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Abstract

This paper is continuation of the study of the 1-box pattern in permutations in-
troduced previously by the authors. We derive a two-variable generating function for
the distribution of this pattern on 132-avoiding permutations, and then study some of
its coefficients providing a link to the Fibonacci numbers. We also find the number of
separable permutations with two and three occurrences of the 1-box pattern.

1 Introduction

In this paper, we study 1-box patterns, a particular case of (a, b)-rectangular patterns intro-
duced in [7]. That is, let σ = σ1 · · · σn be a permutation written in one-line notation. Then
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Figure 1: The graph of σ = 471569283.

we will consider the graph of σ, G(σ), to be the set of points (i, σi) for i = 1, . . . , n. For
example, the graph of the permutation σ = 471569283 is pictured in Figure 1.

Then if we draw a coordinate system centered at a point (i, σi), we will be interested in
the points that lie in the 2a×2b rectangle centered at the origin. That is, the (a, b)-rectangle
pattern centered at (i, σi) equals the set of points (i± r, σi ± s) such that r ∈ {0, . . . , a} and
s ∈ {0, . . . , b}. Thus σi matches the (a, b)-rectangle pattern in σ if there is at least one point
in the 2a× 2b-rectangle centered at the point (i, σi) in G(σ) other than (i, σi). For example,
when we look for matches of the (2,3)-rectangle patterns, we would look at 4× 6 rectangles
centered at the point (i, σi) as pictured in Figure 2.
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Figure 2: The 4× 8-rectangle centered at the point (4, 5) in the graph of σ = 471569283.

We shall refer to the (k, k)-rectangle pattern as the k-box pattern. For example, if
σ = 471569283, then the 2-box centered at the point (4, 5) in G(σ) is the set of circled points
pictured in Figure 3. Hence, σi matches the k-box pattern in σ, if there is at least one point
in the k-box centered at the point (i, σi) in G(σ) other than (i, σi). For example, σ4 matches
the pattern k-box for all k ≥ 1 in σ = 471569283 since the point (5, 6) is present in the
k-box centered at the point (4, 5) in G(σ) for all k ≥ 1. However, σ3 only matches the k-box
pattern in σ = 471569283 for k ≥ 3 since there are no points in 1-box or 2-box centered at
(3, 1) in G(σ), but the point (1, 4) is in the 3-box centered at (3, 1) in G(σ). For k ≥ 1, we
let k-box(σ) denote the set of all i such that σi matches the k-box pattern in σ = σ1 · · · σn.
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Figure 3: The 2-box centered at the point (4, 5) in the graph of σ = 471569283.

Note that σi matches the 1-box pattern in σ if either |σi − σi+1| = 1 or |σi−1 − σi| = 1.
For example, the distribution of 1-box(σ) for S2, S3, and S4 is given below, where Sn is the
set of all permutations of length n.

σ 1-box(σ)
12 2
21 2

σ 1-box(σ)
123 3
132 2
213 2
231 2
312 2
321 3

σ 1-box(σ) σ 1-box(σ)
1234 4 2134 4
1243 4 2143 4
1324 2 2314 2
1342 2 2341 3
1423 2 2413 0
1432 3 2431 2
3124 2 4123 3
3142 0 4132 2
3214 3 4213 2
3241 2 4231 2
3412 4 4312 4
3421 4 4321 4

The notion of k-box patterns is related to the mesh patterns introduced by Brändén and
Claesson [2] to provide explicit expansions for certain permutation statistics as, possibly
infinite, linear combinations of (classical) permutation patterns. This notion was further
studied in [1, 4, 5, 8, 9, 10, 14]. In particular, Kitaev and Remmel [5] initiated the systematic
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study of distribution of marked mesh patterns on permutations, and this study was extended
to 132-avoiding permutations by Kitaev, Remmel, and Tiefenbruck in [8, 9, 10].

In this paper, we shall study the distribution of the 1-box pattern in 132-avoiding per-
mutations and separable permutations. Given a sequence σ = σ1 · · · σn of distinct integers,
let red(σ) be the permutation found by replacing the i-th largest integer that appears in σ

by i. For example, if σ = 2754, then red(σ) = 1432. Given a permutation τ = τ1 · · · τj in
the symmetric group Sj, we say that the pattern τ occurs in σ = σ1 . . . σn ∈ Sn provided
there exists 1 ≤ i1 < · · · < ij ≤ n such that red(σi1 · · · σij) = τ . We say that a permutation
σ avoids the pattern τ if τ does not occur in σ. In particular, a permutation σ avoids the
pattern 132 if σ does not contain a subsequence of three elements, where the first element
is the smallest one, and the second element is the largest one. Let Sn(τ) denote the set of
permutations in Sn which avoid τ . In the theory of permutation patterns (see [3] for a com-
prehensive introduction to the area), τ is called a classical pattern. The results in this paper
can be viewed as another contribution to the long line of research in the literature which
studies various distributions on pattern-avoiding permutations (see [3, Chapter 6.1.5] for an
overview of relevant results, and [11, 12] for particular papers in this research direction).

The outline of this paper is as follows. In Section 2 we shall study the distribution of the
1-box pattern in 132-avoiding permutations. In particular, we shall derive explicit formulas
for the generating functions

A(t, x) =
∑

n≥0

An(x)t
n,

B(t, x) =
∑

n≥1

Bn(x)t
n, and

E(t, x) =
∑

n≥1

En(x)t
n,

where A0(x) = 1 and for n ≥ 1,

An(x) =
∑

σ∈Sn(132)

x1-box(σ)

Bn(x) =
∑

σ=σ1···σn∈Sn(132) and σ1=n

x1-box(σ), and

En(x) =
∑

σ=σ1···σn∈Sn(132) and σn=n

x1-box(σ).

In Section 3, we shall study the coefficients of xk in the polynomials An(x), Bn(x), and En(x)
for k ∈ {0, 1, 2, 3, 4} as well as the coefficient of the highest power of x in these polynomials.
Many of these coefficients can be expressed in terms of the Fibonacci numbers Fn. For
example, for n ≥ 2, the coefficient of x2 in An(x) is Fn and the coefficient of x2 in Bn(x)
and En(x) is Fn−2. Finally, in Section 4, we shall study the 1-box pattern on separable
permutations.
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2 Distribution of the 1-box pattern on 132-avoiding

permutations

In this section, we shall study the generating functions A(t, x), B(t, x), and E(t, x). Clearly,
A1(x) = B1(x) = E1(x) = 1. One can see from our tables for S2, S3, and S4 that A2(x) =
2x2, A3(x) = 3x2 + 2x3, and A4(x) = 5x2 + 3x3 + 6x4. Similarly, one can check that
B2(x) = E2(x) = x2, B3(x) = E3(x) = x2 + x3, and B4(x) = E4(x) = 2x2 + x3 + 2x4.

We shall classify the 132-avoiding permutations σ = σ1 · · · σn by position of n in σ. That
is, let S

(i)
n (132) denote the set of σ ∈ Sn(132) such that σi = n. Clearly each σ ∈ S

(i)
n (132)

has the structure pictured in Figure 4. That is, in the graph of σ, the elements to the left
of n, Ai(σ), have the structure of a 132-avoiding permutation, the elements to the right of
n, Bi(σ), have the structure of a 132-avoiding permutation, and all the elements in Ai(σ) lie
above all the elements in Bi(σ). Note that the number of 132-avoiding permutations in Sn is
the Catalan number Cn = 1

n+1

(

2n
n

)

, which is a well-known fact, and the generating function
for the Cn’s is given by

C(t) =
∑

n≥0

Cnt
n =

1−
√
1− 4t

2t
=

2

1 +
√
1− 4t

.

A (σ)
i

(σ)B
i

i

n

n1

1

Figure 4: The structure of 132-avoiding permutations.

The following lemma establishes relations among An(x), Bn(x), and En(x).

Lemma 1. For all n ≥ 1, Bn(x) = En(x) and for n ≥ 4,

Bn(x) = xn + (An−1(x)−Bn−1(x)) +
n−2
∑

i=2

xn−i(Ai(x)−Bi(x)). (1)

For n ≥ 2,

An(x) = Bn(x) +
n
∑

i=2

Bi(x)An−i(x). (2)
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Proof. We begin with deriving relationships for Bn(x) and En(x). Any 132-avoiding permu-
tation π = π1 · · · πn beginning with the largest letter n is of one of the three forms described
below:

1. the decreasing permutation n(n− 1) · · · 1;

2. nℓπ3π4 · · · πn where ℓ < n − 1 and ℓπ3π4 · · · πn is a 132-avoiding permutation on
{1, . . . , n− 1};

3. n(n−1) · · · (n−i+1)ℓπi+2πi+3 · · · πn, where 2 ≤ i ≤ n−2, ℓ < n−i and ℓπi+2πi+3 · · · πn

is a 132-avoiding permutation on {1, . . . , n− i}.

This structural observation implies immediately (1). Indeed, in the decreasing permuta-
tion each element is an occurrence of the 1-box pattern thus giving a contribution of xn to
the function Bn(x). Also, in the second case, n is not an occurrence of the 1-box pattern in
π and it does not effect whether any of the remaining elements in π are occurrences of the 1-
box pattern in π. Thus, in this case we have a contribution of (An−1(x)−Bn−1(x)) to Bn(x).
Finally, in the last case, for any i, 2 ≤ i ≤ n−2, each of the elements n−i+1, n−i+2, . . . , n
is an occurrence of the 1-box pattern in π and these elements do not effect whether any of
the remaining elements in π are occurrences of the 1-box pattern in π. Thus, in this case we
have a contribution of

∑n−2
i=2 xn−i(Ai(x)−Bi(x)) to Bn(x).

We can use similar methods to prove that for all n ≥ 4,

En(x) = xn + (An−1(x)− En−1(x)) +
n−2
∑

i=2

xn−i(Ai(x)− Ei(x)). (3)

That is, if π is a 132-avoiding permutation in Sn that ends in n, we have the following three
cases:

1. π is the increasing permutation 1 · · ·n;

2. π = π1 · · · πn−2ℓn where ℓ < n − 1 and π1 · · · πn−2ℓ is a 132-avoiding permutation on
{1, . . . , n− 1};

3. π1 · · · πn−i−1ℓ(n− i+1)(n− i+2) · · ·n, where 2 ≤ i ≤ n−2, ℓ < n− i and π1 · · · πn−i−1ℓ

is a 132-avoiding permutation on {1, . . . , n− i}.

Arguing as above, we see that the identity permutations contributes xn to En(x), the
elements in case (2) contribute An−1(x) − En−1(x) to En(x), and the elements in case (3)
contribute

∑n−2
i=2 xn−i(Ai(x)− Ei(x)) to En(x).

Given that we have computed that Bn(x) = En(x) for 1 ≤ n ≤ 3, one can easily use (1)
and (3) to prove that Bn(x) = En(x) for all n ≥ 1 by induction.

To prove (2), note that Sn(132) = S
(1)
n (132) ∪ S

(n)
n (132) ∪2≤i≤n−1 S

(i)
n (132). Clearly,

the permutations in S
(1)
n (132) contribute Bn(x) to An(x) and the permutations in S

(n)
n (132)
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contribute En(x) to An(x). Now suppose that 2 ≤ i ≤ n and π = π1 · · · πn ∈ S
(i)
n (132).

Then all the elements in π1 · · · πi−1 are strictly greater than all the elements in πi+1 · · · πn. It
follows that πi+1 ≤ n− 2. Hence the elements π1 · · · πi−1n have no effect as to whether any
of the elements in πi+1 · · · πn are occurrences of the 1-box pattern in π. Hence the elements

S
(i)
n (132) contribute Ei(x)An−i(x) to An(x). Thus for all n ≥ 2,

An(x) = Bn(x) + En(x) +
n
∑

i=2

Ei(x)An−i(x). (4)

It is easy to see that since Bn(x) = En(x) for all n ≥ 1, (4) implies (2).

The following theorem gives the generating function for the entire distribution of the
1-box pattern over 132-avoiding permutations.

Theorem 2. We have

A(t, x) =
1 + t+ t2 − tx− t2x− t3x+ t3x2 −

√

F (t, x)

2(t(1− xt) + x2t2)
(5)

where F (t, x) = (1+ t+ t2− tx− t2x− t3x+ t3x2)2+4((1+ t)(1−xt)+x2t2)(t(1−xt)+x2t2).
Also,

B(t, x) = E(t, x) =
t(1− xt) + x2t2

(1 + t)(1− xt) + x2t2
A(t, x).

Proof. Multiplying both parts of (2) by tn and summing over all n ≥ 2 we obtain

A(t, x)− (1 + t) = (B(t, x)− t) + (B(t, x)− t)A(t, x).

Solving for A(t, x), we obtain that

A(t, x) =
1 + B(t, x)

1 + t−B(t, x)
. (6)

Now multiplying both parts of (1) by tn and summing over all n ≥ 2 we obtain

B(t, x)− (t+ x2t2 + (x2 + x3)t3) =
x4t4

1− xt
+ t(A(t, x)− (1 + t+ 2x2t2))

−t(B(t, x)− (t+ x2t2)) +
x2t2

1− xt
((A(t, x)− (1 + t))− (B(t, x)− t)) .

Solving for B(t, x), we obtain that

B(t, x) =
t(1− xt) + x2t2

(1 + t)(1− xt) + x2t2
A(t, x). (7)

Combining (6) and (7), we see that A(t, x) satisfies the following quadratic equation

(t(1−xt)+x2t2)A2(t, x)− (1+ t+ t2− tx− t2x− t3x+ t3x2)A(t, x)+(1+ t)(1−xt)+x2t2 = 0

which can be solved to yield (5).
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We used Mathematica to find the first few terms of A(t, x) and B(t, x) = E(t, x). That
is, we have that

A(t, x) = 1 + t+ 2x2t2 + x2(3 + 2x)t3 + x2
(

5 + 3x+ 6x2
)

t4 + x2
(

8 + 5x+ 19x2 + 10x3
)

t5 +

x2
(

13 + 8x+ 50x2 + 35x3 + 26x4
)

t6 + x2
(

21 + 13x+ 119x2 + 95x3 + 127x4 + 54x5
)

t7 +

x2
(

34 + 21x+ 265x2 + 230x3 + 451x4 + 295x5 + 134x6
)

t8 +

x2
(

55 + 34x+ 564x2 + 517x3 + 1373x4 + 1118x5 + 895x6 + 306x7
)

t9 +

x2
(

89 + 55x+ 1160x2 + 1107x3 + 3790x4 + 3548x5 + 4010x6 + 2283x7 + 754x8
)

t10 + · · · .

and

B(t, x) = E(t, x)

= t+ x2t2 + x2(1 + x)t3 + x2
(

2 + x+ 2x2
)

t4 +

x2
(

3 + 2x+ 6x2 + 3x3
)

t5 + x2
(

5 + 3x+ 16x2 + 11x3 + 7x4
)

t6 +

x2
(

8 + 5x+ 39x2 + 30x3 + 36x4 + 14x5
)

t7 +

x2
(

13 + 8x+ 88x2 + 75x3 + 131x4 + 81x5 + 33x6
)

t8 +

x2
(

21 + 13x+ 190x2 + 171x3 + 410x4 + 319x5 + 233x6 + 73x7
)

t9 +

x2
(

34 + 21x+ 395x2 + 372x3 + 1156x4 + 1044x5 + 1087x6 + 579x7 + 174x8
)

t10 + · · · .

3 Properties of coefficients of An(x) and Bn(x) = En(x)

In this section, we shall explain several of the coefficients of the polynomials An(x) and
Bn(x) = En(x) and show their connections with the Fibonacci numbers.

In Subsection 3.1, we study the coefficients of xk in the the polynomials An(x) and
Bn(x) = En(x) for k ∈ {0, 1, 2, 3, 4} and, in Subsection 3.2, we derive the generating functions
for the highest coefficients for these polynomials.

3.1 The four smallest coefficients and the Fibonacci numbers

Clearly the coefficient of x in either An(x), Bn(x), or En(x) is 0 by the definition of an
occurrence of the 1-box pattern. The following theorem states that for n ≥ 2, each 132-
avoiding permutation of length n has at least two occurrences of the 1-box pattern. In
what follows, we need the notion of the celebrated n-th Fibonacci number Fn defined as
F0 = F1 = 1 and, for n ≥ 2, Fn = Fn−1 + Fn−2. Also, for a polynomial P (x), we let P (x)|xm

denote the coefficient of xm.

Theorem 3. For n ≥ 2, An(x)|x0 = Bn(x)|x0 = En(x)|x0 = 0.

Proof. Clearly, it is enough to prove the claim for An(x). We proceed by induction on n.
The claim is clearly true for n = 2. Next suppose that n ≥ 3 and σ = Sn(132). From the
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structure of 132-avoiding permutations presented in Figure 4, either Ai(σ) is empty in which
case Bi(σ) has at least two elements and it contains an occurrence of the 1-box pattern by
the induction hypothesis, or Ai(σ) has a single element n − 1 leading to two occurrence of
the pattern formed by n and n − 1, or Ai(σ) has at least two elements and we apply the
induction hypothesis to it.

Theorem 4. For n ≥ 2, An(x)|x2 = Fn and Bn(x)|x2 = En(x)|x2 = Fn−2.

Proof. We proceed by induction on n. Note that A2(x)|x2 = 2 = F2 and B2(x)|x2 =
E2(x)|x2 = 1 = F0. Similarly, A3(x)|x2 = 3 = F3 and B3(x)|x2 = E3(x)|x2 = 1 = F1.
Thus our claim holds for n = 2 and n = 3.

For n ≥ 4, it follows from (1) and Theorem 3 that

Bn(x)|x2 = xn|x2 + (An−1(x)|x2 −Bn−1(x)|x2) +
n−2
∑

i=2

(xn−i(Ai(x)− Bi(x)))|x2

= An−1(x)|x2 −Bn−1(x)|x2 + (An−2(x)−Bn−2(x))|x0

= Fn−1 − Fn−3 = Fn−2.

But then by (2), we have that

An(x)|x2 = Bn(x)|x2 +
n
∑

i=2

(Bi(x)An−i(x))|x2 . (8)

Note that since n ≥ 4 and 2 ≤ i ≤ n

(Bi(x)An−i(x))|x2 = (Bi(x)|x0)(An−i(x))|x2) + (Bi(x)|x1)(An−i(x))|x1) +

(Bi(x)|x2)(An−i(x))|x0)

= (Bi(x)|x2)(An−i(x))|x0)

since Bi(x)|x1 = An−i(x)|x1 = 0 for i ≥ 1 and Bi(x)|x0 = 0 for i ≥ 2. But then since
Ai(x)|x0 = 0 for i ≥ 2 and Ai(x)|x0 = 1 for i = 0, 1, it follows that (8) reduces to

An(x)|x2 = Bn(x)|x2 + Bn(x)|x2 +Bn−1(x)|x2

= Fn−2 + Fn−2 + Fn−3 = Fn−2 + Fn−1 = Fn.

Corollary 5. For n ≥ 2, the number of 132-avoiding permutations of length n that do not
begin (resp. end) with n and contain exactly two occurrences of the 1-box pattern is Fn−1.

Proof. A proof is straightforward from Theorem 4, since

An(x)|x2 −Bn(x)|x2 = An(x)|x2 − En(x)|x2 = Fn−1.
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Theorem 6. For n ≥ 3, An(x)|x3 = Fn−1 and Bn(x)|x3 = En(x)|x3 = Fn−3.

Proof. We proceed by induction on n, the length of permutations, and the formulas (1) and
(2). Note that we have computed that A3(x)|x3 = 2 = F2, A4(x)|x3 = 3 = F3, B3(x)|x3 =
E3(x)|x3 = 1 = F0, and B4(x)|x3 = E4(x)|x3 = 1 = F1. Thus our claim holds for n = 3 and
n = 4.

For n ≥ 5, it follows from (1) and Theorem 3 that

Bn(x)|x3 = xn|x3 + (An−1(x)|x3 −Bn−1(x)|x3) +
n−2
∑

i=2

(xn−i(Ai(x)−Bi(x)))|x3

= An−1(x)|x3 −Bn−1(x)|x3 + (An−2(x)−Bn−2(x))|x1 + (An−3(x)− Bn−3(x))|x0

= Fn−2 − Fn−4 = Fn−3.

But then by (2), we have that

An(x)|x3 = Bn(x)|x3 +
n
∑

i=2

(Bi(x)An−i(x))|x3 . (9)

Note that since n ≥ 5 and 2 ≤ i ≤ n,

(Bi(x)An−i(x))|x3 = (Bi(x)|x0) + (An−i(x)|x3)(Bi(x)|x1)(An−i(x)|x2) +

(Bi(x)|x2)(An−i(x)|x1) + (Bi(x)|x3)(An−i(x)|x0)

= (Bi(x)|x3)(An−i(x)|x0)

since Bi(x)|x1 = An−i(x)|x1 = 0 for i ≥ 1 and Bi(x)|x0 = 0 for i ≥ 2. But then since
Ai(x)|x0 = 0 for i ≥ 2 and Ai(x)|x0 = 1 for i = 0, 1, it follows that (9) reduces to

An(x)|x3 = Bn(x)|x3 + Bn(x)|x3 + Bn−1(x)|x3

= Fn−3 + Fn−3 + Fn−4 = Fn−3 + Fn−2 = Fn−1.

Corollary 7. For n ≥ 3, the number of 132-avoiding permutations of length n that do not
begin (resp. end) with n and contain exactly three occurrences of the 1-box pattern is Fn−2.

Proof. A proof is straightforward from Theorem 6, since

An(x)|x3 −Bn(x)|x3 = An(x)|x3 − En(x)|x3 = Fn−2.

Regarding the number of 132-avoiding permutations with exactly four occurrences of
the 1-box pattern, we can derive the following recurrence relations involving the Fibonacci
numbers.
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Theorem 8. We have that for n ≤ 3, An(x)|x4 = Bn(x)|x4 = En(x)|x4 = 0, B4(x)|x4 = 2,
B5(x)|x4 = 6, and for n ≥ 4,

An(x)|x4 = 2Bn(x)|x4 + Bn−1(x)|x4 +
n−2
∑

i=2

Fi−2Fn−i; (10)

while for n ≥ 6,

Bn(x)|x4 = Bn−1(x)|x4 + Bn−2(x)|x4 + Fn−1 +
n−3
∑

i=4

Fi−2Fn−1−i. (11)

Proof. The initial conditions follow from the expansions of A(t, x) and B(t, x) given above.
By (2), we have that

An(x)|x4 = Bn(x)|x4 +
n
∑

i=2

(Bi(x)An−i(x))|x4 . (12)

Note that since n ≥ 4 and 2 ≤ i ≤ n,

(Bi(x)An−i(x))|x4 = (Bi(x)|x0)(An−i(x)|x4) + (Bi(x)|x1)(An−i(x)|x3) +

(Bi(x)|x2)(An−i(x)|x2) + (Bi(x)|x3)(An−i(x)|x1) +

(Bi(x)|x4)(An−i(x)|x0)

= (Bi(x)|x2)(An−i(x)|x2) + (Bi(x)|x4)(An−i(x)|x0)

since Bi(x)|x1 = An−i(x)|x1 = 0 for i ≥ 1 and Bi(x)|x0 = 0 for i ≥ 2. But then since
Ai(x)|x0 = 0 for i ≥ 2 and Ai(x)|x0 = 1 for i = 0, 1, (12) reduces to

An(x)|x4 = Bn(x)|x4 + Bn(x)|x4 + Bn−1(x)|x4 +
n−2
∑

i=2

(Bi(x)|x2) (An−i(x)|x2) .

Then we can apply Theorem 4 to obtain (10).
Let n ≥ 6. From (1),

Bn(x)|x4 = (An−1(x)|x4 −Bn−1(x)|x4) + (An−2(x)|x2 − Bn−2(x)|x2) ,

since only the term corresponding to i = n − 2 from the sum contributes to x4. Applying
(10) and Theorem 4, we obtain

Bn(x)|x4 =

(

2Bn−1(x)|x4 +Bn−2(x)|x4 +
n−3
∑

i=2

Fi−2Fn−1−i

)

−Bn−1(x)|x4 + Fn−2 − Fn−4

= Bn−1(x)|x4 +Bn−2(x)|x4 + Fn−3 + Fn−4 + Fn−2 − Fn−4 +
n−3
∑

i=4

Fi−2Fn−1−i

= Bn−1(x)|x4 +Bn−2(x)|x4 + Fn−1 +
n−3
∑

i=4

Fi−2Fn−1−i.

11



Note that B5(x)|x4 = 6, B4(x)|x4 = 2, B3(x)|x4 = 0, and F4 = 5 so that (11) does not
hold for n = 5.

We can use Theorem 8 to find the generating functions for An(x)|x4 and Bn(x)|x4 . That
is, let

A4(t) =
∑

n≥4

(An(x)|x4)tn

and
B4(t) =

∑

n≥4

(Bn(x)|x4)tn.

Then we have the following theorem.

Theorem 9.

A4(t) =
t4(6 + t− 7t2 − t3 + 3t4 + t5)

(1− t− t2)3
(13)

and

B4(t) =
t4(2− t2 + t3 + t4)

(1− t− t2)3
. (14)

Proof. First observe that

∑

n≥7

(

n−3
∑

i=4

Fi−2Fn−1−i

)

tn = t3
∑

n≥7

(

n−5
∑

j=2

FjFn−3−j

)

tn−3

= t3
∑

n≥4

(

n−2
∑

j=2

FjFn−j

)

tn

= t3

(

∑

j≥2

Fjt
j

)2

.

Using the fact that
∑

n≥0 Fnt
n = 1

1−t−t2
, it follows that

∑

n≥7

(

n−3
∑

i=4

Fi−2Fn−1−i

)

tn = t3
(

1

1− t− t2
− (1 + t)

)2

= t3
(t2(2 + t))2

(1− t− t2)2
=

(2 + t)2t7

(1− t− t2)2
.

Next observe that

∑

n≥6

Fn−1t
n = t

(

1

1− t− t2
− (1 + t+ 2t2 + 3t3 + 5t4)

)

=
(8 + 5t)t5

1− t− t2
.

12



Let H(t) =
∑

n≥6Hnt
n, where Hn =

∑

n≥6 Fn−1t
n +

∑

n≥7

(
∑n−3

i=4 Fi−2Fn−1−i

)

tn. Then

H(t) =
(2 + t)2t7

(1− t− t2)2
+

(8 + 5t)t5

1− t− t2

=
(8 + t− 9t2 − 4t3)t6

(1− t− t2)2
.

Here we use Mathematica to simplify the last expression.
We can now rewrite (11) as

Bn(x)|x4 = Bn−1(x)|x4 +Bn−2(x)|x4 +Hn (15)

for n ≥ 6. Multiplying both sides of (15) by tn and summing for n ≥ 6, we see that

B4(t)− 2t4 − 6t5 = t(B4(t)− 2t4) + t2B4(t) +H(t).

Solving for B4(t) and using Mathematica, we obtain that

B4(t) =
t4(2− t2 + t3 + t4)

(1− t− t2)3
.

Next observe that

∑

n≥4

(

n−2
∑

i=2

Fi−2Fn−i

)

tn =
∑

n≥4

(

n−4
∑

j=0

FjFn−2−j

)

tn

= t2
∑

n≥4

(

n−4
∑

j=0

FjFn−2−j

)

tn−2

= t2

(

∑

j≥0

Fjt
j

)(

∑

j≥0

Fjt
j − (1 + t)

)

=
(2 + t)t4

(1− t− t2)2
.

Thus

G(t) =
∑

n≥5

Gnt
n =

∑

n≥5

(

n−2
∑

i=2

Fi−2Fn−i

)

tn

=
(2 + t)t4

(1− t− t2)2
− 2t4

=
(5 + 2t− 4t2 − 2t3)t5

(1− t− t2)2
.

13



We can now rewrite (10) as

An(x)|x4 = 2An(x)|x4 + Bn−1(x)|x4 +Gn (16)

for n ≥ 5. Multiplying both sides of (16) by tn and summing for n ≥ 5, we obtain that

A4(t)− 6t4 = 2(B4(t)− 2t4) + tB4(t) +G(t).

Solving for A4(t) then gives

A4(t) =
t4(6 + t− 7t2 − t3 + 3t4 + t5)

(1− t− t2)3
.

3.2 The highest coefficient of x in A(t, x) and B(t, x) = E(t, x)

Let an = An(x)|xn , bn = Bn(x)|xn , and en = En(x)|xn . Thus, for example, an is the number
of permutations π ∈ Sn(132) such that every element of π is an occurrence of the 1-box
pattern in π. The identity element in Sn and its reverse show that an, bn, and en are nonzero
for all n ≥ 1. Moreover, the fact that Bn(x) = En(x) for all n ≥ 1 implies bn = en for all
n ≥ 1. In this section, we shall compute the generating functions

A(t) =
∑

n≥0

ant
n and B(t) =

∑

n≥1

bnt
n.

Theorem 10.

A(t) =
1− t+ 2t3 −

√
1− 2t− 3t2 + 4t3 − 4t4

2t2

and

B(t) =
1 + t− 2t2 + 2t3 −

√
1− 2t− 3t2 + 4t3 − 4t4

2(1− t+ t2)
.

The initial values for an are

1, 1, 2, 2, 6, 10, 26, 54, 134, 306, 754, . . .

and the initial values for bn are

0, 1, 1, 1, 2, 3, 7, 14, 33, 73, 174, . . . .

Proof. Our proof of the theorem is very similar to the proofs of Lemma 1 and Theorem 2.
First we claim that for n ≥ 4,

bn = 1 +
n−2
∑

k=2

(ak − bk). (17)
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Here 1 corresponds to the decreasing permutation n(n − 1) · · · 1, and the sum counts per-
mutations of the form π1 · · · πn−k−1ℓ(n − k + 1)(n − k + 2) · · ·n, where 2 ≤ k ≤ n − 2,
ℓ < n− k and π1 · · · πn−k−1ℓ is a 132-avoiding permutation on {1, . . . , n− k} with the maxi-
mum number of occurrences of the 1-box pattern. There are no other permutations counted
by bn. Multiplying both parts of (17) by tn, summing over all n ≥ 4, and using the fact that
b1 = b2 = b3 = 1, we obtain

B(t)− (t+ t2 + t3) =
t4

1− t
+

t2

1− t
((A(t)− (1 + t))− (B(t)− t)) ,

from where we get

B(t) =
t− t2 + t2A(t)

1− t+ t2
. (18)

Using the fact that Sn(132) = S
(1)
n (132) ∪ S

(n)
n (132) ∪2≤i≤n−1 S

(i)
n (132), it is easy to see

that for n ≥ 4,

an = bn + en +
n−2
∑

k=2

ekan−k = 2bn +
n−2
∑

k=2

bkan−k. (19)

Multiplying both sides of (19) by tn and using the facts that a0 = a1 = 1 and a2 = a3 = 2,
we see that

A(t)− (1 + t+ 2t2 + 2t3) = 2(B(t)− (t+ t2 + t3)) + (B(t)− t)(A(t)− (1 + t)).

This leads to

A(t) =
1 + t2 + (1− t)B(t)

1 + t−B(t)
. (20)

Solving the system of equations given by (18) and (20) for A(t) and B(t) we get the
desired result.

4 The 1-box pattern on separable permutations

In this section we enumerate separable permutations with m, 0 ≤ m ≤ 3, occurrences of the
1-box pattern.

For two non-empty words, A and B, we write A < B to indicate that any element in A

is less than each element in B. We say that π′ = πiπi+1 · · · πj is an interval in a permutation
π1 · · · πn if π′ is a permutation of {k, k + 1, . . . , k + j − i} for some k, that is, if π′ consists
of consecutive values.

A permutation is separable if it avoids simultaneously the patterns 2413 and 3142. It
is known and is not difficult to see that any separable permutation π of length n has the
following structure (also illustrated in Figure 5):

π = L1L2 · · ·LmnRmRm−1 · · ·R1 (21)

where

15
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Figure 5: The structure of a separable permutation.

• for 1 ≤ i ≤ m, Li and Ri are non-empty, with possible exception of L1 and Rm,
separable permutations which are intervals in π, and

• L1 < R1 < L2 < R2 < · · · < Lm < Rm. In particular, L1, if it is non-empty, contains
the element 1.

For example, if π = 215643 then L1 = 21, L2 = 5 R1 = 43 and R2 = ∅.
The following theorem is similar to the case of 132-avoiding permutations.

Theorem 11. Apart from the empty permutation and the permutation 1, there are no sep-
arable permutations avoiding the 1-box pattern.

Proof. Our proof is straightforward by induction on n, the length of permutations and is
similar to the proof of Theorem 3. Indeed, the base cases for n ≤ 2 are easy to check. Now
assume that n ≥ 3 and Rm is non-empty (the case when Rm is empty can be considered
similarly substituting Rm with Lm in our arguments). If Rm has only one element, n − 1,
then n and n − 1 give two occurrences of the 1-box pattern; otherwise, Rm contains an
occurrence of the pattern by the inductive hypothesis.

By definition of an occurrence of the 1-box pattern, we cannot have any permutations
with exactly one occurrence of the 1-box pattern.

Theorem 12. The number cn of separable permutations of length n with exactly two occur-
rences of the 1-box pattern is given by c0 = c1 = 0, c2 = 2, and for n ≥ 3, cn = 2cn−1 + cn−2.
The generating function for this sequence is

∑

n≥0

cnt
n =

2t2

1− 2t− t2
.

The initial values for cns, for n ≥ 0, are 0, 0, 2, 4, 10, 24, 58, 140, 338, 816, 1970, . . ., and this
is essentially the sequence A052542 in [13]. Apart from the initial 0s, the sequence of cns is
simply twice the Pell numbers.
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Proof. Suppose that n ≥ 3 and π is a separable permutation in Sn which is counted by cn.
Thus π either contains a consecutive sequence of the form a(a+1) or (a+1)a. If we remove
a from π and decrease all the elements that are greater than or equal to a + 1 by one, we
will obtain a separable permutation π′ in Sn−1. By Theorem 11, we must have at least two
occurrences of the pattern in the obtained permutation π′. In fact, it is easy to see that we
will either get two occurrences or three occurrences of the 1-box pattern in π′.

By Theorem 13 below the number of possibilities to get π′ with three occurrences of the
1-box pattern (necessarily formed by either a consecutive subword of the form a(a+1)(a+2)
or by (a+2)(a+1)a) is given by cn−2. This is indeed the case because we can reverse removing
the element in this case by turning a(a+1)(a+2) to a(a+2)(a+1)(a+3) or (a+2)(a+1)a
to (a + 3)(a + 1)(a + 2)a and increasing by 1 each element of π that is larger than (a + 2).
On the other hand, the number of possibilities to get π′ with two occurrences of the 1-box
pattern (formed by either a consecutive elements of the form a(a+1) or by (a+1)a) is given
by 2cn−1. Indeed, to reverse removing the element in this case we need either to turn a(a+1)
to either (a+1)a(a+2) or to a(a+2)(a+1), or to turn (a+1)a to either (a+2)a(a+1) or
to (a+ 1)(a+ 2)a. In each of these cases the suggested substitutions create, in an injective
way, separable permutations with exactly two occurrences of the 1-box pattern.

Our considerations above justify the recursion cn = 2cn−1 + cn−2 (the initial values for
it are easy to see). Finally, using the standard technique, it is straightforward to derive the
generating function based on the recursion above.

Theorem 13. For n ≥ 1, the number of separable permutations of length n with exactly
three occurrences of the 1-box pattern is equal to the number of separable permutations of
length n− 1 with exactly two occurrences of this pattern.

Proof. It is easy to see that if a separable permutation has exactly three occurrences of the
1-box pattern, then these occurrences are necessarily formed by either a consecutive subword
of the form a(a+1)(a+2) or by (a+2)(a+1)a. In either case, removing the middle element
and reducing by 1 all elements that are larger than (a+ 1), we get a separable permutation
with exactly two occurrences of the 1-box pattern. This operation is obviously reversible.

Even though we shall not derive formulas for separable permutations with other number
of occurrences of the 1-box pattern, we provide initial values for the number of separable
permutations with exactly four occurrences of the 1-box pattern (not in [13]):

0, 0, 0, 0, 8, 42, 178, 664, 2288, . . . ,

and with the maximum number of occurrences of this pattern on separable permutations
(again, not in [13]):

0, 0, 2, 2, 8, 14, 54, 128, 466, . . . .
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