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Abstract

Let h(n) denote the largest product of primes whose sum is 6 n, and g(n) denote
the Landau function, which is the largest product of powers of primes whose sum is
6 n. In this article, several properties of h(n) are given and compared to similar
properties of g(n). Special attention is paid to the behavior of the largest prime factor
of h(n).

1 Introduction

If n > 2 is an integer, let us define h(n) as the greatest product of a family of primes
q1 < q2 < · · · < qj the sum of which does not exceed n. Let ℓ be the additive function such
that ℓ(pα) = pα for p prime and α > 1. In other words, if the standard factorization of M
into primes is M = qα1

1 qα2
2 · · · qαj

j we have ℓ(M) = qα1
1 + qα2

2 + · · · + q
αj

j and ℓ(1) = 0. If µ
denotes the Möbius function, h(n) can also be defined by

h(n) = max
ℓ(M)6n

µ(M) 6=0

M. (1)

Note that
ℓ(h(n)) 6 n. (2)
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Landau [11] introduced the function g(n) as the maximal order of an element in the
symmetric group Sn; he showed that

g(n) = max
ℓ(M)6n

M. (3)

Sequences (h(n))n>1 and (g(n))n>1 are sequences A159685 and A000793 in the OEIS
(On-line Encyclopedia of Integer Sequences).

From Eqs. (1) and (3), it follows that

h(n) 6 g(n), (n > 0). (4)

In [5] we gave some properties of h(n) and an algorithm to compute h(n) for large values
of n.

In Section 2 below, these properties of h(n) are recalled and compared to similar prop-
erties of g(n). We also explain how the algorithm given in [5] can be adapted to calculate
h(n) for all n up to 1010.

In Section 3, we recall various results about the distribution of primes.
Section 4 is devoted to effective and asymptotic estimates for log h(n), ω(h(n)) and the

differences log g(n)− log h(n) and ω(h(n))− ω(g(n)).
The last section, Section 6, studies the largest prime factor P+(h(n)) of h(n). This study

uses the same tool (the so-called G-sequences) introduced by Grantham [9], and developed
in [5] to estimate P+(g(n)). The G-sequences are described in Section 5. The last result of
the paper is a comparison between P+(h(n)) and log h(n).

1.1 Notation

1. p denotes a generic prime. For i > 1, pi is the i
th prime.

2. π(x) =
∑

p6x 1 is the number of primes 6 x.

3. θ(x) is the Chebyshev function

θ(x) =
∑

p6x

log p. (5)

4. Θ is the least upper bound of the real parts of the zeros of the Riemann ζ function.
Under the Riemann hypothesis Θ = 1/2.

5. log2 x represents the iterated logarithm log log x.

6. Li(x), the integral logarithm of x, is defined for x > 1 by

Li(x) = lim
ε→0+

∫ 1−ε

0

+

∫ x

1+ε

dt

log t
= γ + log2 x+

+∞
∑

n=1

(log x)n

n · n! ,

where γ = 0.577 · · · is Euler’s constant.
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7. For each integer N > 1, P+(N) is the largest prime factor of N and ω(N) =
∑

p|N 1 is
the number of prime factors of N .

Let us write σ0 = 0, N0 = 1, and, for j > 1,

Nj = p1p2 · · · pj and σj = p1 + p2 + · · ·+ pj = ℓ(Nj). (6)

For n > 0, let k = k(n) denote the integer k > 0 such that

σk = p1 + p2 + · · ·+ pk 6 n < p1 + p2 + · · ·+ pk+1 = σk+1. (7)

2 General properties of h(n)

2.1 Theoretical properties of h(n)

In this section we recall the properties of h(n) that we will use [5]. First of all (cf. [5, Prop
3.1]) for each nonnegative integer j,

h(σj) = Nj. (8)

Proposition 1. Let n be a nonnegative integer and k = k(n). Then

logNk = θ(pk) 6 log h(n) 6 θ(pk+1) = logNk+1. (9)

Proof. From the definition of k(n) we have σk 6 n < σk+1. Using Eq. (8) and the fact that
h is nondecreasing, this gives Nk 6 h(n) 6 Nk+1. Taking logarithms, we get Eq. (9).

From Eq. (9) we have h(n) > Nk and, since h(n) is squarefree,

P+(h(n)) > pk(n). (10)

We also have h(n) =
∏

p|h(n) p 6
∏

p6P+(h(n)) p and thus

log h(n) 6 θ(P+(h(n))). (11)

In [5, (1.9)], for n > 0, hj(n) is defined for each integer j satisfying 0 6 j 6 k(n) by:

hj(n) = max
ℓ(M)≤n

µ(M) 6=0, ω(M)=j

M, (12)

where ω(M) is the number of prime factors of M . The result [5, Theorem 6.1] implies that,
for each n, the sequence (hj(n))06j6k(n) is increasing, and therefore,

h(n) = hk(n)(n).

This result that could appear quite obvious at first sight, is not so easy to prove. It depends
strongly on the distribution of prime numbers. It has an obvious consequence (cf. [5, corollary
(6.1)]):
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Theorem 2. The number of prime factors of h(n), ω(h(n)) is given by

ω(h(n)) = k(n), (13)

where k(n) is defined in Eq. (7).

Theorem 3. Let j be a nonnegative integer.

(i) We have h(σj+1 − 1) = h(σj+1 − 2) = Nj+1/2.

(ii) If q 6 pj+1 is a prime, then h(σj+1 − q) = Nj+1/q.

(iii) If j > 1 and if a is an even number satisfying 4 6 a < pj+1, we have

h(σj+1 − a) = h(σj+1 − a− 1). (14)

(iv) The number h(n) is odd when n = σj+1 − 1 or n = σj+1 − 2. It is even for σj 6 n 6

σj+1 − 3.

(v) For n > 1 the inequality h(n) 6 2h(n− 1) holds.

(vi) We have

lim inf
n→∞

h(n)

h(n− 1)
= 1 and lim sup

n→∞

h(n)

h(n− 1)
= 2.

Proof. (i) is from [5, Proposition 5.3].

(ii) follows from [5, Eqs. (8.13) and (8.6)].

(iii) is [5, Proposition 5.1].

(iv) The first part is implied by (i). Now assume that σj 6 n 6 σj+1 − 3. From Theorem 2
we know that ω(h(n)) = j. If 2 does not divide h(n) we would have

ℓ(h(n)) > 3 + 5 + · · ·+ pj+1 = σj+1 − 2,

in contradiction with the inequality (2), which proves (iv).

(v) First let us consider the case h(n) even; we then have ℓ(h(n)/2) = ℓ(h(n))−2 6 n−2, so
that, by Eq. (1), h(n−1) > h(n)/2 holds. If h(n) is odd, from (iv), we have n = σj+1−1
or n = σj+1−2 for some j > 1 and, from (i) and (ii), h(σj+1−1) = h(σj+1−2) = Nj+1/2
and h(σj+1−3) = Nj+1/3, which completes the proof of (v). Note that h(n) = 2h(n−1)
implies h(n − 1) odd and h(n) even. From (iv), this occurs if and only if n = σj for
some j.
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(vi) From the fact that h is nondecreasing we get h(n)/h(n− 1) > 1 while Eq. (14) shows
that h(n) = h(n − 1) for infinitely many n, which gives the value of the lim inf.
From (v) we have h(n)/h(n − 1) 6 2 for all n > 1. Moreover, from Eq. (8) we have
h(σj+1) = Nj+1, which, together with (i), shows that h(σj+1)/h(σj+1 − 1) = 2 holds
for infinitely many j’s and the proof of (vi) is completed.

Remark 4. Properties (iv), (v) and (vi) of h(n) are analogous to the following properties of
g(n).

(iv) g(n) is odd only for n ∈ {3, 8, 15} (cf. [16, p. 142]).

(v) For n > 1, we have g(n) 6 2g(n− 1) (cf. [16, p. 143]).

(vi) limn→∞ g(n)/g(n− 1) = 1 is proved in [17].

Proposition 5. For n > 1, let γh(n) denote the cardinality of the set {h(m); 1 6 m 6 n}.
Then, with k = k(n) defined by Eq. (7), we have

(k + 2)(k − 1)

2
6 γh(n) 6 n− σk − k

2
, (15)

and, when n→ ∞,
2n

log n
. γh(n) .

n

2
. (16)

Proof. First, we observe that γh(n) is the number of m 6 n such that h(m) > h(m − 1)
holds. From Theorem 3 (ii), for 1 6 i 6 j and m = σj − pi we have ℓ(h(m)) = m and thus
h(m) > h(m− 1) holds, so that

γh(n) >
k
∑

j=2

(γh(σj − 1)− γh(σj−1 − 1)) >
k
∑

j=2

j =
(k + 2)(k − 1)

2
.

To prove the upper bound in Eq. (15), we note that n− γh(n) is the number of m 6 n such
that h(m) = h(m− 1). From Theorem 3 (i) and (iii), for j > 2 and σj 6 m < σj+1, we have
h(m) = h(m−1) for σj+1−m ∈ {1, 4, 6, . . . , pj+1 − 1}, so that, as h(0) = h(1) = 1 < h(2) =
2 < h(3) = 3 = h(4) we get

n− γh(n) > 2 +
k−1
∑

j=2

pj+1 − 1

2
= 2 +

σk − 5

2
− k − 2

2
>
σk − k

2
.

Finally, to prove (16), we use Lemma 9 below. We get σk =
∑

p6pk

p ∼ p2k
2 log pk

. But, from the

prime number theorem, we have pk ∼ k log k so that log pk ∼ log k,

σk ∼
k2 log k

2
∼ σk+1, n ∼ k2 log k

2
, log k ∼ log n

2
and k ∼ 2

√

n

log n

which, together with (15), proves (16).
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Remark 6. The estimates for γg(n) are weaker (cf. [16, p. 162–164] and [18, p. 218]). However
it seems difficult to show γh(n) ∼ n/2 which is probably true.

Proposition 7. Let k > 1 and n > 2 satisfy k(n) = k (defined by Eq. (7)), so that
σk 6 n < σk+1 holds.

(i) If σk 6 n < σk + pk+1 − pk, then we have h(n) = h(σk) = Nk and P+(h(n)) = pk.

(ii) If σk + pk+1 − pk 6 n < σk+1, then we have P+(h(n)) > pk+1.

Proof. From Theorem 3 (ii), we have

h(σk + pk+1 − pk) = Nk+1/pk > Nk. (17)

From Eq. (13), we have ω(h(n)) = k, and from (10) we get P+(h(n)) > pk.

- If P+(h(n)) = pk, then we have h(n) = Nk, which, from Eqs. (17) and (1), implies
n < σk + pk+1 − pk.

- If P+(h(n)) > pk+1, then, from Eq. (2), we have

n > ℓ(h(n)) > P+(h(n)) + p1 + · · ·+ pk−1 > σk + pk+1 − pk.

Corollary 8. There exist arbitrary long intervals on which h(n) is constant.

Proof. Since the difference pk+1 − pk is not bounded, this follows from Proposition 7 (i)
above. Nicolas proved a similar result for g(n) in [16, p. 158].

2.2 Computation of h(n)

The algorithm given in [5] was used to compute h(10k) for 1 6 k 6 35. Let us recall a few
facts.

Let k = k(n) be defined above by Eq. (7). The value h(n) may be written as the product
of two terms:

h(n) = Nk ·G(pk, n− σk),

where G(p,m) is defined by

G(p,m) = max
Q1Q2 · · ·Qs

q1q2 · · · qs
,

the maximum being taken over the primes Q1, Q2, . . . , Qs, q1, q2, . . . , qs, s > 0, satisfying

2 6 qs < qs−1 < · · · < q1 6 p < Q1 < Q2 < · · · < Qs and
s
∑

i=1

(Qi − qi) 6 m.

The algorithm given in [5] for computing an isolated value h(n) is composed of two steps.
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(i) The first step is the computation of k = k(n), pk and σk.

(ii) The second step is the computation of the fraction h(n)/Nk = G(pk, n− σk),

When computing h(n) for an n larger than, say 105, most of the computation time is
devoted to the first step.

In this article we needed to compute the values of h(n) for all n up to x, for some values x,
the largest of them being x = 1010 (this computation took about 100 hours of one processor
on an AMD Shanghai computer with 8 processors). In this case, the computation of pk and
σk is done once and for all for the n belonging to the same [σk, σk+1). So, working by slices
on the successive [σk, σk+1), the time of computation is mostly devoted to the computation
of G(pk, n− σk).

3 About the distribution of primes

3.1 Some lemmas

Lemma 9. Let us write S(x) =
∑

p6x p. When x tends to infinity,

S(x) ∼ x2

2 log x
. (18)

Proof. Massias et al. [12, Lemme B] proved that S(x) = Li(x2) + O
(

x2e−a
√
log x
)

for some

a > 0, which implies (18), since Li(t) ∼ t/ log t when t→ ∞.

Lemma 10 below is [14, Lemma 2].

Lemma 10. Let a be a nonnegative real number and Φ = Φa the function defined by

Φ(x) =
√

x log x

(

1 +
log2 x− a

2 log x

)

.

Then Φ is increasing and concave for x > 1.

Proposition 11 is from [14, Point (ii), Proposition 1, p. 672].

Proposition 11. For k > 4398, that is pk > 42061, and b = 1.16, we have

θ(pk) > Φb(σk+1) =
√

σk+1 log σk+1

(

1 +
log2 σk+1 − b

2 log σk+1

)

. (19)
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3.2 The error term in the prime number theorem

Let θ be the Chebyshev function defined in (5).

(i) There is some a > 0 such that

θ(x) = x+O
(

xe−a
√
log x
)

. (20)

(ii) If Θ < 1, we have
θ(x) = x+O

(

xΘ log2 x
)

. (21)

(iii) Under the Riemann hypothesis, we have

|θ(x)− x| 6 1

8π

√
x log2 x, x > 599. (22)

Points (i) and (ii) may be found in [10] or [8], for instance. Point (iii) is proved in [21, p. 337].

3.3 Effective bounds

We shall use the following results of P. Dusart:

θ(x) < x for x 6 8 · 1011 (cf. [7, Table 6.6]) (23)

θ(x) < x+
x

36 260
6 1.000 028x (x > 0) (cf. [7, Proposition 5.1]) (24)

|θ(x)− x| 6 0.05x

log2 x
(x > 122 568 683) (cf. [7, Theorem 5.2]) (25)

3.4 Distances between primes

(i) Dusart [7, Proposition 6.8] has proved that, for x > 396 738, the interval

[

x, x+
x

25 log2 x

]

(26)

contains a prime number. This implies, for pi > 396 833 = p33 609,

pi+1 6 pi +
pi

25 log2 pi
. (27)

(ii) Under the Riemann hypothesis, Formula (22) implies that, for x > 599, the interval
[

x−√
x log2 x/(4π), x

]

contains a prime number.
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Still under the Riemann hypothesis, Cramér [2] proved that there exists b such that
the interval [x, x+ b

√
x log x] contains a prime. Ramaré et al. [19, Th. 1] have made

effective this result by proving that, for x > 2, the interval

[

x− 8

5

√
x log x, x

]

(28)

contains a prime number, which implies that, for pi > 3,

pi−1 > pi −
8

5

√
pi log pi. (29)

In [2], the “Cramér Conjecture” is stated as

pi+1 − pi = O
(

log2 pi
)

. (30)

This conjecture is supported by numerical computations (cf., for example, [15]).

3.5 The ηk functions

Let k > 1 be integer. By the prime number theorem, the quotient pi−k/pi tends to 1
when i → +∞. Thus, for i0 > k + 1 there is at most a finite number of i’s such that
pi−k

pi
6
pi0−k

pi0
< 1, and the following definition makes sense.

Definition 12. We define ηk on the interval [pk, +∞) by

ηk(x) = min

{

pi−k

pi
| pi > x

}

. (31)

From (31) we see that ηk is a nondecreasing and right-continuous step function whose
discontinuity points are primes called ηk–champion numbers. By convention, pk is considered
as an ηk–champion. The following lemma is proved in [4, §2.4]

Lemma 13.

(i) Let x be > pk. For all y > x, the interval (ηk(x)y, y] contains at least k prime
numbers, and ηk(x) is the largest real number λ such that (λy, y] contains at least k
prime numbers for all y > x.

(ii) Let p be an ηk–champion. Then for all x > p , ηk(x) > ηk(p), in particular, the interval
(ηk(p)x, x] contains at least k prime numbers.

Tables of the first few ηk–champion numbers for k = 1, 2, 3, may be found in [4, Tables
3,4,5], or on [3] for more values. Proposition 14 (cf. [4, Proposition 2.1] for more details)
recalls some results that we shall use later.
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Proposition 14.

(i) From [1, p. 562] there exists a > 0 such that, for x > pk, we have

ηk(x) > 1− k
a

x0.475
.

(ii) Let i0 be defined by i0 = 33 609. For i close to i0 the values of pi are

i = 33 608 33 609 33 610 33 611 33 612
pi = 396 733 396 833 396 871 396 881 396 883

For x > pi0+k−1 we have from Eq. (26) that

ηk(x) > 1− k

25 log2 x
. (32)

(iii) Under the Riemann hypothesis, for x > max(pk, e
2), we have from (28)

ηk(x) > 1− 8k

5

log x√
x
. (33)

(iv) Under Cramér’s conjecture (30), there exists a > 0 such that, for x > max(pk, e
2)

ηk(x) > 1− ka
log2 x

x
. (34)

3.6 The θmin, θd, and δ3 functions

In this subsection we introduce three functions, θmin, θd, δ3, defined on the real interval
[1, +∞). More information about them can be found in [4, §2].

Definition 15.The function θmin is the nondecreasing right-continuous step function defined
by

θmin(y) = inf
x>y

θ(x)

x
= inf

pi>y

θ(pi−1)

pi
. (35)

A table of the first few θmin–champion numbers p and their rounded-down records θmin(p)
may be found in [4, Table 1] or on the web pages of the first author [3, Tabulation de
thetamin]. If p < q are two consecutive θmin–champion numbers, then θmin is constant on
[p, q) and equal to θmin(p) = θ(q−)/q where q− is the prime preceding q. If x > p, then
θ(x)/x > θmin(p) holds.
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Definition 16. Let us define θd(y) for y > 1 by

θd(y) = sup
x>y

∣

∣

∣

∣

θ(x)

x
− 1

∣

∣

∣

∣

log2 x,

so that, for x > y, we have
∣

∣

∣

∣

θ(x)

x
− 1

∣

∣

∣

∣

6
θd(y)

log2 x
. (36)

A table of the first few θd–champion numbers and records is given in [4, Table 2]. A
more extensive table may be found in [3, Tabulation de thetad]. If p < q are two consecutive
θd–champion numbers, we have θd(p) = (1− θ(q−)/q) log2 q where q− is the prime preceding
q. For p 6 x < q, θd(x) = θd(p) and, for x 6= 1, 1− θd(p)/ log

2(x) 6 θ(x)/x.

Definition 17. Let us define the function δ3, for y > p3 = 5, by

δ3(y) = sup
x>y

(1− η3(x)) log
2 x.

For x > y, we have

1− η3(x) 6
δ3(y)

log2(x)
. (37)

A table of the first few δ3–champion numbers is given in [4, Table 6]. A more extensive
table may be found in [3, Tabulation de delta3]. If p < q are two consecutive δ3–champion
numbers, we have δ3(p) = (1 − η3(q

−)) log2(q) where q− is the prime preceding q. For
p 6 x < q, δ3(x) = δ3(p) and, for x 6= 1, 1− δ3(p)/ log

2(x) 6 η3(x) 6 1.

4 Estimates for log h(n) and ω(h(n))

4.1 An asymptotic equivalent of log h(n)

Theorem 18. When n→ +∞, log h(n) ∼
√

n log n.

Proof. Let be k = k(n) defined by (7). From (9) it is sufficient to prove that, when n tends to

infinity, logNk ∼ √
n log n. When k → ∞, pk−1 ∼ pk, and, from (18), σk−1 ∼ σk ∼ p2k

2 log pk
.

With (7) this gives n ∼ p2k
2 log pk

, from which we infer

pk ∼
√

n log n,

and, by the prime number theorem, logNk = θ(pk) ∼ pk ∼
√
n log n.
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4.2 Effective estimates of log h(n)

Theorem 19. The assertion

n > n(b) =⇒ log h(n) >
√

n log n

(

1 +
log2 n− b

2 log n

)

(38)

is true for the following pairs (b, n(b)) (where each n(b) is optimal):

b 2.0 1.8 1.6 1.4 1.20 1.18 1.16
n(b) 19 491 57 458 201 460 1 303 470 29 696 383 44 689 942 77 615 268

Proof. First suppose that b = 1.16 and n > 87 179 593 = σ4398. Let k = k(n) defined by (7)
so that σk 6 n < σk+1 holds. From (9), Inequality (19) and Lemma 10, we may write

log h(n) > θ(pk) > Φb(σk+1) > Φb(n).

This proves that (38) is true for b = 1.16 with n(b) = 87 179 593.
The computation, by the method described in §2.1, of all the values h(n) for n 6

87 179 592 gives, for each value of b the smallest value n(b) such that Eq. (38) holds.

Corollary 20. We have

log h(n) >
√

n log n for n > 7 387. (39)

Proof. By using (38) with b = 2, if n > 19 491 we may write

log h(n) >
√

n log n

(

1 +
log2 n− 2

2 log n

)

>
√

n log n

since log2 n > 2. By computing h(n) for 2 6 n 6 19 490, we prove that 7 386 is the largest
integer such that log h(n) 6

√
n log n.

Theorem 21. The following inequality is satisfied

log h(n) 6
√

n log n

(

1 +
log2 n− 0.975

2 log n

)

, n > 3. (40)

Proof. This results from (4) and [14, Theorem 2].

Corollary 22. For each n > 2,

log h(n)√
n log n

6 1.0482016 · · ·, (41)

the upper bound being attained for n = 38343860 = σ2989 = ℓ(N2989).
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Proof. For n > n1 = 3.6 · 109, we have
log2 n− 0.975

2 log n
6 0.048. Thus, by (40), Inequality

(41) is satisfied for n > n1. The computation of the values h(n) for n up to n1 shows that
the maximum value is attained on n = σ2989.

It is possible to shorten the computation by using the trick described in [13, §4]. Let us
recall briefly how it works.

From Theorem 18 and Corollary 20, we know that there exists λ > 1 such that

∀n > 1, log h(n) 6 λ
√

n log n, (42)

with equality for some n = n0 > 2. Moreover, we have

ℓ(h(n0)) = n0 (43)

since, if we should have ℓ(h(n0)) 6 n0 − 1, we would have h(n0 − 1) = h(n0) and log(h(n0 −
1)/
√

(n0 − 1) log(n0 − 1) > λ, contradicting (42).
Now, let M > 1 be a squarefree integer. From (1.1) and (42), we have

logM 6 log h(ℓ(M)) 6 λ
√

ℓ(M) log ℓ(M) (44)

and, by setting M0 = h(n0), we get from (43)

logM0 = λ
√

n0 log n0 = λ
√

ℓ(M0) log ℓ(M0). (45)

The function φ : t −→ t log t is a bijection from (1,+∞) to (0,+∞). Let us call φ−1 its
inverse function. We set

u = u(M) = φ−1

(

(

logM

λ

)2
)

, u0 = u(M0), ρ =
2
√
u0 log u0

λ(1 + log u0)
.

We have
logM = λ

√

φ(u) = λ
√

u log u, logM0 = λ
√

u0 log u0

so that (45) yields
u0 = ℓ(M0).

Now, we set
f1 = ℓ(M)− u(M) and f2 = u(M)− ρ logM. (46)

As φ is increasing, f1 > 0 is equivalent to φ(ℓ(M)) > φ(u(M)) which follows from (44).
Therefore, we have

f1 = ℓ(M)− u(M) > 0 = ℓ(M0)− u(M0). (47)

We have f2 = u − λρ
√
u log u which is convex on u > 1 and whose derivative vanishes for

u = u0, due to the choice of ρ. Therefore, we have

f2 > u0 − λρ
√

u0 log u0 = ℓ(M0)− ρ logM0. (48)
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By adding (47) to (48), we deduce from (46)

∀ squarefree M > 1, ℓ(M)− ρ logM > ℓ(M0)− ρ logM0. (49)

Let p be the largest prime factor of M0 and assume that a prime p′ < p does not divide
M0; then applying (49) for M = M0/p and for M = M0p

′ yields respectively ρ > p/ log p
and ρ 6 p′/ log p′ whence p/ log p < p′/ log p′. The function t 7→ t/ log t being minimal for
t = exp(1), this is only possible if p = 3, p′ = 2 and M0 = 3, which is impossible since
log 3 <

√
3 log 3 holds. Therefore, there exists k > 1 such that M0 = Nk, ℓ(M0) = σk and

λ = max
j>1, σj63.6 109

logNj
√

σj log σj
.

4.3 An upper bound for log g(n)− log h(n)

Theorem 23. There exists C > 0 such that, for n > 1,

log g(n)− C(n log n)1/4 6 log h(n) 6 log g(n). (50)

We may choose C = 5.68.

Proof. Given (4), it is sufficient to prove the left inequality of (50). Let P = P+(g(n)) be the
largest prime factor of g(n). Then, by [4, Theorem 5.1], P 6 1.27

√
n log n. By Bertrand’s

postulate, there exists a prime q such that

P < q 6 2.54
√

n log n. (51)

Let us write
g(n) =

∏

p6P

pap where ap = vp(g(n)),

and
g(n) = A ·B with A =

∏

p6P, ap>2

pap , B =
∏

p6P, ap=1

pap .

Then B divides g(n), so that ℓ(B) 6 ℓ(g(n)) and, from (3), ℓ(g(n)) 6 n, which implies
ℓ(B) 6 n. As B is squarefree, it follows from (3) that h(n) > B = g(n)/A which implies

log h(n) > log g(n)− logA. (52)

Let us find an upper bound for A. If ap > 2, we have pap 6 q+pap−1 (otherwise N ′ = qg(n)/p
would be such that N ′ > g(n) and ℓ(N ′) = ℓ(g(n)) + pap−1 + q − pap < ℓ(g(n) 6 n,
contradicting the definition of g(n)). This gives pap 6 q/(1− 1/p) 6 2q and p 6 (2q)1/ap 6√
2q. From this we deduce A 6 (2q)π(

√
2q) and, by using the inequality π(t) 6 1.26 t/ log t

(cf. [20, (3.6)]) and (51), we get

logA 6 1.26

√
2q

log
√
2q

log(2q) = 2.52
√

2q 6 5.68(n log n)1/4,

which, with (52), ends the proof.
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4.4 Study of ω(h(n))− ω(g(n))

Theorem 24. There exists a constant C such that, for n > 2,

0 6 ω(h(n))− ω(g(n)) 6 C
n1/4

(log n)3/4
. (53)

Proof.
The lower bound: Let n be a positive integer, and define k = k(n) by (7). Therefore we
have

σk 6 n < σk+1 (54)

and, by Theorem 2, ω(h(n)) = k. Further, from (3) and (54), we have

σω(g(n)) = p1 + p2 + · · ·+ pω(g(n)) 6
∑

p|g(n)
p 6 ℓ(g(n)) 6 n < σk+1

whence ω(g(n)) 6 k = ω(h(n)) and the lower bound of (53) is proved.

The upper bound. Let x1 > 4 be a real number and, for i > 2, xi be the unique number

such that
xii − xi−1

i

log xi
=

x1
log x1

. The sequence (xi) is decreasing and satisfies

xi < x
1/i
1 (55)

so that xi < 2 for i > I =
⌊

log x1

log 2

⌋

. We set

N = N(x1) =
I
∏

i=1

∏

p6xi

p. (56)

Such an integer N is called in [6, §4] an ℓ–superchampion number associated with x1. Let
G denote the set of ℓ–superchampion numbers. If N ∈ G, the set {x1;N(x1) = N} is an
interval of positive length. Thus we can choose a particular value of x1 such that, for i > 1,
xi is never prime (cf. [6, Lemma 4, 3.]). With such a value of x1 (56) becomes

N = N(x1) =
I
∏

i=1

∏

p<xi

p. (57)

Now, let us define k1 and k2 6 k1 by

pk1 < x1 < pk1+1 and pk2 <
√
x1 < pk2+1. (58)

It follows from (57) and (55) that, for every prime p, we have

pvp(N) < x1 and vp(N) = 1 for pk2 < p 6 pk1 . (59)
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Therefore, we get from (57) and (58)

σk1 =
∑

p<x1

p 6 ℓ(N) 6 k2x1 + σk1 6 σk1+k2 . (60)

Let n be an integer, n > 12, and N = N(x1) < N ′ = N ′(x′1) two consecutive ℓ–super-
champion numbers such that

ℓ(N) 6 n < ℓ(N ′).

Since N ′/N is a prime p′ (cf. [6, Lemma 4, 4.(i)]), from (57), either p′ = pk+1 or x′1 < pk+1,
and, from (59), (p′)

v
p′ (N

′) < x′1 < pk+1. In both cases, ℓ(N ′) 6 ℓ(N) + pk+1. Therefore, from
(60), we get

σk1 6 ℓ(N) 6 n < ℓ(N ′) 6 ℓ(N) + pk+1 6 σk1+k2+1, (61)

and (13) from Theorem 2 yields

k1 6 ω(h(n)) 6 k1 + k2.

On the other hand, [12, Lemma E] gives

ω(g(n)) = ω(N) +O

( √
x1

log x1

)

.

From (57) and (58), we get ω(N) = k1, and from (58) and the prime number theorem, we
have

k1 = π(x1) ∼
x1

log x1
and k2 = π(

√
x1) ∼

2
√
x1

log x1
. (62)

Thus, we get

ω(h(n))− ω(g(n)) 6 k1 + k2 − ω(N) +O

( √
x1

log x1

)

(63)

= k2 +O

( √
x1

log x1

)

= O

( √
x1

log x1

)

. (64)

Finally, from (62), we have k1 + k2 ∼ k1 ∼ O

(

x1
log x1

)

, which, with (61) and Lemma 9,

yields n ∼ ∑

p6x1
p ∼ x21

2 log x1
. Therefore, x1 ∼ √

n log n and log x1 ∼ (1/2) log n holds,

which completes the proof of Theorem 24.

4.5 Asymptotic estimates for log h(n) and ω(h(n))

Theorem 25. There exists a > 0 such that, when n→ +∞,

log h(n) =

√

Li−1(n) +O
(√

ne−a
√
log n
)

. (65)
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If Θ > 1/2 and ξ < Θ, then

log h(n) =

√

Li−1(n) + Ω±
(

(n log n)ξ/2
)

. (66)

Under the Riemann hypothesis, i.e., Θ = 1/2, we have

log h(n) =

√

Li−1(n) +O
((

(n log n)1/4
))

. (67)

log h(n) <

√

Li−1(n) for n large enough. (68)

Proof. The above theorem is proved in [12, Theorem 1] with g(n) instead of h(n), so that
its proof follows from Theorem 23.

Theorem 26. There exists a > 0 such that, when n→ +∞,

ω(h(n)) = Li

(

√

Li−1(n)

)

+O
(√

ne−a
√
logn
)

. (69)

If Θ > 1/2 and ξ < Θ, then

ω(h(n)) = Li

(

√

Li−1(n)

)

+ Ω±
(

(n log n)ξ/2
)

. (70)

Under the Riemann hypothesis, i.e., Θ = 1/2, we have

ω(h(n)) = Li

(

√

Li−1(n)

)

+O
(

n1/4(log n)−3/4
)

.

Proof. The proof follows from [12, Théorème 2] and from Theorem 24.

Note that the corollary of [12, p. 225] is also valid with g(n) replaced by h(n) to give an
asymptotic expansion of log h(n) according to the powers of 1/ log n.

We hope to make more precise the behavior of h(n) and ω((h(n)) under the Riemann
hypothesis in another paper.

5 G-sequences, a tool for bounding above P+(h(n))

Lemma 27 is [4, Proposition 3.3]. Lemma 28 below is an obvious corollary.

Lemma 27. Let n > 2 be an integer and p, p′ be distinct primes such that p+p′ 6 P+(h(n)).
Then, at least one of p, p′ divides h(n).

Lemma 28. If q is a prime divisor of h(n), there exists at most one prime 6 q/2 that does
not divide h(n).
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Definition 29. Let γ, γ′ be such that 0 < γ < γ′ < 1 and γ′ <
1 + γ2

2
. We define

α = 2γ′ − 1 and β = γ2. (71)

Then α < β and the pair of intervals (I, J) defined by

I(γ, γ′) = (α, β] and J(γ, γ′) = (γ, γ′] .

is called the G-pair associated with (γ, γ′).

Lemma 30 can be found in [9, Lemma 2]. (In [9], this result is enunciated in the case of
the Landau function g(n).)

Let I be an interval and λ be a real number. Let us write λI = {λx; x ∈ I}.

Lemma 30. Let (I, J) be a G-pair, n > 2 and q a prime factor of h(n). If qI contains at
least one prime divisor of h(n), then at most one prime in qJ fails to divide h(n).

Proof. Let us remark that γ =
√
β and γ′ = (1 + α)/2. By contradiction, let us suppose

that p, p′ in qJ are distinct primes that do not divide h(n). Let q′ be a prime in qI dividing

h(n). Let M =
pp′

qq′
h(n). Then

ℓ(M) = p+ p′ − q − q′ + ℓ(h(n)) 6 2γ′q − q − αq + ℓ(h(n)) = ℓ(h(n)).

But pp′ − qq′ > (
√
βq)2 − q(βq) = 0, so M > h(n), giving a contradiction.

Definition 31. A G-sequence of length ℓ is a finite sequence (γj)06j6ℓ+1 satisfying γ0 = 0,

γ1 =
1

2
and, for 1 6 j 6 ℓ

0 < γj < 1 and γj < γj+1 <
1 + γ2j

2
. (72)

Let us define I0 =
(

0, 1
4

]

, J0 =
(

0, 1
2

]

and, for 1 6 j 6 ℓ, Ij and Jj by

αj = 2γj+1 − 1, βj = γ2j , Ij = (αj, βj ] and Jj = (γj, γj+1] . (73)

From (73) we have that, for j > 1, the pair ((αj , βj] , (γj, γj+1]) is a G-pair.
In Section 5.2 we study the uniform G-sequences such that the quotient αj/βj is a

constant.

Definition 32. Let Γ = (γj)06j6ℓ+1 be a G-sequence and y > 12. For 1 6 i 6 ℓ we let
mi denote the cardinality of the set of indices j ∈ {0, 1, . . . , ℓ} such that Ii ∩ Jj 6= ∅. The
G-sequence Γ is y-admissible if, for every λ > y and each i, 1 6 i 6 ℓ, the interval λIi
contains at least mi + 1 primes.
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Remark 33. For every G-sequence, by (73), I1 = (α1, 1/4] ⊂ J0 = (0, 1/2]; thus m1 = 1.
Therefore, if (γj)06j6ℓ+1 is admissible, the interval yI1 = (yα1, y/4] contains at leastm1+1 =
2 primes. This needs y/4 > 3, i.e., y > 12.

Remark 34. By Lemma 13 (i), the G-sequence (γj)06j6ℓ+1 is y–admissible if and only, for
1 6 j 6 ℓ, we have the inequality αj/βj 6 ηmj+1(yβj).

Lemma 35. Let Γ = (γj)06j6ℓ+1 be a G-sequence of length ℓ and m an integer such that
m > mj + 1 for 1 6 j 6 ℓ. Let us suppose that y is a real number such that,

αj/βj 6 ηm(yβj) for 1 6 j 6 ℓ. (74)

Then Γ is y–admissible.

Proof. Since (r, x) 7→ ηr(x) is nonincreasing in r, we may write

αj/βj 6 ηm(yβj) 6 ηmj+1(yβj)

and, by using the previous Remark 34, Γ is y–admissible.

Proposition 36. Let Γ = (γj)06j6ℓ+1 be a G-sequence of length ℓ, and q a prime factor of
h(n). If Γ is q-admissible then, for all j, 0 6 j 6 ℓ the interval qJj = q (γj, γj+1] contains
at most one prime which does not divide h(n). Moreover

θ(qγℓ+1)− ℓ log q < θ(qγℓ+1)− ℓ log q −
ℓ+1
∑

j=1

log γj 6 log h(n). (75)

Proof. Let P(j) be the property that there exists at most one prime number in qJj that
does not divide h(n).

If j = 0, by Lemma 28, qJ0 = (0, q/2] contains at most one prime which does not divide
h(n). So P(0) is true.

By Remark 33, m1 = 1. Thus, by Definition 32, qI1 contains at least two primes, p, p′.
Since the upper bound of qI1 is q/4, by Lemma 27 we have that p or p′ divides h(n), and,
by Lemma 30, there is at most one prime in qJ1 which does not divide h(n). Thus P(1) is
true.

Let j ∈ [2, ℓ] such that P(r) is true for r < j. The upper bound of Ij is βj = γ2j < γj.

We thus have qIj ⊂ (0, qγj] =

j−1
⋃

r=0

qJr. By the induction hypothesis, each of the intervals qJr,

(0 6 r 6 j − 1), contains at most one prime number which does not divide h(n). Since qIj
intersects mj of these intervals, it contains at most mj primes not dividing h(n). But, by
hypothesis, qIj contains at least mj + 1 primes. Thus, one of them divides h(n) and, by
Lemma 30, this implies that qJj contains at most one prime which does not divide h(n).
This is to say that P(j) is true.
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So we have just proved that h(n) is divisible by all the primes in (0, qγℓ+1], but at most
one prime qj ∈ q (γj, γj+1] for each j = 0, 1, 2, . . . , ℓ. Since q divides h(n) we have

h(n) > q

∏

p6qγℓ+1
p

∏ℓ
j=0 qj

> q

∏

p6qγℓ+1
p

∏ℓ
j=0 qγj+1

.

Applying log, this gives the second inequality in (75). The first inequality comes from
ℓ+1
∑

j=1

log γj < 0.

Proposition 37. Let n0, y, a be positive real numbers such that

12 6 y 6 a
√

n0 log n0

and ℓ > 1, integer. We assume that Γ = (γj)06j6ℓ+1, is a G-sequence y-admissible of length
ℓ. Let us define

Dℓ = γℓ+1θmin(yγℓ+1)−
ℓ log y +

∑ℓ+1
j=1 log γj

y
, (76)

and let us suppose that Dℓ > 0. Then, for n > n0, we have

P+(h(n)) 6 max(a, b)
√

n log n with b =
1.0482017

Dℓ

. (77)

P+(h(n)) 6 max(a, b′)
√

n log n with b′ =
1

Dℓ

(

1 +
log2 n0 − 0.975

2 log n0

)

. (78)

The second upper bound is better than the first one for n > 3 259 922 785.

Proof. Let n be an integer, n > n0. Let us set, for simplification, q = P+(h(n)).

(i) If q < y, then, by hypothesis, we have

q < y 6 a
√

n0 log n0 6 a
√

n log n. (79)

(ii) If q > y, then qγℓ+1 > yγℓ+1. With Equation (35) this gives
θ(qγℓ+1) > qγℓ+1θmin(yγℓ+1). We remark that

∑ℓ+1
j=1 |log γj| 6 (ℓ + 1) log 2 6 2ℓ log 2

which implies that t 7→ (ℓ log t+
ℓ+1
∑

j=1

log γj)/t is decreasing for t > 4e. From this and

Equation (76) defining Dℓ, we infer that

Dℓ 6
θ(qγℓ+1)

q
−
ℓ log q +

∑ℓ+1
j=1 log γj

q
. (80)

Since q > y, the sequence Γ being y-admissible is a fortiori q–admissible. Then, by
using Equation (75) of Proposition 36, Equation (80) gives 0 < qDℓ 6 log h(n), from
which, by using (41) and (40) to get upperbounds for log h(n), we obtain

q = P+(h(n)) 6 min(b, b′)
√

n log n. (81)

Inequalities (77) and (78) follow from (79) and (81).
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5.1 The optimal y-admissible G-sequence

The upper bound (75) in Proposition 36 leads us to construct y-admissible G-sequences with
γj as large as possible. This is the subject of this section.

Let y be > 12 and (γ0 = 0, γ1 = 1/2, γ2) be a G-sequence y–admissible of length 1.

By (73), γ2 =
1 + α1

2
; thus, the largest value of γ2 is obtained by giving to α1 the largest

possible value. By Remark 33, we have m1 = 1 so that, by Remark 34, the sequence
(γ0 = 0, γ1 = 1/2, γ2) is y–admissible if and only if α1 6

1
4
η2
(

y
4

)

. So, we get the largest value
for γ2 by setting α1 =

1
4
η2
(

y
4

)

and γ2 =
1+α1

2
.

Now let (γj)06j6ℓ+1 be a G-sequence y–admissible of length ℓ, that we want to extend.

Equation γℓ+1 = β2
ℓ+1 determines βℓ+1. Equality γℓ+2 =

1 + αℓ+1

2
shows that the largest value

of γℓ+2 is got by choosing αℓ+1 as large as possible. We set m = 1 and we try

αℓ+1 = βℓ+1ηm+1(yβℓ+1). (82)

– If αℓ+1 6 αℓ our construction fails because it is not possible to satisfy γℓ+1 =
1 + αℓ

2
<

1 + αℓ+1

2
= γℓ+2.

– If αℓ+1 > αℓ let us consider Iℓ+1 = (αℓ+1, βℓ+1]. If this interval meets at mostm intervals
among J0, J1, . . . , Jℓ, we finish by choosing γℓ+2 = (1 + αℓ+1)/2. If Iℓ+1 meets m′ > m
intervals among J0, J1, . . . , Jℓ, we have to choose again αℓ+1 by using formula (82) with
m replaced by m+ 1.

More formally this construction is described in Algorithm 1. This algorithm is not guar-
anteed to terminate; however, for y = 1853.18, it gives the y–admissible G-sequence of length
10 which we will use in Section 6.1.

Algorithm 1 Computes αℓ+1, βℓ+1, γℓ+2 from γℓ+1, αℓ and y

βℓ+1 = γ2ℓ+1, m = 1
Repeat

αℓ+1 = βℓ+1ηm+1(yβℓ+1)
if αℓ+1 6 αℓ return FAIL
else m = m+ 1

until (αℓ+1, βℓ+1] meets at most m intervals (0, γ1] , . . . , (γℓ, γℓ+1]
γℓ+2 = (1 + αℓ+1)/2

5.2 Uniform G-sequences

The theoretical study of optimalG-sequences does not seem easy. In this section we introduce
the uniform G-sequences, less efficient for numerical computation, but simpler to study.
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Definition 38. Let η be a real number, 0 < η < 1. We define γ0 = 0 and, for j > 1,

γj = γj(η) =
1 + ηγ2j−1

2
. (83)

Remark 39. Let us note that γj(η) is an increasing function of j and η. Note also that

αj = 2γj+1 − 1 = ηγ2j = ηβj. (84)

Lemma 40. With the notation of Definition 38, let us write ε = ε(η) = 1 − η, and Lε =
limj→+∞ γj. then

Lε =
1

1 +
√
ε

and, for j > 0, Lε − γj 6 Lε(1−
√
ε)j 6 (1−√

ε)j. (85)

For each integer ℓ > 1, the sequence (γj(η))06j6ℓ+1 defined by (83) is a G-sequence. We call
it the uniform G-sequence of parameter η and length ℓ.

Proof. The proof is by induction. We have γ0 = 0, γ1 =
1 + ηγ20

2
=

1

2
, and, for j > 1,

γj+1 =
1 + ηγ2j

2
<

1 + γ2j
2

.

Moreover γj+1 = f(γj) with f = t 7→ (1 + (1− ε)t2)/2. Function f is increasing for t > 0

and has two fix points which are
1

1 +
√
ε
and

1

1−√
ε
. Since γ0 < γ1, the sequence (γj) is

increasing with limit Lε =
1

1 +
√
ε
. Moreover, since f ′ is increasing,

Lε − γj = f(Lε)− f(γj−1) < f ′(Lε)(Lε − γj−1) = (1−√
ε)(Lε − γj−1)

6 (1−√
ε)j(Lε − γ0) = Lε(1−

√
ε)j.

For each ℓ > 1, the conditions of Definition 72 are satisfied and (γj)06j6ℓ is a G-sequence.

Throughout this section η is a positive real number satisfying 0 < η < 1, ε = 1− η, (γj)
is the uniform G-sequence of parameter η, and Ij = (αj, βj], Jj = (γj, γj+1] are the intervals
associated with this G-sequence (cf. Definition 72).

Lemma 41. Let us write uj = Lε − γj. Then (γj+1 − γj) is a decreasing sequence, and, for
every j we have

γj+1 − γj =
√
εuj +

u2j
2
(1− ε).

In particular
√
ε(Lε − γj) < γj+1 − γj.
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Proof. Indeed, since γj = Lε − uj =
1

1 +
√
ε
− uj, we have, with f(t) = (1− (1− εt2))/2,

2(γj+1 − γj) = 2f(γj)− 2γj = 1 + (1− ε)γ2j − 2γj

= 1 + (1− ε)

(

1

1 +
√
ε
− uj

)2

− 2

1 +
√
ε
+ 2uj

= 2
√
εuj + (1− ε)u2j > 2

√
εuj = 2

√
ε(Lε − γj).

Lemma 42. There is no pair (i, j) such that (γi, γi+1] ⊂ (αj, βj]. Therefore each interval
Ij meets at most two intervals Ji.

Proof. Let us suppose (γi, γi+1] ⊂ (αj, βj]. Then

αj 6 γi < γi+1 6 βj = γ2j

and
Lε − γi > Lε − γ2j > Lε − L2

ε = Lε(1− Lε) =
√
εL2

ε. (86)

By Lemma 41, we also have

√
ε(Lε − γi) < γi+1 − γi 6 βj − αj = εβj = εγ2j < εL2

ε

which implies Lε − γi <
√
εL2

ε, contradicting (86).

6 Estimates of P+(h(n))

In this section, we study the behavior of P+(h(n)) in terms of n. The results are similar to
those obtained in [4] for P+(g(n)), except for the numerical value of the constants.

6.1 Maximum of P+(h(n))/
√
n log n for n > 4.

Theorem 43. For n > 4 we have

P+(h(n))√
n log n

6
P+(h(170))
√

170 log(170)
= 1.38757162 · · ·, (87)

the maximum being attained only for n = 170 with h(170) = 2× 3× 5× 7× 11× 13× 17×
19× 23× 29× 41 = N10 × 41 and P+(h(170)) = 41.

Proof. We use Proposition 37 with n0 = 150 000, a = 1.386 and y = 1853.18. Using
Algorithm 1 we compute the first 10 terms of the optimal y–admissible G-sequence. We get
intervals
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j αj βj γj+1 {i} Dj

1 0.2390 · · · 0.2500 · · · 0.619515 · · · 0 0.582374 · · ·
2 0.3722 · · · 0.3837 · · · 0.686121 · · · 0 0.641498 · · ·
3 0.4569 · · · 0.4707 · · · 0.728463 · · · 0 0.677646 · · ·
4 0.5150 · · · 0.5306 · · · 0.757531 · · · 1 0.701222 · · ·
5 0.5569 · · · 0.5738 · · · 0.778493 · · · 1 0.724454 · · ·
6 0.5882 · · · 0.6060 · · · 0.794120 · · · 1 0.737558 · · ·
7 0.6094 · · · 0.6306 · · · 0.804703 · · · 1, 2 0.745702 · · ·
8 0.6285 · · · 0.6475 · · · 0.814257 · · · 2 0.750926 · · ·
9 0.6435 · · · 0.6630 · · · 0.821764 · · · 2 0.754179 · · ·
10 0.6554 · · · 0.6752 · · · 0.827725 · · · 2 0.755943 · · ·

Column {i} contains the values i for which Ij meets Ji, so that mj is the number of integers
appearing in the jth line of the column {i}.

This gives D10 = 0.755943 · · · and, with (77), b = 1.386614 · · · > a which proves that
P+(h(n)) < 1.3867

√
n log n for n > 150 000. The computation of h(n) for 4 6 n 6 150 000

shows that the maximum is obtained only once, for n = 170.

Lemma 44. Let q be a prime factor of h(n) and η 6 η3(q/4) ; let Γ = (γj)06j6ℓ+1 be the
uniform G-sequence of parameter η. This sequence is q–admissible, and

θ(qγℓ+1)− ℓ log q 6 log h(n). (88)

Proof. By Lemma 42, each interval Ij meets at most 2 intervals Jj. Thus, the integer
mj introduced in Definition 32 satisfies mj 6 2 for every j. Equality (84), the inequality

β1 =
1

4
6 βj and the fact that η3 is nondecreasing give

αj = ηβj 6 βjη3(q/4) 6 βjη3(qβj).

Thus Inequality (74) holds with m = 3 and y = q, and Lemma 35 shows that the sequence
Γ is q-admissible. Therefore, from Proposition 36, Eq. (88) holds.

Lemma 45. Let n be an integer and q the largest prime factor of h(n). When n tends to
infinity, we have

q = P+(h(n)) 6 log h(n)(1 +O(ε)), (89)

with ε = ε1 +
√
ε2 → 0 and

ε1 = max
x> q

2

∣

∣

∣

∣

θ(x)

x
− 1

∣

∣

∣

∣

, ε2 = max

(

1− η3

(q

4

)

,

(

log q√
q

)2
)

< 1. (90)

Proof. Let us write

η = 1− ε2 and ℓ =

⌊

log q√
ε2

⌋

. (91)
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When n → +∞, by (10), q = P+(h(n)) tends to infinity, ε1 tends to 0, η3(q/4) tends to 1
(by Proposition 14), ε2 and ε tend to 0 and ℓ tends to infinity.

Let Γ = (γj)06j6ℓ+1 be the uniform G-sequence of parameter η and length ℓ. Since Γ is

increasing, we have qγℓ+1 > qγ1 = q/2. By the definition of ε1, it comes
θ(qγℓ+1)

qγℓ+1

> 1− ε1,

therefore, with the notation of Lemma 40,

θ(γℓ+1q)

q
> γℓ+1 − γℓ+1ε1

> γℓ+1 − ε1 = 1− ε1 − (1− Lε2)− (Lε2 − γℓ+1). (92)

One use of Lemma 40 gives

1− Lε2 = 1− 1

1 +
√
ε2

6
√
ε2. (93)

By (91), ℓ+ 1 >
log q√
ε2

; then a second use of Lemma 40 gives

Lε2 − γℓ+1 6 (1−√
ε2)

ℓ+1 6 (1−√
ε2)

log q√
ε2 6

(

1

e

)log q

=
1

q
.

With (92), (93) and the definition of ε we get

θ(qγℓ+1)

q
> 1− ε1 −

√
ε2 −

1

q
= 1− ε− 1

q
. (94)

Definition (91) of ℓ gives ℓ
log q

q
6

(log q)2

q
√
ε2

. With (94), this gives

θ(qγℓ+1)

q
− ℓ

log q

q
> 1− ε− 1

q
− log2 q

q
√
ε2
.

By the definition of ε2, for q > 3, we have
1

q
6

log2 q

q
6 ε2 6

√
ε2, and therefore

θ(qγℓ+1)

q
− ℓ

log q

q
> 1− ε− 1

q
−√

ε2 > 1− ε− 2
√
ε2 > 1− 3ε. (95)

By the definition of ε2 and η (cf. (90)) and (91)), we have η 6 η3

(q

4

)

, so that Lemma

44 applies to the G-sequence Γ. Inequality (95) shows that θ(qγℓ+1) − ℓ log q is positive for
n large enough, so that, by using (88) and (95), we may write

q 6
log h(n)

θ(qγℓ+1)

q
− ℓ log q

q

6
log h(n)

1− 3ε
= log h(n)(1 +O(ε)).
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Proposition 46. When n tends to infinity, P+(h(n)) ∼ √
n log n.

Proof. Let us write q = P+(h(n)). By (10), q tends to infinity with n. Using successively
the prime number theorem and Inequality (11), we get

q ∼ θ(q) > log h(n).

With (89), this gives q ∼ log h(n), and ends the proof with Theorem 18.

6.2 Asymptotic upper bound for P+(h(n))

Theorem 47. Let P+(h(n)) be the largest prime factor of h(n). When n tends to infinity,
P+(h(n)) is bounded as follows:

(i) Without any hypothesis, there exists a > 0 such that

P+(h(n)) 6

√

Li−1(n) +O
(√

ne−a
√
logn
)

. (96)

(ii) Under the Riemann Hypothesis:

P+(h(n)) 6

√

Li−1(n) +O
(

n3/8(log n)7/8
)

. (97)

(iii) Under the Riemann Hypothesis and the Cramér conjecture (Equation (30)):

P+(h(n)) 6

√

Li−1(n) +O
(

n1/4(log n)9/4
)

. (98)

Proof. Let us write q = P+(h(n)). By Proposition 46 we have

q ∼
√

n log n and log q ∼ 1

2
log n. (99)

We shall also use the relation
Li−1(n) ∼ n log n. (100)

We will apply Lemma 45, evaluating in the three cases the quantities ε1, ε2 and ε = ε1+
√
ε2.

(i) By the prime number theorem (20), there is some a1 > 0 such that

ε1 = O
(

e−a1
√
logn
)

.

By Proposition 14, (i), we have

1− η3

(q

4

)

= O
(

q−0.475
)

.
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Thus, by (99), √
ε2 = O

(

q−0.2375
)

= O
(

n−0.11875
)

and ε = ε1 +
√
ε2 = O

(

exp(−a1
√
log n

)

. Lemma 45 gives the inequality

q 6 (log h(n))
(

1 +O
(

exp(−a1
√

log n)
))

. (101)

By (65) there is a2 > 0 such that

log h(n) =

√

Li−1(n) +O
(√

ne−a2
√
logn
)

which, with (101) and (100), proves (96) for a < min(a1, a2).

(ii) Under the Riemann hypothesis, we have, by (21),

ε1 = O

(

log2 q√
q

)

(102)

and Inequality (33) of Proposition 14 gives

1− η3

(q

4

)

= O

(

log q√
q

)

.

We thus get ε2 = O

(

log q√
q

)

and, by (99)

ε = ε1 +
√
ε2 = O

(√
log q

q1/4

)

= O

(

(log n)3/8

n1/8

)

,

so that, by Lemma 45,

q 6 log h(n)

(

1 +O

(

(log n)3/8

n1/8

))

,

which, with (67) and (100), yields (97).

(iii) Estimate (102) is still true, while the definition (90) of ε2 and Equation (34) for k = 3

give ε2 = O

(

log2 q

q

)

and then

ε = O

(

log2 q√
q

)

= O

(

(log n)7/4

n1/4

)

,

which, by Lemma 45, (67) and (100), proves (98).

Let us remark that (98) is still true if we replace Cramér’s conjecture (30) by the
weaker relation pi+1 − pi = O

(

log4 pi
)

.
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6.3 Effective upper bound for P+(h(n))

Theorem 48. P+(h(n)) satisfies the following inequalities

P+(h(n)) 6 log h(n)

(

1 +
1.012

log n

)

(n > 138 940). (103)

P+(h(n)) 6
√

n log n

(

1 +
log2 n+ 1.145

2 log n

)

(n > 233 089). (104)

Proof. The computation of P+(h(n)) and log(h(n)) for 2 6 n 6 1010, shows that Inequalities
(103) and (104) are satisfied for these values of n.

Let us suppose n > 1010, and that q = P+(h(n)) satisfies

q > log h(n)

(

1 +
1

log n

)

. (105)

Since n > 1010 > 7387, it results from (39) that

q >
√

n log n

(

1 +
1

log n

)

=
√
n

(

√

log n+
1√
log n

)

.

Since t 7→ t+ 1/t for t > 1 is increasing this gives

q >
√
n

(

√

log 1010 +
1

√

log 1010

)

> 5.006923
√
n > 500 692.

Therefore,
q > 500 693, 0.25 q > 125 173 (106)

and
log(0.25 q) > log(0.25× 5.00693

√
n) > log(

√
n) = 0.5 log n. (107)

Here we define η and ε by

ε =
0.4822

log2 n
and η = 1− ε. (108)

From (108) we deduce
0.6944

log n
6

√
ε 6

0.6945

log n
(109)

and, also, with n > 1010,

ε < 0.00091 and η = 1− ε > 0.99909. (110)

From the table [3, Tabulation de delta3], we get δ3(85 991) = 0.120544 · · · , which, with
the fact that δ3 is nonincreasing (cf. §3.6) and (106), implies 0.12055 > δ3(85 991) >
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δ3(125 173) > δ3(0.25q). Therefore, Definition (108) of ε and the lower bound (107) give

ε =
0.4822

log2 n
>

0.12055

(log(0.25 q))2
>

δ3(0.25 q)

(log(0.25 q))2
. (111)

From (111), with (37), (where we take x = y = 0.25 q), we get

η = 1− ε 6 1− δ3(0.25 q)

(log(0.25 q))2
6 η3 (0.25 q) .

The uniform G-sequence of parameter η satisfies the hypothesis of Lemma 44. We apply this
lemma, choosing

ℓ = ⌊2.5 log n log2 n⌋ > ⌊2.5 log 1010 log2 10
10⌋ = 180. (112)

We have seen (cf. Remark 39) that γj = γj(η) is an increasing function of η and j. Since, by
(110), η > 0.99909 and ℓ > 180 we have γℓ+1 > γ180(0.99909) > 0.9705. By using (106) and
(107), we get

qγℓ+1 > 0.9705 · 500 693 > 485 922 and log qγℓ+1 > log 0.25 q > 0.5 log n.

The table of θd-champion numbers given in [3, Tabulation de thetad] yields θd(485 922) 6

0.3644, so that, from (36), we get

θ(qγℓ+1)

qγℓ+1

> 1− θd(485 922)

(log qγℓ+1)2
> 1− 0.3644

(log qγℓ+1)2
> 1− 1.4576

(log n)2
. (113)

Using n > 1010, this gives

θ(qγℓ+1)

q
>

(

1− 1.4576

log2 n

)

γℓ+1 >

(

1− 0.0634

log n

)

γℓ+1. (114)

Now we have to get a lower bound for γℓ+1. From (85), using (109) and (112), we deduce

γℓ+1 >
1

1 +
√
ε
−
(

1−√
ε
)ℓ+1

> 1−√
ε−

(

1− 0.6944

log n

)ℓ+1

> 1−√
ε−

(

1− 0.6944

log n

)2.5 log2 n logn

> 1−√
ε−

[

(

1− 0.6944

log n

)
logn
0.6944

]2.5×0.6944 log2(n)

> 1− 0.6945

log n
− 1

(log n)2.5×0.6944
> 1− 0.794

log n
.
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With (114), this gives

θ(qγℓ+1)

q
>

(

1− 0.0634

log n

)(

1− 0.794

log n

)

> 1− 0.8574

log n
+

0.05034

log2 n
. (115)

Since
log t

t
is a decreasing function of t for t > e, and q >

√
n log n, we have

log q

q
6

1

2

log(n log n)√
n log n

.

Using(112) and the fact that t 7→ (log t)3/2 log2 t log(t log t)/
√
t is decreasing for t > 1010,

this gives

ℓ
log q

q
6 1.25 log n log2 n

log(n log n)√
n log n

6
0.114

log n
. (116)

Since the inequality log n > 0.9714 holds, Formula (88) of Lemma 44, with (115) and (116)
give

q 6
log h(n)

1− 0.9714

log n
+

0.05034

log2 n

.

On the interval 0 6 X 6 1/ log 1010, the fraction
0.9714− 0.05034X

1− 0.9714X + 0.05034X2
is increasing

and less than 1.012. This implies, for n > 1010,

1

1− 0.9714

log n
+

0.05034

log2 n

= 1 +

0.9714

log n
− 0.05034

log2 n

1− 0.9714

log n
+

0.05034

log2 n

6 1 +
1.012

log n

which, with (105), proves (103). Applying (40), we deduce from that

q 6
√

n log n

(

1 +
log2 n− 0.975

2 log n

)(

1 +
1.012

log n

)

6
√

n log n

(

1 +
log2 n+ 1.049

2 log n
+

1.012

log n

log2 n− 0.975

2 log n

)

6
√

n log n

(

1 +
log2 n+ 1.049

2 log n
+

1

2 log n

1.012(log2 10
10 − 0.975)

log 1010

)

which completes the proof of (104).
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6.4 Lower bound for P+(h(n))

Lemma 49. For all n > 7387, we have

P+(h(n)) >

√
n log n

1.000028
. (117)

Proof. From (11) we have log h(n) 6 θ(P+(h(n))). Inequalities (39) and (24) end the proof.

Theorem 50. For n > 7 992 we have

P+(h(n)) >
√

n log n

(

1 +
log2 n− 1.18

2 log n

)

, (118)

and, for n > 21
P+(h(n)) >

√

n log n. (119)

Proof. First, we compute h(n) and P+(h(n)) for n 6 108 and we verify that (118) is true for
7 992 6 n 6 108 and false for n = 7991, and that (119) is true for 21 6 n 6 108 and false
for n = 20.

Let us note that for n > 108 Eq. (119) is implied by Eq. (118), since log2 n > log2 10
8 =

2.913 · · · > 1.17.
Thus it remains to prove that Eq. (118) is true for n > 108. Let us write q = P+(h(n)).

From Eq. (11), we have log h(n) 6 θ(q). With Eq. (38) this gives

√

n log n

(

1 +
log2 n− 1.16

2 log n

)

6 log h(n) 6 θ(q). (120)

(i) If n0 = 108 < n 6 n1 = 6.6× 1021, by Eq. (87), we get

q 6 1.388
√

n log n 6 8× 1011. (121)

Thus, by Eq. (24) we have θ(q) < q, which, with Eq. (120), implies inequality (118).

(ii) If n > n1 = 6.6× 1021. By Eq. (117), q = P+(h(n)) satisfies

q > 5.7× 1011,

and, by Eq. (25),

θ(q)− q 6 0.05
q

log2 q
<

0.05

log(5.7× 1011)

q

log q
< 0.002

q

log q
.

With Eq. (120) this gives

√

n log n

(

1 +
log2 n− 1.16

2 log n

)

< q + 0.002
q

log q
. (122)
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Using Eq. (117) we have q >
√
n and log q > (log n)/2. With Eq. (87), we get

q

log q
<

1.388
√
n log n

log q
<

1.388
√
n log n

1
2
log n

= 5.552

√
n log n

2 log n
.

By noticing that 0.002×5.552 < 0.02, we deduce from Eq. (122) that, for n > 6.6×1021,
we have

q = P+(h(n)) >
√

n log n

(

1 +
log2 n− 1.18

2 log n

)

,

which ends the proof of Theorem 50.

Theorem 51. (i) There exists two positive constants C and a such that, for n > 2,

P+(h(n)) >

√

Li−1(n)− C
√
n exp(−a

√

log n). (123)

(ii) Under the Riemann hypothesis, there exists a positive constant C ′ such that

P+(h(n)) >

√

Li−1(n)− C ′n1/4(log n)9/4. (124)

Proof. This is similar to the proof of [4, Theorem 9.2] and follows by using Eqs. (20), (22),
and (11), and the lower bounds of log h(n) given in Eqs. (65) and (67).

6.5 Comparison of P+(h(n)) and log h(n)

Lemma 52. There exist infinitely many prime numbers p such that θ(p) < p and infinitely
many prime numbers p such that θ(p) > p.

Proof. This is [4, Lemma 10.1], based on Littlewood’s oscillation theorem.

Theorem 53. There exist infinitely many values of n such that P+(h(n)) > log(h(n)) and
infinitely many values of n such that P+(h(n)) < log(h(n)).

Proof. Let us consider the values n belonging to the sequence (σk). For such an n, n =
p1 + p2 + · · ·+ pk, we have (cf. Eq. (8))

h(n) = Nk, log h(n) = θ(pk), P+(n) = pk,

so that P+(h(n))− log h(n) = pk−θ(pk). By Lemma 52, there are infinitely many values of k
for which this quantity is positive, and infinitely many values of k for which it is negative.

Proposition 54. Let pk0 be the smallest prime such that θ(pk0) > pk0 holds, and n0 the
smallest integer such that P+(h(n0)) < log h(n0). Then we have

σk0−2 + pk0 6 n0 < σk0 . (125)
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Proof. From Eqs. (6) and (8), we get

log h(σk0) = θ(pk0) > pk0 = P+(Nk0) = P+(h(σk0),

which proves the upper bound n0 6 σk0 .
Now, let n satisfy n < σk0−1 so that k = k(n) satisfies k < k0 − 1, σk 6 n < σk+1,

θ(pk) < pk (as θ(pk) is transcendental, it cannot be equal to pk) and θ(pk+1) < pk+1.
If σk 6 n < σk+1 − pk, by Proposition 7 (i), we get

log h(n) = logNk = θ(pk) < pk = P+(Nk) = P+(h(n)).

If σk+1 − pk 6 n < σk+1, by Eq. (9) and Proposition 7 (ii), we have

log h(n) 6 logNk+1 = θ(pk+1) < pk+1 6 P+(h(n))

which shows n0 > σk0−1.
It remains to study the case σk0−1 6 n < σk0−2 + pk0 . By Proposition 7 (i), we get

log h(n) = θ(pk0−1) < pk0−1 = P+(Nk0−1) = P+(h(n)).

Corollary 55. For n 6 11 896 693 289 932 185 243 249, we have log h(n) < P+(h(n)).

Proof. The value of pk0 is still unknown. From Eq. (23), we know that pk0 > pk1 =
800000000047, the smallest prime exceeding 8·1011. Therefore, we have pk1−2 = 799999999889,
σpk1−2

= 11896693289132185243203 and

n0 > σk1−2 + pk1 = 11 896 693 289 932 185 243 250.

Remark 56. There are 3 272 numbers 6 106 such that P+(g(n)) > log g(n) (cf. [4, §10]).
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de Nancago, No. IX, Actualités Scientifiques et Industrielles, No. 1366.

[9] Jon Grantham, The largest prime dividing the maximal order of an element of Sn, Math.
Comp. 64 (1995), 407–410.

[10] A. E. Ingham, The Distribution of Prime Numbers, Cambridge Mathematical Library,
Cambridge University Press, Cambridge, 1990.
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