Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.4

The Frobenius Problem for Modified Arithmetic Progressions

Amitabha Tripathi
Department of Mathematics
Indian Institute of Technology
Hauz Khas, New Delhi - 110016
India
atripath@maths.iitd.ac.in

Abstract

For a set of positive and relatively prime integers A, let $\Gamma(A)$ denote the set of integers obtained by taking all nonnegative integer linear combinations of integers in A. Then there are finitely many positive integers that do not belong to $\Gamma(A)$. For the modified arithmetic progression $A=\{a, h a+d, h a+2 d, \ldots, h a+k d\}, \operatorname{gcd}(a, d)=1$, we determine the largest integer $\mathrm{g}(A)$ that does not belong to $\Gamma(A)$, and the number of integers $\mathrm{n}(A)$ that do not belong to $\Gamma(A)$. We also determine the set of integers $\mathcal{S}^{\star}(A)$ that do not belong to $\Gamma(A)$ which, when added to any positive integer in $\Gamma(A)$, result in an integer in $\Gamma(A)$. Our results generalize the corresponding results for arithmetic progressions.

1 Introduction

Given a finite set $A=\left\{a_{1}, \ldots, a_{k}\right\}$ of positive integers with $\operatorname{gcd} A:=\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=1$, let $\Gamma(A):=\left\{a_{1} x_{1}+\cdots+a_{k} x_{k}: x_{i} \geq 0\right\}$ and $\Gamma^{\star}(A)=\Gamma(A) \backslash\{0\}$. It is well known that $\Gamma^{c}(A):=\mathbb{N} \backslash \Gamma(A)$ is finite. Although it was Sylvester [9] who first asked to determine

$$
\mathrm{g}(A):=\max \Gamma^{c}(A)
$$

and who showed that $\mathrm{g}\left(a_{1}, a_{2}\right)=\left(a_{1}-1\right)\left(a_{2}-1\right)-1$, it was Frobenius who was largely instrumental in giving this problem the early recognition, and it is after him that the problem
is named. Ramírez-Alfonsín's monograph on the Frobenius problem [5] gives an extensive survey. Related to the Frobenius problem is the problem of determining $\mathrm{n}(A):=\left|\Gamma^{c}(A)\right|$. As in the case of determining $\mathrm{g}(A)$, it was Sylvester who showed that $\mathrm{n}\left(a_{1}, a_{2}\right)=\frac{1}{2}\left(a_{1}-1\right)\left(a_{2}-1\right)$.

Tripathi [11] introduced the following variation of the Frobenius problem. Let

$$
\mathcal{S}^{\star}(A):=\left\{n \in \Gamma^{c}(A): n+\Gamma^{\star}(A) \subset \Gamma^{\star}(A)\right\} .
$$

Since $\mathrm{g}(A)$ is the largest integer in $\mathcal{S}^{\star}(A)$, the determination of $\mathcal{S}^{\star}(A)$ also provides the resolution of $\mathrm{g}(A)$. For the sake of convenience, we recall the following essential result regarding $\mathcal{S}^{\star}(A)$ from [11]. Fix $a \in A$, and let $\mathbf{m}_{\mathbf{C}}$ denote the smallest integer in $\Gamma(A) \cap \mathbf{C}$, where \mathbf{C} denotes a nonzero residue class modulo a. If \mathscr{C} denotes the set of all nonzero residue classes modulo a, then

$$
\begin{equation*}
\mathcal{S}^{\star}(A) \subseteq\left\{\mathbf{m}_{\mathbf{C}}-a: \mathbf{C} \in \mathscr{C}\right\} \tag{1}
\end{equation*}
$$

Moreover, if (x) denotes the residue class of x modulo a and \mathbf{m}_{x} the least integer in $\Gamma(A) \cap(x)$, then

$$
\begin{equation*}
\mathbf{m}_{j}-a \in \mathcal{S}^{\star}(A) \Longleftrightarrow \mathbf{m}_{j}-a \geq \mathbf{m}_{j+i}-\mathbf{m}_{i} \text { for } 1 \leq i \leq a-1 \tag{2}
\end{equation*}
$$

Observe that $\mathcal{S}^{\star}(A) \neq \emptyset$; in fact, $\mathrm{g}(A)$ is the largest integer in $\mathcal{S}^{\star}(A)$. A complete description of $\mathcal{S}^{\star}(A)$ would therefore lead to the determination of $\mathrm{g}(A)$.

The functions g and n are easily determined from the values of \mathbf{m}_{C} by Lemma 1. Brauer and Shockley [2] proved (i) and Selmer [8] proved (ii); a short proof of both results may be found in [10].

Lemma 1. ([2, 8]) Let $a \in A$. Then
(i) $\mathrm{g}(A)=\max _{\mathbf{C}} \mathbf{m}_{\mathbf{C}}-a$, the maximum taken over all nonzero classes \mathbf{C} modulo a;
(ii) $\mathrm{n}(A)=\frac{1}{a} \sum_{\mathbf{C}} \mathrm{m}_{\mathbf{C}}-\frac{1}{2}(a-1)$, the sum taken over all nonzero classes \mathbf{C} modulo a.

In cases when all but one integer in A have a nontrivial divisor, the following reduction formulae given by Lemma 2 is useful. Johnson [4] gave the reduction formulae for $\mathrm{g}(A)$ and Rødseth [7] for $\mathrm{n}(A)$; a short proof of both results may be found in [12].

Lemma 2. $([4,7])$ Let $a \in A$, let $d=\operatorname{gcd}(A \backslash\{a\})$, and define $A^{\prime}:=\frac{1}{d}(A \backslash\{a\})$.
(i) $\mathrm{g}(A)=d \cdot \mathrm{~g}\left(A^{\prime} \cup\{a\}\right)+a(d-1)$;
(ii) $\mathrm{n}(A)=d \cdot \mathrm{n}\left(A^{\prime} \cup\{a\}\right)+\frac{1}{2}(a-1)(d-1)$.

In this article, we determine $\mathrm{g}(A), \mathrm{n}(A)$ and $\mathcal{S}^{\star}(A)$ for the modified arithmetic progression $A=\{a, h a+d, h a+2 d, \ldots, h a+k d\}$ with $\operatorname{gcd}(a, d)=1$.

2 The case $A=\{a, h a+d, h a+2 d, \ldots, h a+k d\}$

For arithmetic progressions, Roberts [6] determined $\mathrm{g}(A)$, later simplified by Bateman [1], while Grant [3] determined $\mathrm{n}(A)$. A simple proof for both these results using Lemma 1 can be found in [10]. In fact, it is also possible to determine $\mathcal{S}^{\star}(A)$ in this case; see [11]. The result about $\mathrm{g}(A)$ and $\mathrm{n}(A)$ when A consists of terms in arithmetic progression can be modified or extended in many ways. One such modification is to consider $A=\{a, h a+$ $d, h a+2 d, \ldots, h a+k d\}$ with $\operatorname{gcd}(a, d)=1$ and $h, k \geq 1$. The result for $\mathrm{g}(A)$ is due to Selmer [8], but we provide a simpler proof that also leads to other results.

Henceforth let $A=\{a, h a+d, h a+2 d, \ldots, h a+k d\}$ with $\operatorname{gcd}(a, d)=1$ and $h, k \geq 1$. Then $\mathrm{g}(A)$ denotes the largest N such that

$$
\begin{equation*}
a x_{0}+(h a+d) x_{1}+(h a+2 d) x_{2}+\cdots+(h a+k d) x_{k}=a\left(x_{0}+h \sum_{i=1}^{k} x_{i}\right)+d\left(\sum_{i=1}^{k} i x_{i}\right)=N \tag{3}
\end{equation*}
$$

has no solution in nonnegative integers, and $\mathrm{n}(A)$ the number of such integers N.
Lemma 3. For each $x, 1 \leq x \leq a-1$, the least positive integer of the form given by equation (3) in the class $d x \bmod a$ is given by $h a\left(1+\left\lfloor\frac{x-1}{k}\right\rfloor\right)+d x$.

Proof. Let $\mathbf{m}_{d x}$ denote the least positive integer in the class ($d x$) modulo a. Then $\mathbf{m}_{d x}$ is the minimum value attained by the expression on the left in equation (3) subject to $\sum_{i=1}^{k} i x_{i}=x$ and each $x_{i} \geq 0$. If $x=q k+r, 0 \leq r \leq k-1$, the sum $x_{0}+h \sum_{i=1}^{k} x_{i}$ is minimized by choosing $x_{k}=q, x_{r}=1$ and $x_{i}=0$ for all other i, unless $r=0$ in which case we must choose $x_{r}=0$. Thus the minimum value for $x_{0}+h \sum_{i=1}^{k} x_{i}$ is $h(q+1)$ if $r \neq 0$ and $h q$ if $r=0$, which may be combined as $h\left(1+\left\lfloor\frac{x-1}{k}\right\rfloor\right)$. Hence $\mathbf{m}_{d x}=h a\left(1+\left\lfloor\frac{x-1}{k}\right\rfloor\right)+d x$.

Theorem 4. Let a, d, h, k be positive integers, with $\operatorname{gcd}(a, d)=1$. Then
(i) $\mathrm{g}(a, h a+d, h a+2 d, \ldots, h a+k d)=h a\left\lfloor\frac{a-2}{k}\right\rfloor+(h-1) a+d(a-1)$;
(ii) $\mathrm{n}(a, h a+d, h a+2 d, \ldots, h a+k d)=\frac{1}{2} h(a+r)\left(1+\left\lfloor\frac{a-2}{k}\right\rfloor\right)+\frac{1}{2}(a-1)(d-1)$, where $r \equiv a-2 \bmod k$.

Proof.

$$
\begin{align*}
\mathrm{g}(a, h a+d, h a+2 d, \ldots, h a+k d) & =\max _{\mathbf{C} \in \mathscr{C}} \mathbf{m}_{\mathbf{C}}-a \tag{i}\\
& =\max _{1 \leq x \leq a-1}\left(h a\left(1+\left\lfloor\frac{x-1}{k}\right\rfloor\right)+d x\right)-a \\
& =h a\left\lfloor\frac{a-2}{k}\right\rfloor+(h-1) a+d(a-1) .
\end{align*}
$$

(ii) Write $a-2=q k+r$, with $0 \leq r \leq k-1$. Then

$$
\begin{aligned}
\mathrm{n}(a, h a+d, h a+2 d, \ldots, h a+k d)= & \frac{1}{a} \sum_{\mathbf{C} \in \mathscr{C}} \mathbf{m}_{\mathbf{C}}-\frac{1}{2}(a-1) \\
= & \frac{1}{a} \sum_{x=1}^{a-1}\left(h a\left(1+\left\lfloor\frac{x-1}{k}\right\rfloor\right)+d x\right)-\frac{1}{2}(a-1) \\
= & h \sum_{x=0}^{a-2}\left(1+\left\lfloor\frac{x}{k}\right\rfloor\right)+\frac{1}{2} d(a-1)-\frac{1}{2}(a-1) \\
= & h(k(1+2+\cdots+q)+(q+1)(r+1)) \\
& +\frac{1}{2}(a-1)(d-1) \\
= & \frac{1}{2} h(a+r)\left(1+\left\lfloor\frac{a-2}{k}\right\rfloor\right)+\frac{(a-1)(d-1)}{2} .
\end{aligned}
$$

Observation 5. The case when A consists of integers in arithmetic progression is the special case $h=1$ in Theorem 4 .

Recall that $\mathcal{S}^{\star}(A):=\left\{n \in \Gamma^{c}(A): n+\Gamma^{\star}(A) \subset \Gamma^{\star}(A)\right\}$. Since $\mathrm{g}(A)$ is the largest element in $\mathcal{S}^{\star}(A)$, the set $\mathcal{S}^{\star}(A)$ is intimately linked with the Frobenius problem.

Theorem 6. Let a, d, h, k be positive integers, with $\operatorname{gcd}(a, d)=1$. Write $a-1=q k+r$, with $1 \leq r \leq k$. Then

$$
\mathcal{S}^{\star}(a, h a+d, h a+2 d, \ldots, h a+k d)=\left\{h a\left\lfloor\frac{x-1}{k}\right\rfloor+(h-1) a+d x: a-r \leq x \leq a-1\right\} .
$$

Proof. Fix $k \geq 1$, and let $A=\{a, h a+d, h a+2 d, \ldots, h a+k d\}$. By equation (1) and Lemma 3,

$$
\mathcal{S}^{\star}(A) \subseteq\left\{h a\left\lfloor\frac{x-1}{k}\right\rfloor+(h-1) a+d x: 1 \leq x \leq a-1\right\} .
$$

By equation (2), $h a\left\lfloor\frac{x-1}{k}\right\rfloor+(h-1) a+d x \in \mathcal{S}^{\star}$ if and only if for each y with $1 \leq y \leq a-1$,

$$
\begin{equation*}
h a\left\lfloor\frac{(x+y) \bmod a-1}{k}\right\rfloor+d((x+y) \bmod a) \leq h a\left(\left\lfloor\frac{x-1}{k}\right\rfloor+\left\lfloor\frac{y-1}{k}\right\rfloor\right)+(h-1) a+d(x+y) . \tag{4}
\end{equation*}
$$

Suppose $k \leq a-1$, and write $a-1=q k+r$ with $1 \leq r \leq k$. Then unless $x=a-1$, $x+y \leq a-1$ for at least one y. For such a y, equation (4) reduces to proving the inequality

$$
\left\lfloor\frac{x+y-1}{k}\right\rfloor \leq\left\lfloor\frac{x-1}{k}\right\rfloor+\left\lfloor\frac{y-1}{k}\right\rfloor .
$$

If we now write $x=q_{1} k+r_{1}, y=q_{2} k+r_{2}$ with $1 \leq r_{1}, r_{2} \leq k$, the reduced inequality above fails to hold precisely when $r_{1}+r_{2} \geq k+1$. Given x, and hence r_{1}, the choice $y=r_{2}=k+1-r_{1}$ will thus ensure that equation (4) fails to hold provided $x+y \leq a-1$. However, such a choice for y is not possible precisely when $x \geq q k+1=a-r$, so that equation (4) always holds in only these cases. Finally, it is easy to verify that equation (4)
holds if $x=a-1$. This shows $\mathcal{S}^{\star}=\left\{h a\left\lfloor\frac{x-1}{k}\right\rfloor+(h-1) a+d x: a-r \leq x \leq a-1\right\}$ if $1 \leq k \leq a-1$.

If $k \geq a$, equation (4) reduces to $d((x+y) \bmod a) \leq d(x+y)+(h-1) a$. Thus $\mathcal{S}^{\star}(A)=$ $\{(h-1) a+d x: 1 \leq x \leq a-1\}$, as claimed, since $r=a-1$ and $\left\lfloor\frac{x-1}{k}\right\rfloor=0$ in this case. This completes the proof.

Observation 7. The case when A consists of integers in arithmetic progression is the special case $h=1$ in Theorem 6. Moreover, the result in the first part of Theorem 4 follows directly from Theorem 6 .

3 Acknowledgments

The author wishes to thank the anonymous referee for his comments.

References

[1] P. T. Bateman, Remark on a recent note on linear forms, Amer. Math. Monthly, 65 (1958), 517-518.
[2] A. Brauer and J. E. Shockley, On a problem of Frobenius, J. Reine Angew. Math., 211 (1962), 215-220.
[3] D. D. Grant, On linear forms whose coefficients are in arithmetic progression, Israel J. Math., 15 (1973), 204-209.
[4] S. M. Johnson, A linear diophantine problem, Canad. J. Math., 12 (1960), 390-398.
[5] J. L. Ramírez Alfonsín, The Diophantine Frobenius Problem, Oxford Lecture Series in Mathematics and its Applications, No. 30, Oxford University Press, 2005.
[6] J. B. Roberts, Note on linear forms, Proc. Amer. Math. Soc., 7 (1956), 465-469.
[7] Ø. J. Rødseth, On a linear diophantine problem of Frobenius, J. Reine Angew. Math., 301 (1978), 171-178.
[8] E. S. Selmer, On the linear diophantine problem of Frobenius, J. Reine Angew. Math., 293/294 (1977), 1-17.
[9] J. J. Sylvester, Problem 7382, in W. J. C. Miller, ed., Mathematical Questions, with their Solutions, from the "Educational Times", 41 (1884), p. 21. Solution by W. J. Curran Sharp. Available at http://tinyurl.com/oe344rs.
[10] A. Tripathi, The coin exchange problem for arithmetic progressions, Amer. Math. Monthly, 101 (1994), 779-781.
[11] A. Tripathi, On a variation of the coin exchange problem for arithmetic progressions, Integers, 3 (2003), Article A01, 1-5.
[12] A. Tripathi, On a linear diophantine problem of Frobenius, Integers, 6 (2006), Article A14, 1-6.

