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Abstract

Given n ∈ Z, its arithmetic derivative n
′ is defined as follows: (i) 0′ = 1′ = (−1)′ =

0. (ii) If n = up1 · · · pk, where u = ±1 and p1, . . . , pk are primes (some of them possibly
equal), then

n
′ = n

k
∑

j=1

1

pj

= u

k
∑

j=1

p1 · · · pj−1pj+1 · · · pk.

An analogous definition can be given in any unique factorization domain. What about
the converse? Can the arithmetic derivative be (well-)defined on a non-unique fac-
torization domain? In the general case, this remains to be seen, but we answer the
question negatively for the integers of certain quadratic fields. We also give a sufficient
condition under which the answer is negative.
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1 The arithmetic derivative

Let n ∈ Z. Its arithmetic derivative n′ (A003415 in [4]) is defined [1, 6] as follows:

(i) 0′ = 1′ = (−1)′ = 0.

(ii) If n = up1 · · · pk, where u = ±1 and p1, . . . , pk ∈ P, the set of primes, (some of them
possibly equal), then

n′ = n
k

∑

j=1

1

pj
= u

k
∑

j=1

p1 · · · pj−1pj+1 · · · pk. (1)

If k = 1, we set p1 · · · pk−1pk+1 · · · pk = 1 in the last expression.

A few basic properties of n′ follow:

∀p ∈ P : p′ = 1,

∀n ∈ Z : (−n)′ = −n′,

∀m,n ∈ Z : (mn)′ = m′n+mn′.

The third equality is called the Leibniz rule. Moreover, f(n) = n′ is the only mapping Z → Z

having these properties. For details, see [6, Theorems 1 and 13].
Kovič [3, Proposition 1] studied how to extend f to Q(i) = {a+bi | a, b ∈ Q}. Ufnarovski

and Åhlander [6, Section 10] outlined how to define the arithmetic derivative on a unique
factorization domain (UFD from now on). We begin by performing this task in detail. To
that end, we follow the terminology of [2, Section 6.5].

Let D be a UFD. First, we must decide what atoms (irreducible elements) are “positive”.
Write P for a set of atoms of D such that every atom of D is associated with one and only
one element of P . Call P the set of positive atoms. Further, denote by U the set of units
of D.

Given a ∈ D, we define its arithmetic derivative a′ as follows: If a = 0 or a ∈ U , then
a′ = 0. Otherwise, there are unique (up to the ordering) p1, . . . , pk ∈ P (some of them
possibly equal) and u ∈ U such that

a = up1 · · · pk.
Then

a′ = u
k

∑

j=1

p1 · · · pj−1pj+1 · · · pk. (2)

To be precise, we should actually write a′
P
(or something like that) for the derivative of

a, since a′ depends on P . However, for the simplicity of notation, we will omit this practice
if there is no need to emphasize P .

The given definition implies the analogous equalities as above:

∀p ∈ P : p′ = 1,

∀v ∈ U , a ∈ D : (va)′ = va′,

∀a, b ∈ D : (ab)′ = a′b+ ab′.

Again, f(x) = x′ is the only mapping D → D with these properties.
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Example 1. Let D = Z. If P1 = P, we obtain the ordinary arithmetic derivative defined
above. For example, because 30 = 2 · 3 · 5, we have 30′

P1
= 30′ = 3 · 5 + 2 · 5 + 2 · 3 = 31.

Obviously, another selection of positive atoms results in a different derivative function. For
instance, if P2 = {2,−3, 5,−7, 11, . . . }, then 30 = (−1) · 2 · (−3) · 5 and 30′

P2
= (−1) · [(−3) ·

5 + 2 · 5 + 2 · (−3)] = 11.

Example 2. Let D be an arbitrary field F . Since all nonzero elements of F are units, then
P = ∅ and, hence, a′ = 0 for all a ∈ F .

Example 3. To give an example of a nontrivial derivative on the field Q, we define [6,
Theorem 14]

(m

n

)′

=
m′n−mn′

n2
. (3)

Here m,n ∈ Z, n 6= 0, and m′ and n′ are ordinary arithmetic derivatives on Z. An analogous
definition can be given in the division field of any UFD.

Let us summarize the above discussion.

Proposition 4.

(i) Let D be a UFD. The mapping f(a) = a′
P
defined on D by (2) is an arithmetic derivative.

It depends on the chosen set P of positive atoms.

(ii) The mapping g(a) = a′ defined on Q by (3) is an extension of the mapping f(a) = a′

defined on Z by (1). Similarly, (2) can be extended to the division field of D.

2 A problem and its partial answers

If a factorization domain (FD in the sequel) is not a UFD, we call it a non-unique factorization
domain (NUFD in the sequel). We saw above that the arithmetic derivative can be defined
on any UFD. What about the converse?

Problem 5. Is it possible to define an arithmetic derivative on some NUFD?

The next theorem gives a partial answer which is negative. In the following, we mostly apply
the same terminology and notation as in [5, Chapter 4].

Theorem 6. Let Dm be the integral domain of integers of Q(
√
m), where m ∈ Z\{1} is

squarefree (A005117 in [4]). If m satisfies

m 6≡ 1 (mod 4) andm < −2, (4)

then either 1−m or 4−m does not have a well-defined derivative as an element of Dm.
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Proof. Clearly, Dm is an FD, yet it is not a UFD, see [5, p. 93] or [7, Theorem (actually, in
Finnish: Lause) 4.23]. We modify and enhance the argument used in the latter reference.

Case 1. m ≡ 3 (mod 4). Then m is odd and m ≤ −5. Since 1−m is even and greater than
five, it is a composite number (when considered as a positive integer) and expressible as

1−m = p1 · · · pk, (5)

where k ≥ 2 and p1, . . . , pk ∈ P with 2 = p1 ≤ · · · ≤ pk. On the other hand,

1−m = (1−√
m)(1 +

√
m). (6)

We will see later that the factors of the right-hand sides of both (5) and (6) are atoms in Dm.
Next, if some of the pj’s in (5) are equal, we omit their repetition; let {pj1 , . . . , pjh} be the

set obtained so. Since the only units of Dm are ±1, see [5, Proposition 4.2] or [7, Lause 4.8],
the atoms pj1 , . . . , pjh , 1−

√
m, 1 +

√
m are pairwise non-associated.

Assume first that P is such that

pj1 , . . . , pjh , 1−
√
m, 1 +

√
m ∈ P . (7)

If (1−m)′ exists, then, by (6),

(1−m)′ = 1 +
√
m+ 1−√

m = 2.

On the other hand, (5) implies that

(1−m)′ = p2 · · · pk + · · ·+ p1 · · · pk−1 ≥ p2 + p1 ≥ 2 + 2 = 4

which contradicts the previous conclusion. So, (1−m)′ is not well-defined under (7).
Second, if (7) does not hold, we anyway have

±pj1 , . . . ,±pjh ,±(1−√
m),±(1 +

√
m) ∈ P

with an appropriate selection of signs. Hence a simple modification of the above argument
is sufficient to show that the derivative of 1−m is not well-definable.

Case 2. m ≡ 2 (mod 4). Now m is even and m ≤ −6. Thus, 4−m is also an even composite
number such that 4−m ≥ 10. So, again

4−m = p1 · · · pk, (8)

where k and p1, . . . , pk are as described above. On the other hand,

4−m = (2−√
m)(2 +

√
m). (9)

The factors of the right-hand sides of (8) and (9) are atoms in Dm, see below.
We continue similarly as in Case 1 only replacing 1±√

m with 2±√
m. So, assume first

that

pj1 , . . . , pjh , 2−
√
m, 2 +

√
m ∈ P . (10)
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If (4 −m)′ exists, then (4 −m)′ = 2 +
√
m + 2 −√

m = 4 by (9). However, we have k > 2
or pk > 2, since otherwise 4−m = 2 · 2 = 4 contradicting the assumption m ≤ −6. By (8),
we encounter a dilemma in both cases; if k > 2, then

(4−m)′ ≥ p2p3 + p1p3 + p1p2 ≥ 4 + 4 + 4 = 12,

and
(4−m)′ ≥ pk−1 + pk ≥ 2 + 3 = 5

if pk > 2. Consequently, (1 −m)′ is not well-defined under (10). If P does not satisfy this
condition, an analogous argument as at the end of Case 1 applies again.

To complete the proof, we still have to verify that the factors of the right-hand sides of
(5), (6), (8) and (9) are atoms. We do so by using the norm function. We begin by noticing
that Dm = Z(

√
m) = {x + y

√
m | x, y ∈ Z}, see [5, Theorem 3.2] or [7, Theorem 4.2]. An

element a = x + y
√
m ∈ Dm is rational if y = 0 and irrational if y 6= 0. If a is irrational,

then, recalling that m is negative, we have

N(a) = x2 −my2 = x2 + |m|y2 ≥ |m|.

If also b ∈ Dm is irrational, then

N(ab) = N(a)N(b) ≥ m2. (11)

Let c ∈ Dm so that c 6= 0,±1. If c = ab where a and b are irrational, then N(c) ≥ m2

by (11). Therefore, c is an atom if the following two conditions are satisfied: (i) c has no
rational atom divisor (except possibly ±c) and (ii) N(c) < m2.

Now choose any pj from (5) or (8). It clearly satisfies the condition (i). Since |m| ≥ 5,
we have

pj ≤ pk =
1

2
· 2pk ≤

1

2
p1 · · · pk ≤

1

2
(4−m) <

1

2
(5 + |m|) ≤ 1

2
· 2|m| = |m|.

Hence N(pj) = p2j < m2 and, consequently, also (ii) is satisfied. In other words, pj is an
atom in Dm.

Next, consider the factors of the right-hand sides of (6) and (9), i.e., q = t±√
m, where

t ∈ {1, 2}. If r, x, y ∈ Z so that t ± √
m = r(x + y

√
m), then ry = ±1 implying also that

r = ±1. Consequently, q satisfies (i). Also the condition (ii) is now satisfied because

N(1±√
m) < N(2±√

m) = 4−m < 5 + |m| ≤ 2|m| < m2.

So, these numbers are atoms also.

We conclude this section by stating a sufficient condition under which the answer to
Problem 5 is negative.

Theorem 7. Let D be an NUFD. Assume that a ∈ D can be factorized so that

a = p1p2 = q1q2,

where p1, p2, q1, q2 are atoms with {p1, p2} 6= {q1, q2}. Then a does not have a well-defined

derivative.
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Proof. If a′ exists, then, by the Leibniz rule,

a′ = p1 + p2 = q1 + q2.

But two elements are uniquely defined by their sum and product. To show this, simply note
that

{p1, p2} = {q1, q2} ⇐⇒ ∀x ∈ D : (x− p1)(x− p2) = (x− q1)(x− q2)

⇐⇒ ∀x ∈ D : x2 − (p1 + p2)x+ p1p2 = x2 − (q1 + q2)x+ q1q2

⇐⇒ p1 + p2 = q1 + q2 ∧ p1p2 = q1q2.

(To show the forward implication in the last equivalence, substitute x = 0 and x = 1.)
Therefore p1 + p2 6= q1 + q2 and our claim follows.

Now we encounter another problem arising from Theorem 7.

Problem 8. Does every NUFD contain an element a satisfying the assumption of Theo-

rem 7?

If the answer to this question is positive, then the answer to Problem 5 is negative.

3 Concluding remarks

We defined an arithmetic derivative on a UFD and asked in Problem 5 about the possibility
to do so also in some NUFD. If m 6≡ 1 (mod 4) and m < −2, the FD of integers of Q(

√
m) is

an NUFD. We proved in Theorem 6 that the answer is negative in this case. If m ≡ 1 (mod 4)
and m < 0, then this FD is an NUFD if and only if m 6= −3,−7,−11,−19,−43,−67,−163,
see [5, p. 93].

Surveying these m’s might be the next step. However, it is an essentially more laborious
task. Namely, assuming m ≡ 1 (mod 4) implies ([5, Theorem 3.2] or [7, Theorem 4.2]) that
Dm = {x + y(1 +

√
m)/2 | x, y ∈ Z} which already complicates the situation compared to

that in the proof of Theorem 6. More difficulties arise as the simple condition m < −2 is
replaced with the condition excluding the mentioned values of m. Studying the integers of
Q(

√
m) for m > 1 may be even more difficult since, according to our knowledge, it is not

completely understood which m’s yield a UFD and which do not.
Obviously, an alternative way to try to advance is to study NUFD’s different from those

described above.
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[3] J. Kovič, The arithmetic derivative and antiderivative, J. Integer Seq. 15 (2012),
Article 12.3.8.

[4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.

[5] I. N. Stewart and D. O. Tall, Algebraic Number Theory, Second Edition, Chapman and
Hall, 1987.
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