a cycle cover in
An we can delete the two loops at un and dn−1 to obtain a cover of ~Pn−1. In a cycle cover
in Bn the two vertices un and dn−1 are either covered by a two cycle which can be deleted
or they belong to a longer cycle from which they can be removed. This implies the linear
recursions an+1 = (α− x)2(an + bn) and bn+1 = −β2an + (−β2 +1)bn. The initial conditions

are a0 = (α− x)2 and b0 = −β2. With A =

(
(α− x)2 (α− x)2

−β2 −β2 + 1

)

, we obtain:

χ~Pn(α)
(x) = ω(C(~Pn(α− x))) = an + bn = (1, 1) ·

(
an
bn

)

= (1, 1) · A ·

(
an−1

bn−1

)

= (1, 1) · An ·

(
a0
b0

)

.
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Hence, ∞∑

n=1

χ~Pn(α)
(x)λn =

∞∑

n=1

(

(1, 1) · An ·

(
a0
b0

))

· λn

and Proposition 24 can be applied. For this we need the inverse of (I2 − λA) which is

1

1 + (β2 − 1)λ+ (α− x)2(λ2 − λ)

(
1− (−β2 + 1)λ (α− x)2λ

−β2λ 1− (α− x)2λ

)

.

Hence, the generating function for the characteristic polynomials of ~Pn(α) is

∞∑

n=0

χ~Pn(α)
(x) · λn = (1, 1) · (I2 − λA)−1 ·

(
(α− x)2

−β2

)

=
(α− x)2(λ− 1)− β2

1 + (β2 − 1 + (α− x)2(λ− 1))λ
.

This proves the first part of the theorem.
To deduce the theorem’s second claim, one could establish an explicit representation of

the characteristic polynomial χ~Pn(α)
(x) via a partial fraction decomposition of the generating

function above. However, there is a more direct and elegant approach using Lemma 23: A
cycle cover of ~Pn(α−x) decomposes the upper path of ~Pn(α−x) into segments of consecutive
vertices, each segment belonging to one cycle. Conversely every such decomposition induces
some cycle covers, each segment has to be closed to a cycle. For sections, which have length
≥ 1, the cycle is unique, while for singleton vertices, there is either a loop on both sides or
a two cycle.

There are
(
n−1
p−1

)
decompositions of the upper part of ~Pn into p parts. They induce different

numbers of cycle decompositions of weights. We count these decompositions with respect
to l, the number of sections of length 1, and j, the number of sections of length ≥ 2. There
are

(
n−l−j−1

j−1

)
decompositions of n− l elements into j sections of length ≥ 2. For given (l, j)

we therefore have
(
n−l−j−1

j−1

)(
l+j
j

)
decompositions. For each of them, the sum of the weights

of the corresponding cycle covers is (−β2)l((α− x)2 − β2)j. This yields

χ~Pn(α)
(x) =

n∑

j=0

n−j
∑

l=0

(
n− l − j − 1

j − 1

)(
l + j

j

)

(−β2)l((α− x)2 − β2)j

and with simple algebra this equals

2n∑

k=0

xk

=cn
k

︷ ︸︸ ︷
(

(−1)k
n∑

j=0

n−j
∑

l=0

j
∑

i=0

(
n− l − j − 1

j − 1

)(
l + j

j

)(
j

i

)(
2i

k

)

(−β2)l+j−iα2i−k

)

.

Now, Fact 10 yields the second claim of our theorem since ~Zn
v,w(m) is the entry of the m-th

power of the adjacency matrix of ~Pn(α), associated to v and w.

11



5 Further Results

5.1 Tri-diagonal Toeplitz matrices

In the literature you commonly find variants of the formulas in Theorem 4 with an additional
parameter. This parameter represents different weights for the step i → i + 1 and the step
i → i − 1. These different weights still yield a tridiagonal Toeplitz matrix. The spectrum
and an orthonormal basis of eigenvectors are known for tridiagonal Toeplitz matrices, see [2].
Therfore, our theorem can easily be adapted to cover the more general case.

5.2 The symmetric case

For the case of symmetric lattice walks, i.e., walks on graphs, having an adjacency matrix,
which is a symmetric Toeplitz matrix, we can apply Theorem 4 for the enumeration of the
walks.

Let A ∈ R
(n+1)×(n+1) be a symmetric Toeplitz matrix and let c0, c1, . . . cn ∈ R be its

first row; A is completely determined by these values. The powers Ak
(n,0), k = 0, . . . , n of the

adjacency matrix of Pn(0) form a basis for symmetric Toeplitz matrices, in fact if ak0, a
k
1, . . . a

k
n

is the first row of Ak
(n,0), then a

k
k = 1 and akj = 0 for all j > k.

Hence we can write

A =
n∑

k=0

c̃k · A
k
(n,0)

and the coefficients c̃k can be recursively computed as c̃n = cn and c̃k = ck −
∑n

j=k+1 c̃ja
j
k.

Therefore, the orthonormal basis of eigenvectors of A(n,0) is an orthonormal basis of
eigenvectors of A. Furthermore the eigenvalues of A are

λ̂i :=
n−1∑

k=0

c̃kλ
k
i ,

where λi are the eigenvalues of A(n,0). Since we have an orthonormal basis of eigenvectors
and the corresponding eigenvalues, we can write down formulas for A that correspond to the
formulas (3) and (4) for A(n,0).

5.3 Lattice walks with arbitrary positive steps

For some cases of asymmetric lattice walks, we find linear recursions. If we only allow steps
i→ i+ j with j ∈ {−1, 0, 1, . . . , k} with weights cj ∈ R, then the adjacency matrices are of
the form toep(0, . . . , 0, c−1, c0, . . . , ck, 0, . . . , 0). For these, we can give linear recursions for
the characteristic polynomials. With Fact 10 we obtain linear recursions for the number of
corresponding lattice paths if we get a handle on the characteristic polynomial χn(x) of the
n× n matrix toep(0, . . . , 0, c−1, c0, . . . , ck, 0, . . . , 0).

12



A recursion for the characteristic polynomial can be obtained via Lemma 23. In a cycle

decomposition the last vertex vn belongs to a cycle vn
−1
→ vn−1

−1
→ . . .

−1
→ vn−j,

j
→ vn for some

j. This yields the recursion

χn+1(x) = (c0 − x)χn(x) +
k∑

j=1

c
j
−1cjχn−j(x).

For small k we can solve the linear recursion above and get an explicit representation
of the characteristic polynomial. This yields an explicit linear recursion for the numbers of
lattice walks.

5.4 Cylindrical lattice walks

As a last instance we now consider walks, which allow arbitrary step length (and arbitrary
weights) on a cycle. Taking an edge for each allowed step we obtain a circulant graph. The
“time expansion” yields a cylinder as analog to the lattice strips.

����

���� ����

����

��
��
��
��

����

�� ����

Figure 5: A circulant graph with 8 vertices and steps +1 (black) and −2 (blue).

The adjacency matrices of circulant graphs are circulant matrices. For this class of
matrices eigenvalues and eigenvectors are known. According to Gray [9] they are as follows:

Theorem 25. ( Eigenvalues and -vectors of circulants, Theorem 3.1 of [9])
Let C ∈ R

n×n a circulant matrix with first row (c0, c1, . . . , cn−1) ∈ R
n. Then the eigenvalues

ψm and corresponding eigenvectors ym of C for m = 0, 1, . . . , n− 1 are as follows:

ψm =:
n−1∑

k=0

cke
−2πimk

n , ym =: 1√
n
(1, e

−2πim
n , e

−2πim2
n , . . . , e

−2πim(n−1)
n ).

Note, that the eigenvectors of circulant matrices do not depend on the matrix, but only
on the dimension n. Therefore, they are the same for all circulant matrices of the same size
(which implies these matrices commute). Now, we can count walks on circulant graphs with
the techniques from Section 2. This leads to explicit formulas as well as to linear recursions.
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6 Conclusion and future work

Trigonometric sums of the form given in Theorem 4 can be handled quite well by computer
algebra systems, e.g. Maple. Our impression is that indeed the formulas lead to the most
effective way of evaluating the number of paths of a certain type in not too narrow and rather
long strips. For narrow strips a generating function approach may be practical and superior.
For short strips it can be reasonable to explicitly use the recursion (dynamic programming).

In the examples section (Section 3) we have listed some cases of integer sequences that
could be obtained by counting (weighted) walks in Pn(α). The basic approach, however,
is not limited to this case. The crucial requirement is that we are able find an explicit
expression for the entries of powers of the adjacency matrix. Cases where this is possible
include situations where Toeplitz matrices are substituted for the entries of a Toeplitz matrix.
Investigating this and related cases should allow to count families of lattice surfaces, e.g.,
fillings of the cells of an n ×m grid with numbers between 0 and h such that the numbers
of adjacent cells differ by at most one.

Some problems remain. For example in Section 4, we found a linear recursion, but the
explicit generating functions remain unknown. In Section 5.1 we quote results for band
matrices with (at most) five nonzero diagonals. Improvements in this work can be directly
translated back into lattice path enumeration. Section 5.3 contains linear recursions for
linear recursions, can this be simplified?

Another direction might be to try to solve special families of instances that are not
covered by our work. For example walks with steps i → i + k for k ∈ {−3,−1, 0,+1,+5}.
Banderier and Nicodeme [1] considered some related instances. They were able to enumerate
the corresponding number of lattice walks.

In general the inverses of Toeplitz matrices are interesting. If they are given we can apply
Proposition 24, similar to what we did in the proof of Theorem 21. There is a lot of work in
this direction, see [5] and references therein.
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[2] Albrecht Böttcher and Sergei M. Grudsky, Spectral Properties of Banded Toeplitz Ma-
trices, SIAM, 2005.

[3] Timothy Chow and Julian West, Forbidden subsequences and Chebyshev polynomials,
Discrete Math. 204 (1999), 119–128.

[4] Giovanni M. Cicuta, Marco Contedini, and Luca G. Molinari, Enumeration of simple
random walks and tridiagonal matrices, J. Phys. A 35 (2002), 1125–1146.

[5] Murray Dow, Explicit inverses of Toeplitz and associated matrices, ANZIAM J. 44
(2003), 185–215.

[6] Sergi Elizalde and Toufik Mansour, Restricted Motzkin permutations, Motzkin paths,
continued fractions, and Chebyshev polynomials, Discrete Math. 305 (2005), 170–189.

[7] William Feller, An Introduction to Probability Theory and its Applications, Vol. 1, John
Wiley & Sons, 1968.

[8] Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ.
Press, 2009.

[9] Robert M. Gray, Toeplitz and circulant matrices: A review, Commun. Inf. Theory 2

(2005), 155–239.

[10] Katherine Humphreys, A history and a survey of lattice path enumeration, J. Statist.
Plann. Inference 140 (2010), 2237–2254.

[11] Christian Krattenthaler, The enumeration of lattice paths with respect to their number
of turns. In Advances in Combinatorial Methods and Applications to Probability and
Statistics, Stat. Ind. Technol., Birkhäuser, 1997, pp. 29–58.
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