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Abstract

For a set T of integers, let P (T ) be the set of all finite subset sums of T , and let
T (x) be the set of all integers of T not exceeding x. Let B = {b1 < b2 < · · · } be a
sequence of integers and d1 = 10, d2 = 3b1 + 4, and dn = 3bn−1 + 2 (n ≥ 3). In this
paper, we prove that

(i) if bn > dn for all n ≥ 1, then there exists a sequence of positive integers A =
{a1 < a2 < · · · } such that, for all k ≥ 2, P (A(bk)) = [0, 2bk]\{bu, 2bk−bu : 1 ≤ u ≤ k};

(ii) if bm = dm for some m ≥ 1 and bn > dn for all n 6= m, then there is no such
sequence A.

We also pose a problem for further research.

1 Introduction

For a sequence of integers A = {a1 < a2 < · · · }, let

P (A) =
{

∑

εiai : ai ∈ A, εi = 0 or 1;
∑

εi < ∞
}

.

Here 0 ∈ P (A). Burr [1] asked the following question: which sets S of integers are equal
to P (A) for some A? Let B = {b1 < b2 < · · · } = N \ S, where N = {0, 1, 2, . . .} is the
set of all natural numbers. Burr mentioned that if b1 > b0 and bn+1 ≥ b2n for all n ≥ 1,
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then there exists an A such that P (A) = N \ B. Hegyvári [4] proved that if b1 ≥ b0 and
bn+1 ≥ 5bn for all n ≥ 1, then such A exists. The condition bn+1 ≥ 5bn has been improved
to bn+1 ≥ 3bn + 5 by Chen and Fang [2]. Recently, Chen and the author [3] proved that, if
B = {b1 < b2 < · · · } is a sequence of integers with b1 ∈ {4, 7, 8} ∪ {b : b ≥ 11, b ∈ N},
b2 ≥ 3b1 + 5, b3 ≥ 3b2 + 3 and bn+1 > 3bn − bn−2 for all n ≥ 3, then there exists a sequence
of positive integers A = {a1 < a2 < · · · } such that P (A) = N \B.

For any set T of integers and any real number x, let T (x) be the set of all integers of T
not exceeding x. Let [a, b] = {n : n ∈ N, a ≤ n ≤ b}, and let x+ T = {x+ a : a ∈ T}.

In this paper, we prove the following result.

Theorem 1. Let B = {b1 < b2 < · · · } be a sequence of integers, and let d1 = 10, d2 = 3b1+4,
and dn = 3bn−1 + 2 (n ≥ 3). Then

(i) if bn > dn for all n ≥ 1, then there exists a sequence of positive integers A = {a1 <
a2 < · · · } such that, for all k ≥ 2,

P (A(bk)) = [0, 2bk] \ {bu, 2bk − bu : 1 ≤ u ≤ k};

(ii) if bm = dm for some m ≥ 1 and bn > dn for all n 6= m, then, for any sequence of
positive integers A = {a1 < a2 < · · · }, there exists an index k ≥ 2 such that

P (A(bk)) 6= [0, 2bk] \ {bu, 2bk − bu : 1 ≤ u ≤ k}.

Remark 2. Theorem 1 gives a segment version of the original problem. The symmetry
of the missing set is related to the structure of a subset sum. The analogous result for
P (A(bk − bk−1)) was given in [3].

We pose a problem here.

Problem 3. Determine all sequences of integers B = {b1 < b2 < · · · } for which there exist
two sequences of positive integers A = {a1 < a2 < · · · } and X = {x1 < x2 < · · · } such that,
for all k ≥ 2,

P (A(xk)) = [0, 2bk] \ {bu, 2bk − bu : 1 ≤ u ≤ k}.

2 Proof of Theorem 1

First, we prove Theorem 1 (i). By the proof of [2, Theorem 1], there exists a subset A2

of [1, b2 − b1] ⊂ [1, b2] such that P (A2) = [0, 2b2] \ {b1, b2, 2b2 − b1}. Suppose that k ≥ 2,
Ak ⊆ [1, bk] and

P (Ak) = [0, 2bk] \ {bu, 2bk − bu : 1 ≤ u ≤ k}. (1)

We deal with the case k + 1. If bk+1 ≥ 3bk + 5, then, by the proof of [2, Theorem 1], we
can construct the required Ak+1. So we consider the case 3bk + 3 ≤ bk+1 ≤ 3bk + 4. Similar
to the arguments in [2] and [3], we have

P (Ak ∪ {bk + 1}) = [0, 3bk + 1] \ {bu, 3bk − bu + 1 : 1 ≤ u ≤ k},
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P (Ak ∪ {bk + 1, bk+1 − 2bk − 1}) = [0, bk+1 + bk] \ {bu, bk+1 + bk − bu : 1 ≤ u ≤ k},

P (Ak ∪ {bk + 1, bk+1 − 2bk − 1, bk+1 − bk}) = [0, 2bk+1] \ {bu, 2bk+1 − bu : 1 ≤ u ≤ k + 1}.

Let
Ak+1 = Ak ∪ {bk + 1, bk+1 − 2bk − 1, bk+1 − bk}.

Thus, we have constructed a sequence of sets {Ak}
∞

k=1
such that A1 ⊆ A2 ⊆ · · · , Ak+1 \Ak ⊆

(bk, bk+1] (k ≥ 1) and (1) holds for all k ≥ 2. Let A =
⋃

∞

k=1
Ak. Then, for all k ≥ 2,

P (A(bk)) = [0, 2bk] \ {bu, 2bk − bu : 1 ≤ u ≤ k}.

Now we prove Theorem 1 (ii). The proof is similar to that of [3, Theorem 2].
Suppose that there exists a sequence A = {a1 < a2 < · · · } of positive integers such that

P (A(bs)) = [0, 2bs] \ {bk, 2bs − bk : 1 ≤ k ≤ s}

for all s ≥ 2. Then P (A) = N\B. By [2], we may assume that m ≥ 3. Thus bm = 3bm−1+2.
Let A(bm−1) = A ∩ [0, bm−1] = {a1, . . . , am′}. Then

am′+1 + P (A(bm−1)) = [am′+1, am′+1 + 2bm−1] \Bm,1,

where Bm,1 = {am′+1+bk, am′+1+2bm−1−bk : 1 ≤ k ≤ m−1}. If am′+1 > 2bm−1−bm−2, then
2bm−1−bm−2 /∈ P (A), a contradiction. Hence am′+1 ≤ 2bm−1−bm−2. By am′+1 /∈ A∩[0, bm−1],
we have am′+1 > bm−1.

Case 1: am′+1 = bm−1 + 1. Similar to the arguments in [2] and [3], we have

P (A(bm−1) ∪ {am′+1}) = [0, bm − 1] \Bm,2,

where Bm,2 = {bk, bm − 1− bk : 1 ≤ k ≤ m− 1}. Thus

am′+2 + P (A(bm−1) ∪ {am′+1}) = [am′+2, am′+2 + bm − 1] \Bm,3,

where Bm,3 = {am′+2 + bk, am′+2 + bm − 1− bk : 1 ≤ k ≤ m− 1}. If am′+2 ≤ bm − 1− bm−1,
then

bm ∈ [am′+2, am′+2 + bm − 1], am′+2 + bm−1 < bm < am′+2 + bm − 1− bm−1.

Thus bm ∈ am′+2 + P (A(bm−1) ∪ {am′+1}), a contradiction. If am′+2 > bm − 1− bm−1, then,
by bm − 1− bm−1 /∈ P (A(bm−1) ∪ {am′+1}), we have bm − 1− bm−1 /∈ P (A), a contradiction.

Case 2: bm−1 + 2 ≤ am′+1 ≤ 2bm−1 − bm−2. By bm ∈ [am′+1, am′+1 + 2bm−1] and am′+1 +
bm−1 ≤ 3bm−1 − bm−2 < bm, there exist some u0(1 ≤ u0 ≤ m− 2) such that am′+1 + 2bm−1 −
bu0

= bm = 3bm−1 + 2. Hence am′+1 = bm−1 + bu0
+ 2.
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If there exist u, v with 1 ≤ u, v ≤ m − 2 such that 2bm−1 − bu = am′+1 + bv, then, by
am′+1 = bm−1 + bu0

+ 2, we have bm−1 = bu + bv + bu0
+ 2 ≤ 3bm−2 + 2. This contradicts the

condition bm−1 > 3bm−2 + 2. Hence 2bm−1 − bu 6= am′+1 + bv(1 ≤ u, v ≤ m− 2) and then

P (A(bm−1) ∪ {am′+1}) = [0, bm + bu0
] \ {bk, bm + bu0

− bk : 1 ≤ k ≤ m− 1}.

Thus, for i ≥ 2, we have

am′+i + P (A(bm−1) ∪ {am′+1}) = [am′+i, am′+i + bm + bu0
] \Bm,4,

where Bm,4 = {am′+i + bk, am′+i + bm + bu0
− bk : 1 ≤ k ≤ m− 1}.

If am′+2 > bm+bu0
−bm−1, then bm+bu0

−bm−1 /∈ P (A), a contradiction. So bm−1+bu0
+2 =

am′+1 < am′+2 ≤ bm + bu0
− bm−1. Let bm−1 + bu0

+ 2 < am′+i ≤ bm + bu0
− bm−1. Then

am′+i + bm−2 < bm < am′+i + bm + bu0
− bm−1. (2)

Since bm /∈ P (A), it follows that bm /∈ am′+i+P (A(bm−1)∪{am′+1}). Hence bm ∈ Bm,4. Thus,
by (2), bm = am′+i + bm−1, i.e., am′+i = bm − bm−1. So i = 2 and am′+3 > bm + bu0

− bm−1.
Thus

bm + bu0
− bm−1 = am′+i + bu0

/∈ (P (A(bm−1) ∪ {am′+1})) ∪ (am′+i + P (A(bm−1) ∪ {am′+1}))

= P (A(bm−1) ∪ {am′+1, am′+2}).

By am′+3 > bm+bu0
−bm−1, we have bm+bu0

−bm−1 /∈ P (A), a contradiction. This completes
the proof of Theorem 1 (ii).
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