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Abstract

For a set of positive and relatively prime integers A, let Γ(A) denote the set of
integers obtained by taking all nonnegative integer linear combinations of integers in
A. Then there are finitely many positive integers that do not belong to Γ(A). For the
modified arithmetic progression A = {a, ha + d, ha + 2d, . . . , ha + kd}, gcd(a, d) = 1,
we determine the largest integer g(A) that does not belong to Γ(A), and the number of
integers n(A) that do not belong to Γ(A). We also determine the set of integers S⋆(A)
that do not belong to Γ(A) which, when added to any positive integer in Γ(A), result
in an integer in Γ(A). Our results generalize the corresponding results for arithmetic
progressions.

1 Introduction

Given a finite set A = {a1, . . . , ak} of positive integers with gcd A := gcd(a1, . . . , ak) = 1,
let Γ(A) := {a1x1 + · · · + akxk : xi ≥ 0} and Γ⋆(A) = Γ(A) \ {0}. It is well known that
Γc(A) := N \ Γ(A) is finite. Although it was Sylvester [9] who first asked to determine

g(A) := maxΓc(A),

and who showed that g(a1, a2) = (a1 − 1)(a2 − 1) − 1, it was Frobenius who was largely
instrumental in giving this problem the early recognition, and it is after him that the problem
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is named. Ramı́rez-Alfonśın’s monograph on the Frobenius problem [5] gives an extensive
survey. Related to the Frobenius problem is the problem of determining n(A) := |Γc(A)|. As
in the case of determining g(A), it was Sylvester who showed that n(a1, a2) =

1
2
(a1−1)(a2−1).

Tripathi [11] introduced the following variation of the Frobenius problem. Let

S⋆(A) := {n ∈ Γc(A) : n+ Γ⋆(A) ⊂ Γ⋆(A)}.

Since g(A) is the largest integer in S⋆(A), the determination of S⋆(A) also provides the
resolution of g(A). For the sake of convenience, we recall the following essential result
regarding S⋆(A) from [11]. Fix a ∈ A, and let mC denote the smallest integer in Γ(A) ∩C,
where C denotes a nonzero residue class modulo a. If C denotes the set of all nonzero residue
classes modulo a, then

S⋆(A) ⊆ {mC − a : C ∈ C }. (1)

Moreover, if (x) denotes the residue class of xmodulo a andmx the least integer in Γ(A)∩(x),
then

mj − a ∈ S⋆(A) ⇐⇒ mj − a ≥ mj+i −mi for 1 ≤ i ≤ a− 1. (2)

Observe that S⋆(A) 6= ∅; in fact, g(A) is the largest integer in S⋆(A). A complete description
of S⋆(A) would therefore lead to the determination of g(A).

The functions g and n are easily determined from the values of mC by Lemma 1. Brauer
and Shockley [2] proved (i) and Selmer [8] proved (ii); a short proof of both results may be
found in [10].

Lemma 1. ([2, 8]) Let a ∈ A. Then

(i) g(A) = max
C

mC − a, the maximum taken over all nonzero classes C modulo a;

(ii) n(A) =
1

a

∑

C

mC − 1
2
(a− 1), the sum taken over all nonzero classes C modulo a.

In cases when all but one integer in A have a nontrivial divisor, the following reduction
formulae given by Lemma 2 is useful. Johnson [4] gave the reduction formulae for g(A) and
Rødseth [7] for n(A); a short proof of both results may be found in [12].

Lemma 2. ([4, 7]) Let a ∈ A, let d = gcd
(

A \ {a}
)

, and define A′ := 1
d

(

A \ {a}
)

.

(i) g(A) = d · g
(

A′ ∪ {a}
)

+ a(d− 1);

(ii) n(A) = d · n
(

A′ ∪ {a}
)

+ 1
2
(a− 1)(d− 1).

In this article, we determine g(A), n(A) and S⋆(A) for the modified arithmetic progression
A = {a, ha+ d, ha+ 2d, . . . , ha+ kd} with gcd(a, d) = 1.
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2 The case A = {a, ha + d, ha + 2d, . . . , ha + kd}

For arithmetic progressions, Roberts [6] determined g(A), later simplified by Bateman [1],
while Grant [3] determined n(A). A simple proof for both these results using Lemma 1
can be found in [10]. In fact, it is also possible to determine S⋆(A) in this case; see [11].
The result about g(A) and n(A) when A consists of terms in arithmetic progression can be
modified or extended in many ways. One such modification is to consider A = {a, ha +
d, ha+2d, . . . , ha+kd} with gcd(a, d) = 1 and h, k ≥ 1. The result for g(A) is due to Selmer
[8], but we provide a simpler proof that also leads to other results.

Henceforth let A = {a, ha + d, ha + 2d, . . . , ha + kd} with gcd(a, d) = 1 and h, k ≥ 1.
Then g(A) denotes the largest N such that

ax0+(ha+d)x1+(ha+2d)x2+· · ·+(ha+kd)xk = a
(

x0 + h
∑k

i=1 xi

)

+d
(

∑k

i=1 ixi

)

= N (3)

has no solution in nonnegative integers, and n(A) the number of such integers N .

Lemma 3. For each x, 1 ≤ x ≤ a−1, the least positive integer of the form given by equation
(3) in the class dx mod a is given by ha

(

1 + ⌊x−1
k
⌋
)

+ dx.

Proof. Let mdx denote the least positive integer in the class (dx) modulo a. Then mdx is the
minimum value attained by the expression on the left in equation (3) subject to

∑k

i=1 ixi = x

and each xi ≥ 0. If x = qk + r, 0 ≤ r ≤ k − 1, the sum x0 + h
∑k

i=1 xi is minimized by
choosing xk = q, xr = 1 and xi = 0 for all other i, unless r = 0 in which case we must choose
xr = 0. Thus the minimum value for x0 + h

∑k

i=1 xi is h(q + 1) if r 6= 0 and hq if r = 0,
which may be combined as h

(

1 + ⌊x−1
k
⌋
)

. Hence mdx = ha
(

1 + ⌊x−1
k
⌋
)

+ dx.

Theorem 4. Let a, d, h, k be positive integers, with gcd(a, d) = 1. Then

(i) g
(

a, ha+ d, ha+ 2d, . . . , ha+ kd
)

= ha
⌊

a−2
k

⌋

+ (h− 1)a+ d(a− 1);

(ii) n
(

a, ha + d, ha + 2d, . . . , ha + kd
)

= 1
2
h(a + r)

(

1 +
⌊

a−2
k

⌋)

+ 1
2
(a − 1)(d − 1), where

r ≡ a− 2 mod k.

Proof.

(i)
g
(

a, ha+ d, ha+ 2d, . . . , ha+ kd
)

= max
C∈C

mC − a

= max
1≤x≤a−1

(

ha
(

1 +
⌊

x−1
k

⌋)

+ dx
)

− a

= ha
⌊

a−2
k

⌋

+ (h− 1)a+ d(a− 1).
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(ii) Write a− 2 = qk + r, with 0 ≤ r ≤ k − 1. Then

n
(

a, ha+ d, ha+ 2d, . . . , ha+ kd
)

= 1
a

∑

C∈C

mC − 1
2
(a− 1)

= 1
a

a−1
∑

x=1

(

ha
(

1 +
⌊

x−1
k

⌋)

+ dx
)

− 1
2
(a− 1)

= h

a−2
∑

x=0

(

1 +
⌊

x
k

⌋)

+ 1
2
d(a− 1)− 1

2
(a− 1)

= h
(

k(1 + 2 + · · ·+ q) + (q + 1)(r + 1)
)

+1
2
(a− 1)(d− 1)

= 1
2
h(a+ r)

(

1 +
⌊

a−2
k

⌋)

+ (a−1)(d−1)
2

.

Observation 5. The case when A consists of integers in arithmetic progression is the special
case h = 1 in Theorem 4.

Recall that S⋆(A) := {n ∈ Γc(A) : n+Γ⋆(A) ⊂ Γ⋆(A)}. Since g(A) is the largest element
in S⋆(A), the set S⋆(A) is intimately linked with the Frobenius problem.

Theorem 6. Let a, d, h, k be positive integers, with gcd(a, d) = 1. Write a − 1 = qk + r,
with 1 ≤ r ≤ k. Then

S⋆
(

a, ha+ d, ha+ 2d, . . . , ha+ kd
)

=
{

ha
⌊

x−1
k

⌋

+ (h− 1)a+ dx : a− r ≤ x ≤ a− 1
}

.

Proof. Fix k ≥ 1, and let A = {a, ha+d, ha+2d, . . . , ha+kd}. By equation (1) and Lemma
3,

S⋆(A) ⊆
{

ha
⌊

x−1
k

⌋

+ (h− 1)a+ dx : 1 ≤ x ≤ a− 1
}

.

By equation (2), ha⌊x−1
k
⌋+ (h− 1)a+ dx ∈ S⋆ if and only if for each y with 1 ≤ y ≤ a− 1,

ha⌊ (x+y) mod a−1
k

⌋+ d
(

(x+ y) mod a
)

≤ ha
(

⌊x−1
k
⌋+ ⌊y−1

k
⌋
)

+ (h− 1)a+ d(x+ y). (4)

Suppose k ≤ a − 1, and write a − 1 = qk + r with 1 ≤ r ≤ k. Then unless x = a − 1,
x+ y ≤ a− 1 for at least one y. For such a y, equation (4) reduces to proving the inequality

⌊x+y−1
k

⌋ ≤ ⌊x−1
k
⌋+ ⌊y−1

k
⌋.

If we now write x = q1k + r1, y = q2k + r2 with 1 ≤ r1, r2 ≤ k, the reduced inequality
above fails to hold precisely when r1 + r2 ≥ k + 1. Given x, and hence r1, the choice
y = r2 = k + 1− r1 will thus ensure that equation (4) fails to hold provided x + y ≤ a− 1.
However, such a choice for y is not possible precisely when x ≥ qk + 1 = a − r, so that
equation (4) always holds in only these cases. Finally, it is easy to verify that equation (4)
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holds if x = a − 1. This shows S⋆ =
{

ha⌊x−1
k
⌋ + (h − 1)a + dx : a − r ≤ x ≤ a − 1

}

if
1 ≤ k ≤ a− 1.

If k ≥ a, equation (4) reduces to d
(

(x+ y) mod a
)

≤ d(x+ y) + (h− 1)a. Thus S⋆(A) =
{

(h − 1)a + dx : 1 ≤ x ≤ a − 1
}

, as claimed, since r = a − 1 and ⌊x−1
k
⌋ = 0 in this case.

This completes the proof.

Observation 7. The case when A consists of integers in arithmetic progression is the special
case h = 1 in Theorem 6. Moreover, the result in the first part of Theorem 4 follows directly
from Theorem 6.
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