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Abstract

We give a combinatorial interpretation, an explicit formula and some other proper-
ties of hyperfibonacci numbers. Further, we deduce relationships between Fibonacci,
hyperfibonacci, and incomplete Fibonacci numbers.

1 Introduction

The hyperfibonacci numbers F\” introduced recently by Dil and Mezé [5]. There are defined
by the relation

FT(;“) — ZFIST_I), with FT(LO) = F, and Fér) =0, Fl(T) =1, (1)
k=0
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where 7 is a positive integer and F), is the n-th Fibonacci number defined recursively by
F,=F, 1+ F, - forn>2, and Fy =0, F; =1.
The double recurrence relation for the hyperfibonacci numbers is given by
ED = FD + FY. (2)

The Fibonacci number F),,; counts the number of tilings of a (1 x n)-board with cells
labeled 1,2,...,n using (1 x 1)-squares and (1 x 2)-dominoes. We follow the notation in-
troduced by Benjamin and Quinn [4] and define f,, = F,,4; and get f, = fo_1 + fn_2 with
fo - f1 - 1
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Figure 1: Tilings of length 1,2 and 3 using squares and dominoes.

The following lemma will be used to establish our results.

Lemma 1. [/] The number of n-tilings using exactly k dominoes is

(”;k) k=01, |n/2]). (3)

where |n] is the integer part of n.

From Lemma 1, Benjamin and Quinn [4] gave a closed form for f,, by summing over all
values of k, the number of ways to tile an n-board with squares and dominoes is
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k=0

Our aim is to investigate, as the authors do for generalized Fibonacci and Lucas sequences
[1, 2], the tilings approach to give a combinatorial interpretation for hyperfibonacci numbers.
More precisely, in Section 2, a combinatorial interpretation of hyperfibonacci numbers is
presented. In Section 3, we give a closed form for hyperfibonacci numbers. Finally, in
Section 4, we provide a combinatorial interpretation for incomplete Fibonacci numbers and
we establish a relation between incomplete Fibonacci numbers and hyperfibonacci numbers.



2 Combinatorial interpretation

In this section, we present combinatorial interpretation for hyperfibonacci numbers. Later,
we derive a relation involving hyperfibonacci and Fibonacci numbers.

Theorem 2. Let fff) counts the number of ways to tile an (n + 2r)-board with at least r
dominoes. Then fér) =1, fflo) = fn, and for n > 2,

F = f0 4 ey, (5)

Proof. We start by verifying the initial conditions. For n = 0, there is one 2r -tiling with
at least r dominoes, and for r = 0, there are f, n-tilings with at least 0 dominoes (there is
no restriction on the number of dominoes). Now, if n > 2, an (n + 2r)-board can either end
with a square or with a domino. If it ends with a square, then the remaining (n + 2r — 1)-
board can be tiled with at least r dominoes in fér_)l ways. If it ends with a domino, then the

remaining (n + 2r — 2)-board can be tiled with at least r — 1 dominoes in f,gf_l) ways. [

As fOT) = Fl(r) =1 and fy(lo) = 117,(331 = F,41, it seen that for n > 0, we have fy(f) = F,(Li)l
Letting f) = 0, because there is not (2r — 1)-tiling with at least r dominoes. Now, we have

a combinatorial interpretation for the hyperfibonacci numbers.

Theorem 3. Forn,r > 0, FT(Ql = f,S” counts the number of ways to tile an (n + 2r)-board
with at least r dominoes.

The first few values of f,(f) are as follows:

nl01 2 3 4 5 6 7 8 9 10
W1 1 2 3 5 8 13 21 34 55 89
Wl 2 4 7 12 20 33 54 88 143 232
D11 3 7 14 26 46 79 133 221 364 594
B 11 4 11 25 51 97 179 309 530 894 1490

Table 1: Some values of f\"

Theorem 4. Forn >0, and r > 1, we have

[n/2|+r—1

=" (n+2r—k—1) Y. (6)

k=r—1



Proof. The number of ways to tile a board of length n 4+ 2r — 2 with at least r — 1
dominoes is f{ . Now, to obtain an (n + 2r)-tilings with at least r dominoes from
an (n + 2r — 2)-tilings with at least » — 1 dominoes, it suffices to add a domino. Let k
(r—1<k<|n/2|+r—1) be the number of dominos in an (n + 2r — 2)-tilings, then it
contains n+2r —2k—2 squares, so there are n+2r—k—2 tiles in the (n+2r—2)-tilings. The
number of ways to place a domino in an (n+2r—2) -tiling with k& (r — 1 < k < [n/2| +r —1)
dominoes is n 4 2r — k — 1. O

The hyperfibonacci numbers fér) can be expressed as a sum of a product of binomial
coefficients and Fibonacci numbers.

Theorem 5. Forn >0, and r > 1, we have

= (T ) )

k=0

Proof. Let k4 1,k+2 (0 < k < n) be the position of the r-th (from the right) domino, then
there are f;, ways to tile the first £ cells, and there are (’”::]ffl) ways to tile cells from k£ + 3
to m + 2r with exactly » — 1 dominoes. Thus, there are (”Jr::]f*l) frx (n+ 2r)-tilings with
the r-th domino covering cells k£ 4+ 1,k + 2. Summing over k, we get relation (7). O

From the relation (7), the following convolution is derived, the hyperfibonacci numbers
are obtained as a convolution between the anti-diagonal terms of Pascal’s triangle and the
Fibonacci numbers.

Corollary 6. Forn >0, and r > 1, we have

=% (r - ,tf k) Foke (8)

k=0

3 Closed form for hyperfibonacci numbers

The following theorem gives an explicit expression of fﬁﬁ in terms of binomial coefficients.

Theorem 7. Forn >0, and r > 1, we have

[n/2]|+r
., n+2r—=k
=3 ( . ) (9)

k=r

Proof. An (n + 2r)-tiling with at least r dominoes can contains k dominoes where k =
r,r+1,...,|n/2|+r. Using Lemma 1, the number of (n + 2r)-tilings with exactly k£ dominoes

is (”+2]:_k). Summing over k we get (9). O



The relation (9) is a truncated diagonal sum of Pascal’s Triangle. This allow us to state
the following:

Theorem 8. Forn >0, and r > 1, we have

r—1

, n+2r—=Fk
f7§>:fn+zr—z( ” ) (10)
k=0
Remark 9. For n > 0, we have some special cases
F =Y fi=fara— L. (11)
k=0

FP=>"(k+1) fack = faxa—n—A4. (12)

k=0

4 Relationships between the hyperfibonacci and incom-
plete Fibonacci numbers

We give a combinatorial interpretation for the incomplete Fibonacci numbers. This allow us
to obtain a relationship involving the Fibonacci, hyperfibonacci, and incomplete Fibonacci
numbers.

Filipponi [6] defined the incomplete Fibonacci numbers F,, (k) by the following relation
forn >0

FnH(k):Z(n_,j) (0<k<|2]). (13)

Theorem 10. Let f, (k) counts the number of ways to tile an n-board with at most k domi-

noes. Then
k

fn<k>—2(";j) (0<k<|

J=0

|3

])- (14)

Proof. 1t follows from Lemma 1, by summing over j. O]
Note that, if we take k = ng, then the f, (k) is reduced to the Fibonacci number f,.
Theorem 11. Forn > 0, we have
Fu () = Facr () + faa (k= 1), (15)

with f,(0) = fo (k) = 1.



Proof. An n-tilings with at most & dominoes either ends with a square or a domino. If it
ends with a square, there are f,,_; (k) ways to tile the first n—1 cells with at most & dominoes
and if it ends with a domino, there are f, o (k — 1) ways to tile the first n — 2 cells with at
most £ — 1 dominoes. O

The following theorem gives a combinatorial interpretation for incomplete Fibonacci num-
bers.

Theorem 12. Forn,k > 0 with0 < k < [n/2], we have F,,. 41 (k) = f. (k). That is, F, 41 (k)
counts the number of ways to tile an n-board with at most k dominoes.

From relations (13) and (15), we obtain the following non-homogenous second order
recurrence relation as stated by Filipponi [6].
For n > 0, we have

) = fs 0+ fia )= ("), (16

Using the approach of Benjamin et al., we recover Filipponi’s formula [6].

Theorem 13. Forn > 0, we have

MMmm:iGﬁmwm (0=k<"5). (17)

J=0

Proof. The left hand side counts the number of ways to tile an (n + 2h)-board with at
most k£ + h dominoes. Now, we show that the right hand side counts the same tilings by
conditioning on the number of dominoes that appear among the first h tiles. There are (h)

ways to select j positions for the dominoes among the first h tiles and f,,4p—; (kK +h — j)
ways to tile remaining n + h — j cells with at most k + h — 7 dominoes. O]

Using (10) and (14), we give a relation between Fibonacci numbers, incomplete Fibonacci
numbers and hyperfibonacci numbers.

Corollary 14. For integers n,r > 0, we have

fovor = 7+ frgor (r — 1) (18)

This states that, for given nonnegative integers n and r, every Fibonacci number can be
written as a combination of an incomplete Fibonacci number and an hyperfibonacci number.
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