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Abstract

In a recent paper, Tóth mentioned that it is an open problem to give the asymptotic
formula for

∑

n≤x P
k(n), where P (n) is the well-known gcd-sum function and k ≥ 2 is

a fixed integer. In this paper, we use the analytic properties of the Dirichlet divisor
function to obtain the asymptotic formula for it.

1 Introduction

In 1933, Pillai [8] introduced the gcd-sum function

P (n) =
n
∑

k=1

gcd(k, n). (1)
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By grouping the terms according to the values of gcd(k, n) we have

P (n) =
∑

d|n

dφ(n/d) = n
∑

d|n

φ(d)

d
, (2)

where φ is Euler’s function. Many authors have studied the properties of P (n), see [1, 2, 3,
4, 5, 8, 9, 10]; it is Sloane’s sequence A018804. Chidambaraswamy and Sitaramachandrarao
[5] showed that, given an arbitrary ǫ > 0,

∑

n≤x

P (n) = e1x
2 log x+ e2x

2 +O(x1+θ+ǫ),

where θ is the constant appearing in the error term of the Dirichlet divisor problem, e1, e2
are certain constants.

It follows from (2) that the arithmetic mean of gcd(1, n), . . . , gcd(n, n) is given by

A(n) =
P (n)

n
=
∑

d|n

φ(d)

d
. (3)

Tóth [9] showed that

∑

n≤x

A2(n) = x(C1 log
3 x+ C2 log

2 x+ C3 log x+ C4) +O(x1/2+ǫ), (4)

where C1, C2, C3, C4 are computable constants. Furthermore, he listed some open prob-
lems concerning the gcd-sum function, one of which is to derive the asymptotic formula for
∑

n≤x P
k(n), where k ≥ 2 is a fixed integer.

In this paper, we use the analytic method to get the asymptotic formula for
∑

n≤xA
k(n).

Theorem 1. Let k ≥ 2 be a fixed integer. Then

∑

n≤x

Ak(n) = xQ2k−1(log x) +O(xβk+ǫ), (5)

where Q2k−1(t) is a polynomial of degree 2k − 1 in t and

β2 =
1

2
, β3 =

5

8
, β4 =

7

9
, β5 =

31

36
, β6 =

207

224
, βk = 1− 2−

2

3
k/50, k ≥ 7.

Corollary 2. Let k ≥ 2 be a fixed integer. Then

∑

n≤x

P k(n) = x2Q′
2k−1(log x) +O(x1+βk+ǫ), (6)

where Q′
2k−1

(t) is a polynomial of degree 2k − 1 in t.
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Theorem 3. Let k ≥ 2 be a fixed integer and

Ek(x) =
∑

n≤x

Ak(n)− xQ2k−1(log x).

Then for k = 3, 4, 5, we have
∫ U

1

Ek(x)dx ≪ U1+δk+ǫ,

where

δ3 = 1/2, δ4 = 0.6030739, δ5 = 0.773114.

2 Preliminary Lemmas

Lemma 4. Let s be a complex number with Re(s) > 1. Then

∞
∑

n=1

Ak(n)

ns
= ζ2

k

(s)Gk(s),

where Gk(s) =
∞
∑

n=1

g(n)
ns is a Dirichlet series which is absolutely convergent for Re(s) > 1/2.

Proof. Recall that A(n) is multiplicative function. Then it follows from the Euler product
representation that for Re(s) > 1,

F (s) :=
∞
∑

n=1

Ak(n)

ns
=
∏

p

(

1 +
∞
∑

α=1

Ak(pα)

pαs

)

. (7)

where

A(pα) = 1 +
φ(p)

p
+ · · ·+

φ(pα)

pα
= 1 + α−

α

p
, α ≥ 1.

Thus we have

1 +
∞
∑

α=1

Ak(pα)

pαs
= 1 +

∞
∑

α=1

(1 + α− α
p
)k

pαs

= 1 +
2k

ps
−

k · 2k−1

ps+1
+ . . .+ (−1)k

1

ps+k

+
3k

p2s
−

2k · 3k−1

p2s+1
+ . . .+ (−1)k

2k

p2s+k

+
4k

p3s
−

3k · 4k−1

p3s+1
+ . . .+ (−1)k

3k

p3s+k

+ . . . =: xk(s).
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We substitute the above formula to the formula (7) to get

∞
∑

n=1

Ak(n)

ns
=
∏

p

xk(s) = ζ2
k

(s) ·
∏

p

(1−
1

ps
)2

k

· xk(s) =: ζ2
k

(s)Gk(s),

where

Gk(s) =
∏

p

(1−
1

ps
)2

k

· xk(s)

=
∏

p

(

1−
k · 2k−1

ps+1
+ . . .+ (−1)k

1

ps+k

+
3k − 4k +

(

2k

2

)

p2s
+

k · 22k−1 − 2k · 3k−1

p2s+1
+ . . .

+
4k − 6k +

(

2k

2

)

2k −
(

2k

3

)

p3s
+

2k · 2k3k−1 − 3k · 4k−1 − k · 2k−1 ·
(

2k

2

)

p3s+1
+ . . .

)

.

From the above formula, it is easy to see that Gk(s) can be expanded to a Dirichlet series
∞
∑

n=1

g(n)
ns , which is absolutely convergent for Re(s) > 1/2.

Lemma 5. Suppose 1/2 ≤ σ ≤ 1, then

ζ(σ + it) ≪ (|t|+ 2)
1−σ

3 log(|t|+ 2). (8)

Proof. We define the function µ(σ) for each σ as the infimum of number c ≥ 0 such that
ζ(σ + it) ≪ tc, or alternatively as

µ(σ) = lim sup
t→∞

log |ζ(σ + it)|

log t
.

Then µ(σ) is continuous, nonincreasing and for σ1 ≤ σ ≤ σ2,

µ(σ) ≤ µ(σ1)
σ2 − σ

σ2 − σ1

+ µ(σ2)
σ − σ1

σ2 − σ1

.

By the well-known estimates

ζ(1/2 + it) ≪ t1/6, ζ(1 + it) ≪ log t,

we can easily get the formula (8).

Lemma 6. If ζ(s) = χ(s)ζ(1− s), then the estimate

χ(s) ≪ (|t|+ 2)1/2−σ

holds uniformly for 0 ≤ σ ≤ 1.

4



Proof. Using standard properties of the gamma-function one may write the functional equa-
tion of ζ(s) as

ζ(s) = χ(s)ζ(1− s), χ(s) = (2π)s/(2Γ(s) cos(πs/2)).

From Stirling’s formula

|Γ(s)| = (2π)
1

2 |t|σ−
1

2 e−
π|t|
2

(

1 +O(|t|−1)
)

(|t| ≥ t0),

it follows that

χ(s) =

(

2π

|t|

)σ+i|t|− 1

2

ei(|t|+
π

4
)
(

1 +O(|t|−1)
)

≪ (|t|+ 2)1/2−σ.

3 Proofs of Theorem 1 and Corollary 2

Recall that the generalized divisor function

dk(n) =
∑

n=n1···nk

1,

and its Dirichlet series is

ζk(s) =
∞
∑

n=1

dk(n)

ns
.

From [7, Theorem 13.2 and 13.3] it follows that

∑

n≤x

d2k(n) = xP2k−1(log x) +O(xβk+ǫ), (9)

where P2k−1(t) is a polynomial of degree 2k − 1 in t, and

β2 =
1

2
, β3 =

5

8
, β4 =

7

9
, β5 =

31

36
, β6 =

207

224
, βk = 1− 2−

2

3
k/50, k ≥ 7.

Then by Lemma 4, we have that

∑

n≤x

Ak(n) =
∑

mℓ≤x

d2k(m)g(ℓ) =
∑

ℓ≤x

g(ℓ)
∑

m≤x/ℓ

d2k(m),

and formula (9) applied to the inner sum gives

∑

n≤x

Ak(n) =
∑

ℓ≤x

g(ℓ)
{x

ℓ
P2k−1

(

log(
x

ℓ
)
)

+O
(

(
x

ℓ
)βk+ǫ

)}
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= xQ2k−1(log x) +O(xβk+ǫ),

if we notice from Lemma 4 that the infinite series
∞
∑

ℓ=1

g(ℓ)
ℓ

and
∞
∑

ℓ=1

g(ℓ) logk ℓ
ℓ

are absolutely

convergent, and
∑

ℓ≤x

|g(ℓ)| ≪ x1/2+ǫ.

From the definitions of P (n) and Abel’s summation formula, we can easily get

∑

n≤x

P k(n) = x2Q′
2k−1(log x) +O(x1+βk+ǫ),

where Q′
2k−1

(t) is a polynomial of degree 2k − 1 in t.

4 Proof of Theorem 3

It suffices to prove that
∫ 2U

U

Ek(x)dx ≪ U1+δk+ǫ, (10)

where
δ3 = 1/2, δ4 = 0.6030739, δ5 = 0.773114.

By Perron’s formula (see for example, [6, Chapter 5]), we have for T ≤ x ≤ 2T that

∑

n≤x

Ak(n) =
1

2πi

∫ 1+ε+iT

1+ε−iT

ζ2
k

(s)Gk(s)
xs

s
ds+O(T ε).

Then we move the integration to the parallel segment with Re(s) = 1− ε to get

Ek(x) =
1

2πi

∫ 1−ε+iT

1−ε−iT

ζ2
k

(s)Gk(s)
xs

s
ds+O(T ε).

So
∫ 2U

U

Ek(x)dx =
1

2πi

∫ 1−ε+iT

1−ε−iT

ζ2
k

(s)Gk(s)

s

(
∫ 2U

U

xsdx

)

ds+O(U1+ε)

=
1

2πi

∫ 1−ε+iT

1−ε−iT

ζ2
k

(s)Gk(s)(2
s+1 − 1)U s+1

s(s+ 1)
ds+O(U1+ε). (11)

Moving the integral line in the last integral of (11) to σ = c, where 1
2
< c < 1, we have

∫ 2U

U

Ek(x)dx ≪ U1+c

∫ c+iT

c−iT

|ζ(s)|2
k

|s(s+ 1)|
ds ≪ U1+c

∫ T

1

|ζ(c+ it)|2
k

T 2
ds, (12)

6



if we notice that Gk(s) is absolutely convergent in Re(s) > 1
2
.

For the case k = 3, it follows from [7, Theorem 8.3] that

∫ T

1

∣

∣

∣

∣

ζ(
1

2
+ it)

∣

∣

∣

∣

8

dt ≪ T
3

2 .

On taking c = 1/2 + ε in (12), we have

∫ 2U

U

E3(x)dx ≪ U3/2. (13)

For the case k = 4, from [7, Theorem 8.3] and [7, Theorem 8.4], it follows that

∫ T

1

∣

∣

∣

∣

ζ(
1

2
+ it)

∣

∣

∣

∣

16

dt ≪ T 1+ 350

216

and
∫ T

1

|ζ(σ + it)|16 dt ≪ T 1+ε,

where σ satisfies
12408

4537− 4890σ
= 16,

which gives σ = 0.7692229. By [7, Lemma 8.3], we have

∫ T

1

|ζ(0.6030739 + it)|16 dt ≪ T 2.

In the formula (12), we take c = 0.6030739 to get

∫ 2U

U

E4(x)dx ≪ U1+0.6030739. (14)

Similarly, we can get δk, k ≥ 5. For example, δ5 = 0.773114.
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