=4in logo129.eps

On a Congruence of Kimball and Webb
Involving Lucas Sequences
Christian Ballot
Département de Mathématiques et Mécanique
Université de Caen
F-14032 Caen Cedex
France
mailto:christian.ballot@unicaen.frchristian.ballot@unicaen.fr

in

Abstract:

Given a pair (Ut) and (Vt) of Lucas sequences, an odd integer $\nu\ge1$, and a prime $p\ge\nu+4$ of maximal rank $\rho_U$, i.e., such that $\rho_U$ is p or $p\pm1$, we show that $\sum_{0<t<\rho_U}(V_t/U_t)^\nu
\equiv0\pmod{p^2}$. This extends a result of Kimball and Webb, who proved the case $\nu=1$. Some further generalizations are also established.



 

0000-Admin(0000)
2013-12-15