=4in logo129.eps

Linear Recurrences for r-Bell Polynomials Miloud Mihoubi1 and Hacène Belbachir2
USTHB, Faculty of Mathematics
RECITS Laboratory, DG-RSDT
P. O. Box 32
16111 El-Alia
Bab-Ezzouar
Algiers
Algeria
mailto:mmihoubi@usthb.dzmmihoubi@usthb.dz
mailto:miloudmihoubi@gmail.commiloudmihoubi@gmail.com
mailto:hbelbachir@usthb.dzhbelbachir@usthb.dz
mailto:hacenebelbachir@gmail.comhacenebelbachir@gmail.com

in

in

Abstract:

LettingBn,r be the n-th r-Bell polynomial, it is well known that Bn(x) admits specific integer coordinates in the two bases $ \{x^{i}\} _{i}$ and $ \{ xB_{i}(
x ) \} _{i}$ according to, respectively, the Stirling numbers and the binomial coefficients. Our aim is to prove that the sequences Bn+m,r ( x ) and Bn,r+s ( x ) admit a binomial recurrence coefficient in different bases of the $\mathbb{Q} $-vector space formed by polynomials of $\mathbb{Q} [X].$



 

0000-Admin(0000)
2014-11-05