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Abstract

We define a class of Lyndon words, called Christoffel-Lyndon words.
We show that they are in bijection with n-tuples of relatively prime
natural numbers. We give a geometrical interpretation of these words.
They are linked to an algorithm of Euclidean type. It admits an ex-
tension to n-tuples of real numbers; we show that if the algorithm is
periodic, then these real numbers are algebraic of degree at most n
and that the associated multidimensional continued fraction converges
to these numbers.
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1 Introduction

Lyndon words are defined using a simple property: they are strictly smaller
than all of their nontrivial cyclic permutations, with respect to the lexico-
graphic order; equivalently (but non trivially) they are strictly smaller than
all of their nonempty proper right factors (suffixes), with respect to the al-
phabetical order1. Lyndon words can be recursively built as follows: given
two Lyndon words u < v, their product uv is a Lyndon word; conversely, it
can be shown that any Lyndon word, which is not a letter, factorizes into an
increasing product of two Lyndon words.

Among factorizations of a given Lyndon word into a product of two Lyn-
don words, special ones, called standard factorizations, have been considered
in the literature2. One considered by Chen-Fox-Lyndon [CFL], Lothaire [L],
takes the longest suffix which is a Lyndon word; the other, considered by
Širšov [S] and Viennot [V], takes the longest prefix which is a Lyndon word.
We call these two factorizations, the right and left standard factorizations.
These two factorizations are distinct in general.

Christoffel words are defined using a simple geometrical property: they
are words encoding integer paths with slope p/q, such that the region formed
by the path and the line with slope p/q encloses no integer points. Conse-
quently, Christoffel words are characterized by their slope, which is a non-
negative rational number, or ∞. Equivalently, they are mapped bijectively
on pairs (a, b) of relatively prime natural numbers.

It turns out that Christoffel words are very particular Lyndon words on
a two-letter alphabet: Christoffel words are those Lyndon words for which
the right and left standard factorization coincide (recursively) (see Theorem
3); this was proved in an unpublished work by the first author [M]. The
present work started from a very simple idea, that of considering the unique
recursive decomposition of Lyndon words over any an alphabet in a quest
for generalizing Christoffel words to higher dimensions. We thus consider
Christoffel-Lyndon words, defined recursively as those Lyndon words admit-
ting a unique standard factorization into a product of two Christoffel-Lyndon
words (see Section 2.3).

1In comparing cyclic permutations of a word, the lexicographical order suffices; but in
order to compare a word and its suffixes, one needs the alphabetical order.

2The motivation is to obtain by iteration a complete parenthesization of the Lyndon
word, that is, a nonassociative expression; this in turn is motivated by the construction of
Lie polynomials (giving a basis of the free Lie algebra), and of group commutators.
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As said before, Christoffel words are naturally in bijection with pairs of
relatively prime pairs of natural numbers. Surprisingly enough, the bijection
between Christoffel words and pairs of relatively prime numbers generalizes
to any alphabet (Theorem 4); for a three-letter alphabet, this result was
proved by the first author [M].

To prove this we have to generalize the classical Euclidean algorithm
(n = 2) and the Euclidean algorithm of [M] (n = 3) to arbitrary n-tuples of
natural integers, see Section 2.5. Similar algorithms have been considered in
the realm of multidimensional continued fractions [Be, Sc], but our algorithm
seems to be new. It is a two-case algorithm, which allows us to generalize
the Stern-Brocot tree (n = 2). In one of its instances, our tree is an infinite
binary tree whose vertices are all nonvanishing (n− 1)-tuples of nonnegative
rational numbers (see Figure 5 for n = 3).

We introduce two substitutions on n letters, which for n = 2 are classi-
cal, and for n = 3 were considered in [M]; they are automorphisms of the
free group. They are related to the algorithm in that the inverses of their
incidence matrix are the two operations of the algorithm. The algorithm and
the substitutions are used to prove that the commutative image of words
maps Christoffel-Lyndon words bijectively onto n-tuples of relatively prime
natural numbers (Theorem 4). One tool is a theorem of Richomme [R],
that characterizes Lyndon morphisms (substitutions that preserve Lyndon
words), Theorem 1. A consequence of the theorem is a formula allowing to
count Christoffel-Lyndon words, which extends the classical one for Christof-
fel words (which is essentially the Euler totient function).

Christoffel words may be defined geometrically, as said before; equiva-
lently, the Christoffel word of slope r encodes a discrete path in the plane
that stays below the half-line of slope r, but maximizes the slope at each
step. We may define a multidimensional slope in a similar way; these slopes
are in bijection with Christoffel-Lyndon words, and inherit the alphabetic
order of the latter. We then show that then Christoffel-Lyndon words have
the same geometrical interpretation, Theorem 10.

To each n-tuple of reals numbers (a1, . . . , an), which are not of rank 1 over
Q, the algorithm associates an infinite word. The finite prefixes of this word
allow to compute, by a process familiar in the theory of multidimensional
continued fractions, a sequence ((α1(k), . . . , αn(k)))k≥0 of n-tuples of integers,
generalizing the convergents of usual continued fractions. Guided by this
classical case, one expects that, for any i = 1, . . . , n, the limit when k tends
to ∞ of the quotients αi(k)/α1(k) is equal to ai/a1. We could prove this
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only in the special case where the infinite word is periodic; in this case, we
also obtain that the numbers ai/a1 are in a number field of degree at most n,
Theorem 11. This is of course an analogue of one implication of the Lagrange
theorem for continued fractions. Our proof uses the Perron-Frobenius theory.

2 Christoffel-Lyndon words and tuples of rel-

atively prime natural numbers

2.1 Lyndon words and standard factorizations

A Lyndon word is a word on a totally ordered alphabet which is the smallest
among all its cyclic conjugates, ordered alphabetically. See [L] Chapter 5.
Formally, w is a Lyndon word if and only if for all nontrivial factorization
w = uv, one has w < vu. It is equivalent that for each such factorization
w < v, see [L] Prop. 5.1.2.

Note that each letter is a Lyndon word. Let w be a Lyndon word which
is not a letter. Let v be its longest proper suffix which is a Lyndon word; we
call the corresponding factorization w = uv the right standard factorization
of w; it is known that then u, v are Lyndon words and that u < v (see Prop.
5.1.3 in [L] , where it is called standard factorization).

Similarly, let now u be the longest proper prefix of w which is a Lyndon
word; we call the corrresponding factorization w = uv the left standard
factorization of w; it is known that then u, v are Lyndon words and that
u < v (see [L] exercise 5.1.6, or [V] page 15).

We note that if w is a Lyndon word with left or right standard factoriza-
tion w = w′w′′, then

w′ < w′′. (1)

Moreover, let w = w′w′′ be a Lyndon word written as the product of two
Lyndon words. Then this factorization is the right standard factorization of
w if and only if Eq.(1) holds and if either w′ is a letter, or w′ has the right
standard factorization w′ = (w′)′(w′)′′ with

(w′)′′ ≥ w′′. (2)

See [L] Prop. 5.1.4. Similarly, this factorization is the left standard
factorization of w if and only if Eq.(1) holds and if either w′′ is a letter, or if
w′′ has the left standard factorization w′′ = (w′′)′(w′′)′′ with
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w′ ≥ (w′′)′. (3)

See [V] page 48.

2.2 Lyndon morphisms

Let f : X∗ → Y ∗ be a monoid homomorphism, where X, Y are two finite
totally ordered alphabets. It is called order-preserving if u ≤ v implies
f(u) ≤ f(v) for any words u, v in X∗, where ≤ is the alphabetic order.
Moreover, f is called a Lyndon morphism if for any Lyndon word w in X∗,
f(w) is a Lyndon word.

We use several results due to Gwenaël Richomme. He shows first that
if f is nonempty (that is, the image of f is not the empty word of Y ∗) and
order-preserving, then f is injective (Lemma 3.2 in [R]). In particular, a
nonempty order-preserving morphism sends any letter onto some nonempty
word, so that k in (i) below is well-defined.

Theorem 1. (i) [R] (Proposition 3.3) A nonempty morphism f : X∗ → Y ∗

is order-preserving if and only if for any letter b in X, distinct from its
largest letter z, one has: f(bzk) < f(c), where c is the letter next to b in X
and where k is the smallest natural number such that the length of f(bzk) is
at least equal to that of f(c).

(ii) [R] (Proposition 4.2) A homomorphism f : X∗ → Y ∗ is a Lyndon
morphism if and only if it is order-preserving and if it sends each letter onto
a Lyndon word.

We consider two endomorphisms of the free monoid X∗, with X = {x1 <
. . . < xn}, n ≥ 2. They are denoted L and R and defined as follows:

• L sends the n-tuple (x1, . . . , xn) onto (x1, x1xn, x2, ..., xn−1);

• R sends the n-tuple (x1, . . . , xn) onto (x1xn, x2, ..., xn).

Corollary 2. The endomorphisms L and R are Lyndon morphisms, which
preserve left and right standard factorizations.

Proof. The fact that L and R are Lyndon morphisms follows by inspection
from the previous theorem (for L one has to distinguish the cases n = 2 and
n ≥ 3).
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Note that x1 is the smallest Lyndon word and xn the largest.
Let f = L or f = R. Suppose that w = w′w′′ is a Lyndon word with its

right standard factorization. If w′ is not a letter, then w′ = uv (right standard
factorization) and we have v ≥ w′′ by Eq.(2). By induction on the length of
w, we know that f(w′) has the right standard factorization f(u)f(v). Since
f is a Lyndon morphism, f(w′) < f(w′′) by Eq.(1) and these two words are
Lyndon words; moreover, we have f(v) ≥ f(w′′) and this implies by Eq.(2)
that f(w) has the right standard factorization f(w) = f(w′)f(w′′). If w′

is a letter, then either f(w′) is a letter so that we have still the same right
standard factorization; or f(w′) is not a letter, in which case f(w′) = x1xn,
so that, since xn ≥ f(w′′), we have still the same right standard factorization.

The proof for left standard factorizations is quite similar.

2.3 Christoffel-Lyndon words

We define recursively Christoffel-Lyndon words3: a letter is a Christoffel-
Lyndon word; otherwise, a Lyndon word w is a Christoffel-Lyndon word if
its left and right standard factorizations coincide, say w = uv, and if moreover
u, v are both Christoffel-Lyndon words.

Note that this recursive definition cannot be replaced by the condition
that only the left and right standard factorizations of w coincide: an example
of this is the word w = aabaabb, which satisfies the latter condition (w =
aab.aabb is its left and right standard factorization), but is not Christoffel-
Lyndon, since the right factor aabb does not satisfy this condition.

If w is a Christoffel-Lyndon word, then we call standard factorization of
w its left and right standard factorization, which are identical. We denote it
by w = w′w′′. We note that

w′ < w′′. (4)

If w′ is not a letter, then
(w′)′′ ≥ w′′. (5)

And if w′′ is not a letter, then

w′ ≥ (w′′)′. (6)

3They are called équilibrés in [M], and balanced2 in [BLRS]; since the word ”balanced”
has another precise meaning in classical Combinatorics on Words, we prefer to adopt
another terminology.
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Theorem 3. [M] On a totally ordered two-letter alphabet, Christoffel-Lyndon
words and Christoffel words coincide.

Lemma 1. Let w be a Christoffel-Lyndon word on the alphabet {a < b}, with
standard factorization w = w′w′′. If w′ = a, then w = anb. If w′′ = b, then
w = abn.

Note that the words anb and abn are Christoffel-Lyndon words for any
alphabet containing the letters a, b with a < b.

Proof. Suppose that w′ = a. If w′′ is a letter, then we must have w′′ = b by
Eq.(4), which proves the result; if w′′ is not a letter, since any Lyndon word
is either b or begins by a, we must have by Eq.(6), (w′′)′ = a; by induction,
w′′ = anb and we conclude the proof in this case.

Suppose that w′′ = b. Then the proof is similar, using Eq.(5).

Proof. (of Th.3) We show first that if w is a Christoffel word written as
a product of two Lyndon words, then this factorization is unique. Indeed,
since w is a factor of some Sturmian sequence, so are the two Lyndon words.
But by Definition 2 and Theorem 3.2 in [BdL], a Lyndon word which is
the factor of some Sturmian sequence is a Christoffel word. Hence the two
factors are Christoffel words. Next, in [BL], Theorème 1, the authors show
that each Christoffel word, which is not a letter, is uniquely the product of
two Christoffel words (see also [BdL] Corollary 3.2). Hence our factorization
above is unique. In particular the two standard factorizations of w coincide;
moreover the two factors are Christoffel words, so are inductively Christoffel-
Lyndon words, and we conclude that w is a Christoffel-Lyndon word.

Conversely, let w be a Christoffel-Lyndon word on the alphabet {a < b}.
We claim that w is of the form L(u) or R(u), for some Christoffel-Lyndon
word u, where L (resp. R) is the substitution sending (a, b) onto (a, ab)
(resp. onto (ab, b)). This will imply that each Christoffel-Lyndon word is a
Christoffel word; indeed, either w is a letter, and it is is clear; or w is not a
letter and then, supposing w = L(u), we cannot have u = a, so that u, not
being a proper power of a, must have the letter b and be shorter than w; if
w = R(u) the argument is similar. By induction, u is a Christoffel word, and
so is w, since, as is well-known (see Cor.2.2 in [BLRS]), L and R preserve
Christoffel words.

We do not prove the claim here, since it is a particular case of Lemma 5,
which will be proved independently.
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2.4 n-tuples of relatively prime natural numbers

The following result is well-known when the alphabet X has 2 letters (see
[B, BL]), and has been obtained for a 3-letter alphabet in [M]. Recall that
the commutative image of a word w ∈ X∗, X = {x1, . . . , xn}, is the n-tuple
(ni)1≤i≤n ∈ Nn, where ni is the number of occurrences of the letter xi in w.

Theorem 4. Let X be the totally ordered alphabet {x1 < · · · < xn}. The
mapping from the set of Christoffel-Lyndon words on X into Nn, associating
to w its commutative image, is a bijection onto the set of n-tuples of relatively
prime natural numbers.

The proof of the theorem will be done in Section 2.7.

Corollary 5. The number of Christoffel-Lyndon words of length l on an
alphabet of cardinality n is equal to

∑
d|l µ(d)

(
n−1+l/d
n−1

)
.

In particular, it follows that, as is well-known, the number of Christoffel
words of length 1 is 2, and when l > 1, it is φ(l), the number of integers
i, relatively prime to l, with 1 ≤ i ≤ l. Indeed, φ(d) =

∑
d|l µ(d)l/d =∑

d|l µ(d)(1 + l/d) =
∑

d|l µ(d)
(
1+l/d

1

)
; the first equality is well-known, and

the second follows from
∑

d|l µ(d) = 0.

Proof. Let ml denote this number. It is by Theorem 4 equal to the number
of n-tuples of relatively prime natural numbers of sum l. By adding 1 to each
component, we see that the number of n-tuples of natural numbers and of
sum l is equal to the number of compositions4 of length n and of sum l + n.
It is well-known that this number is equal to

(
l+n−1
n−1

)
. An n-tuple of natural

numbers of sum l has a gcd d, which is a divisor of l. Hence, we obtain(
l + n− 1

n− 1

)
=
∑
d|l

ml/d =
∑
d|l

md.

By Möbius inversion, we obtain the corollary.

For example, for an alphabet of cardinality 3, we have the following val-
ues of ml, for l = 1, . . . , 10: 3,3,7,9,18,15,33,30,45,42. The corresponding
Christoffel-Lyndon words on the alphabet {x < y < z} are, up to length 4,

x, y, z, xy, xz, yz, xxy, xxz, xyy, xzy, xzz, yyz, yzz,

4A composition is a tuple of positive integers; compositions of length n and of sum k
are in bijection with subsets of {1, . . . , k − 1} of cardinality n− 1.
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xxxy, xxxz, xyxz, xyyy, xzyy, xzzy, xzzz, yyyz, yzzz.

2.5 An Euclidean algorithm for n-tuples of natural num-
bers

We assume that n ≥ 2. We define a deterministic rewriting system on the
set of n-tuples of real numbers by the following two rules:

• Rule L: if a1 > an, (a1, . . . , an)→L (a1 − an, an, a2, . . . , an−1);

• Rule R: if a1 ≤ an, (a1, . . . , an)→R (a1, . . . , an−1, an − a1).

Lemma 2. Suppose that (a1, . . . , an) is an n-tuple of natural numbers with
a1 > 0. Let d be their greatest common divisor. Then the rewriting system
produces the final n-tuple (d, 0, . . . , 0). If moreover ai > 0 for at least one
i ∈ {2, . . . , n}, then the n-tuple obtained just before the first occurrence of
(d, 0, . . . , 0) in the rewriting system is (d, 0, . . . , 0, d).

Note that the rewriting system stabilizes on the n-tuple (d, 0, . . . , 0), since
only rule L can be applied to it.

Proof. In the rewriting system, note that if the first component of an n-tuple
is positive, it remains positive. This implies that applying rule R always
decreases the sum of the n-tuple. Moreover, if (a1, . . . , an) 6= (a1, 0, . . . , 0),
and if rule L is applied, then it is applied several times until the sum decreases
(the exact number of times being n + 1 −max{i, ai 6= 0}). This proves the
first assertion, since the gcd never changes.

Now suppose that ai > 0 for at least one i ∈ {2, . . . , n}. Let (b1, . . . , bn)
be the n-tuple preceding (d, 0, . . . , 0) in the rewriting system. If we had
(b1, . . . , bn) →L (d, 0, . . . , 0), then (b1 − bn, bn, b2, . . . , bn−1) = (d, 0, . . . , 0),
so that (b1, . . . , bn) = (d, 0, . . . , 0), which contradicts the assumption of the
lemma. Thus we have (b1, . . . , bn)→R (d, 0, . . . , 0), so that (b1, . . . , bn−1, bn−
b1) = (d, 0, . . . , 0). Thus b1 = d, b2 = . . . = bn−1 = 0 and bn = d, which
proves the lemma.

2.6 Two substitutions

We consider the two endomorphisms L,R of the free monoid {x1 < · · · < xn}∗
introduced in Section 2.2.
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These two substitutions are related to the rewriting system of the previ-
ous section. In order to see this, given a word W in the free monoid gener-
ated by L and R, we denote W the substitution which is the corresponding
composition of the substitutions L and R; for example, LR denotes the map-
ping L ◦ R with LR(x1) = L(x1xn) = x1xn−1, whereas RL maps x1 onto
RL(x1) = R(x1) = x1xn.

For an n-tuple (a1, . . . , an) of real numbers, we write (a1, . . . , an) →W

(b1, . . . , bn) if (b1, . . . , bn) is the n-tuple of real numbers obtained by applying
the rewriting rules detemined by W , by taking the letters of W from left
to right; for example, (a1, . . . , an) →LR (b1, . . . , bn) means (a1, . . . , an) →L

(c1, . . . , cn) →R (b1, . . . , bn), so that (c1, . . . , cn) = (a1 − an, an, a2, . . . , an−1)
and (b1, . . . , bn) = (c1, . . . , cn−1, cn − c1) = (a1 − an, an, a2, . . . , an−2, an−1 −
a1 + an).

Lemma 3. Let W ∈ {L,R}∗ and u, v ∈ {x1, . . . , xn}∗ be such that v = W (u)
and |u|x1 > 0. Then (|v|x1 , . . . , |v|xn)→W (|u|x1 , . . . , |u|xn).

Proof. It is easy to see that if x1 appears in a word, then it also appears in
the image of L,R, and hence of any of their products.

We prove the lemma by induction on the length of the word W . If W is
the empty word, there is nothing to prove. Suppose that W = TW ′, where
T = L or R. Define v′ = W ′(u). Then by induction (|v′|x1 , . . . , |v′|xn) →W ′

(|u|x1 , . . . , |u|xn).
Thus it remains to show that (|v|x1 , . . . , |v|xn)→T (|v′|x1 , . . . , |v′|xn). We

have v = W (u) = T (W ′(u)) = T (v′). Suppose that T = L. Then by
definition of L, |v|x1 = |v′|x1 + |v′|x2 , |v|x2 = |v′|x3 ,....,|v|xn−1 = |v′|xn , |v|xn =
|v′|x2 . Thus, one obtains that (|v|x1 , . . . , |v|xn) →L (|v′|x1 , . . . , |v′|xn), since
|v|x1 > |v|xn , because |v′|x1 > 0.

Similarly, if T = R, then |v|xi = |v′|xi for i = 1, . . . , n − 1 and |v|xn =
|v′|x1 + |v′|xn . Hence (|v|x1 , . . . , |v|xn) →R (|v′|x1 , . . . , |v′|xn) since |v|x1 =
|v′|x1 ≤ |v|xn .

Lemma 4. The substitutions L and R send Christoffel-Lyndon words onto
Christoffel-Lyndon words and preserve the standard factorization. Moreover
they preserve also Christoffel-Lyndon words by inverse image.

Proof. By Corollary 2, these two substitutions are Lyndon morphisms. They
send each letter onto a Christoffel-Lyndon word, as is easily checked. If
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w = w′w′′ is a Christoffel-Lyndon word with its standard factorization, then,
for f = L or R, the Lyndon word f(w) has the left and right standard
factorization f(w′)f(w′′), by Corollary 2; hence f(w) is a Christoffel-Lyndon
word by induction on the length.

Now, suppose that f(w) is a Christoffel-Lyndon word. Let w = uv be a
nontrivial factorization. Since f is injective, f(w) = f(u)f(v) is a nontrivial
factorization. Thus f(w) < f(v)f(u) = f(vu) and we conclude that w < vu
since f is order-preserving and the order is total. Thus w is a Lyndon word.
It remains to prove that it is a Christoffel-Lyndon word. Let w = w′w′′ be its
left or right standard factorization. Then f(w) = f(w′)f(w′′) is the standard
factorization of f(w) since the latter is a Christoffel-Lyndon word and since
f preserves left and right standard factorizations. Thus the left and right
standard factorization of w coincide. Since w′ and w′′ are shorter than w, we
conclude by induction that w is a Christoffel-Lyndon word, because f(w′)
and f(w′′) are Christoffel-Lyndon words.

Lemma 5. Let w be a Christoffel-Lyndon word on the alphabet {x1 < · · · <
xn}.

(i) Then w is in the image of either L or R.
(ii) If w contains the letter x1 and at least another letter, then there exists

W ∈ {L,R}∗ such that w = W (x1xn).

Note that we have n ≥ 2.

Proof. We use several simple facts, which are easily established, using the
fact that the image of L (resp. R) is the submonoid generated by x1xn and
the letters xi, i = 1, . . . , n− 1 (resp. i = 2, . . . , n):

• Each letter 6= xn is in the image of L;

• Each letter 6= x1 is in the image of R;

• If x1 does not appear in u, then L(u) is in the image of R (since L
maps {x2, . . . , xn} into {x1xn, x2, . . . , xn−1}).

(i) If w is a letter, w is clearly in the image of L or R.
Suppose that w has the standard factorization w = w′w′′. By induction

on the length, w′, w′′ are in the image of L or R. It is enough to show that
they are image of the same substitution R or L. So we have only to consider
the two cases A. and B. below. We use the fact that L and R preserve the
standard factorization.
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A. w′ = L(u) and w′′ = R(v). We have several cases and subcases.
Case 1: x1 appears in v.
1.1: v = x1. Then w′′ = x1xn, hence w′′ = L(x2) and we are done.
1.2: v begins by x1 and has length at least 2. Then v′ begins by x1, so

that (w′′)′ begins by x1xn.
1.2.1: x1 appears in u. Then either u = x1 and w′ = x1; or u begins by

x1xi, i = 1, . . . , n and then w′ begins by x1xj, j = 1, . . . , n− 1; in both cases
w′ < (w′′)′, contradicting Eq.(6).

1.2.2: x1 does not appear in u, so that w′ is in the image of R and we are
done.

Case 2: x1 does not appear in v. Thus v = w′′ is in the free monoid
generated by x2, . . . , xn.

2.1: x1 does not appear in u. Then L(u) is in the image of R and we are
done.

2.2: x1 appears in u. Thus w′ begins by x1.
2.2.1: w′′ is of length > 1, then (w′′)′ begins by xi, i = 2, . . . , n; thus

w′ < (w′′)′, contradicting Eq.(6).
2.2.2: w′′ is a letter.
2.2.2.1: w′′ 6= xn. Then w′′ is in the image of L and we are done.
2.2.2.2: w′′ = xn.
2.2.2.2.1: w′ is not a letter. Then (w′)′′ begins by xi, i = 1, . . . , n − 1:

indeed, u is not a letter, otherwise, since w′ = L(u) is not a letter, we must
have u = x2, contradicting the fact that x1 appears in u; then u′′ begins
by some letter x1, . . . , xn, so that (w′)′′ = L(u′′) begins by x1, . . . , xn−1.
Therefore (w′)′′ < w′′ and we reach a contradiction with Eq.(5).

2.2.2.2.2: w′ is a letter. Then w′ = x1 (since w′ = L(u) and x1 appears
in u) and w = w′w′′ = x1xn is in the image of L.
B. w′ = R(u) and w′′ = L(v).

Case 1: x1 appears in v.
1.1: v is not a letter. Then v begins by x1xi, i = 1, . . . , n, so that w′′

begins by x1xi, i = 1, . . . , n− 1; since w′ begins by x1xn or xj, j = 2, . . . , n,
we have w′′ < w′, a contradiction with Eq.(4).

1.2: v is a letter. Then v = x1; in this case w′′ = x1 ≤ w′, a contradiction
again.

Case 2: x1 does not appear in v. Then w′′ is in the image of R.
(ii) We know that w = R(u) or w = L(u).

Case 1: w = R(u). Since w contains x1, u contains x1.
1.1: u = x1. Then w = x1xn and we are done.
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1.2: u 6= x1. Since u is not a nontrivial power of x1 (otherwise w is not
a Lyndon word), u contains another letter, and we conclude by induction on
the length, because u is shorter than w and u is a Christoffel-Lyndon word
by Lemma 4.

Case 2: w = L(u).
2.1: u does not contain x1. Then w is in the image of R, which takes us

to Case 1.
2.2: u contains x1. Since w 6= x1, u contains another letter.
2.2.1: u contains x2. Then u is shorter than w, and we conclude by

induction.
2.2.2: u does not contain x2. Let i be maximum such that xi appears in u.

Then u ∈ {x1, x3, . . . , xi}∗, hence u = Ln−i(v) with v ∈ {x1, x3+n−i, . . . , xn}∗
and x1, xn appear in v.

2.2.2.1: v = x1xn. Then w = L1+n−i(x1xn) and we are done.
2.2.2.2: v = R(m) and we are done by Case 1.
2.2.2.3: v = L(m) and v /∈ Im(R). Then x1 appears in m (otherwise v is

in the image of R) and x2 appears in m, since xn appears in v; then by Case
2.2.1, m = W (x1xn) for some W ∈ {L,R}∗, thus w = L1+n−iW (x1xn) and
we are done.

2.7 Proof of Theorem 4

Consider the set Tn of n-tuples (a1, . . . , an) of relatively prime natural num-
bers such that a1 > 0 and that ai > 0 for some i = 2, . . . , n. It is enough
(by induction on n) to define a bijection from Tn onto the set of Christoffel-
Lyndon words w containing the letter x1 and at least another letter, such
that if w corresponds to (a1, . . . , an), then |w|xi = ai. This bijection will be
described by an algorithm.

The algorithm takes as input an n-tuple in Tn and outputs a Christoffel-
Lyndon word w as above; this defines the mapping and shows that it is
injective. Then we show that, for any Christoffel-Lyndon word w contain-
ing the letter x1 and at least another letter, to the input (a1, . . . , an) with
ai = |w|xi corresponds the output w itself. This shows that the mapping is
surjective.

The algorithm is the rewriting system of Section 2.5. It takes as input
an n-tuple t = (a1, . . . , an) in Tn; by Lemma 2, there exists a unique W ∈
{L,R}∗ such that t→W (1, 0, . . . 0, 1) and we define w = W (x1xn). Then by
Lemma 3, we have (|w|x1 , . . . , |w|xn) →W (1, 0, . . . 0, 1). Now, the rewriting

13



I

L

LL

LLL LLR

LR

LRL LRR

R

RL

RLL RLR

RR

RRL RRR

Figure 1: The tree of L,R-words

system is clearly reversible (in the sense that t →W u and t′ →W u imply
t = t′, see Lemma 11, which will be proved independently), so that we must
have t = (|w|x1 , . . . , |w|xn). Furthermore, x1xn is a Christoffel-Lyndon word,
and so is w too, by Lemma 4.

Consider now any Christoffel-Lyndon word containing the letter x1 and
at least another letter. Then by Lemma 5, there exists W ∈ {L,R}∗ such
that W (x1xn) = w. Then, as above, (|w|x1 , . . . , |w|xn) →W (1, 0, . . . 0, 1),
which shows that the algorithm outputs w on the input (|w|x1 , . . . , |w|xn).

2.8 Trees

The previous section shows that the five infinite binary trees which are de-
fined below are essentially identical.

Define first the tree whose nodes are the words in L and R, in such a way
that this word indicates the path from the root to the node, with L = ”left”
and R = ”right”. See Figure 1, where n = 3, as in the three other figures,
where the alphabet is {a < b < c}.

The second tree is obtained from the latter by interpreting each word
W ∈ {L,R}∗ as the corresponding product of the substitutions L,R, written
as the n-tuple (W (x1), . . . ,W (xn)). We call this tree the tree of standard
n-tuples. See Figure 2. This tree generalizes the Christoffel tree of [BdL],
page 200, in the case n = 2. Moreover, it has been defined for n = 3 in [M].

The third tree is obtained from the latter by replacing each n-tuple
(w1, . . . , wn) by the word w1wn = W (x1xn), which is a Christoffel-Lyndon
word. We call this tree the tree of Christoffel-Lyndon words. See Figure 3,
where dotted edges have been added for later use.

The fourth tree is obtained by replacing in the latter each word w by the
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a, b, c

a, ac, b

a, ab, ac

a, a2c, ab a2c, ab, ac

ab, ac, b

ab, ab2, ac ab2, ac, b

ac, b, c

ac, ac2, b

ac, acb, ac2acb, ac2, b

ac2, b, c

ac2, ac3, b ac3, b, c

Figure 2: The tree of standard triples

ac

ab

a2c

a2b

a3c a2bab

a2cac

a2cab a2cacac

ab2

abac

abab2 abacac

ab3

ab2ac ab4

ac2

acb

acac2

acacb acac2ac2

acb2

acbac2 acb3

ac3

ac2b

ac2ac3 ac2b2

ac4

ac3b ac5

a b

c

Figure 3: The tree of Christoffel-Lyndon words
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1, 0, 1

1, 1, 0

2, 0, 1

2, 1, 0

3, 0, 1 3, 2, 0

3, 0, 2

3, 1, 1 4, 0, 3

1, 2, 0

2, 1, 1

2, 3, 0 3, 1, 2

1, 3, 0

2, 2, 1 1, 4, 0

1, 0, 2

1, 1, 1

2, 0, 3

2, 1, 2 3, 0, 5

1, 2, 1

2, 1, 3 1, 3, 1

1, 0, 3

1, 1, 2

2, 0, 5 1, 2, 2

1, 0, 4

1, 1, 3 1, 0, 5

1,0,0 0,1,0

0,0,1

Figure 4: The tree of 3-tuples

0, 1

1, 0

0, 1/2

1/2, 0

0, 1/3 2/3, 0

0, 2/3

1/3, 1/3 0, 3/4

2, 0

1/2, 1/2

3/2, 0 1/3, 2/3

3, 0

1, 1/2 4, 0

0, 2

1, 1

0, 3/2

1/2, 1 0, 5/3

2, 1

1/2, 3/2 3, 1

0, 3

1, 2

0, 5/2 2, 2

0, 4

1, 3 0, 5

Figure 5: The generalized Stern-Brocot tree for nonvanishing pairs of non-
negative rational numbers

n-tuple (|w|x1 , . . . , |w|xn). We call this tree the tree of n-tuples. See Figure
4. It generalizes the Stern-Brocot tree. Note that Tn is the set of nodes of
this tree.

The fifth tree may be called a generalized Stern-Brocot tree, since it has
as vertices all nonvanishing (n− 1)-tuples of nonnegative rational numbers.
It is obtained from the tree of n-tuples by replacing each (a1, . . . , an) by
(a2/a1, . . . , an/a1). See Figure 5 for the case n = 3.

Consider the same node in these trees, with labels W , w and t in respec-
tively the first, third and fourth trees. Then we remark that W (x1xn) = w
and t→W (1, 0, . . . , 0, 1); this follows indeed from the previous section.

Given a node N in any such tree, let the path from the root to N be
W = UV with V = LRi1LRi2 · · ·LRik . Let N ′ be the node attained after U
on this path. Then N ′ is called the upward k-th right node from N . Note
that in going upwards, ”left” and ”right” turns are interchanged with respect
to downward paths, which explains the form of V above. Similarly, we define
the upward k-th left node from N .

For example, in the tree of Christoffel-Lyndon words (Figure 3) with
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n = 3, the node abacac has abac as first upward left node and ac as second
upward right node.

By abuse of notation, the path may go higher than the root, by using the
dotted edges of Figure 3 or 4. As an example, the node acb has ac as first
upward left node and b as second upward right node.

We have not yet formally defined the supplementary vertices and the
dotted edges for general n and do it as follows: in the tree of Christoffel-
Lyndon words, there is one vertex x1 north-west of the root, and north-east,
the vertices are successively x2, . . . , xn. For the tree of n-tuples, each xi is
replaced by ei, the canonical basis element. The case n = 3 in the figures
may explain these definitions.

Proposition 6. Let the alphabet be {x1, . . . , xn}. Each Christoffel-Lyndon
word w on the tree of Christoffel-Lyndon words has the standard factorization
w = uv, where u is the upward first left node from w and v is the upward
n− 1-th right node from w.

As an example, see Figure 3: the word abacac has the standard factor-
ization abac.ac and acb has the standard factorization ac.b.

The following consequence is then immediate. It extends a classical prop-
erty of the Stern-Brocot tree [GKP, BLRS] (case n = 2) and is from [M] for
n = 3.

Corollary 7. Each n-tuple t on the tree of n-tuples is the sum of the upward
first left n-tuple from t and of the upward (n− 1)-th right n-tuple from t.

As an example with n = 3, on Figure 4, the node 2, 2, 1 is the sum of the
nodes 1, 2, 0 and of 1, 0, 1. And 1, 4, 0 is the sum of 1, 3, 0 and of 0, 1, 0.

Lemma 6. Let 0 ≤ j ≤ n − 1. Then LRij · · ·LRi2LRi1(xn) = xn−j if
j < n− 1, and = x1xn if j = n− 1.

Proof. This follows since R fixes x2, . . . , xn, since L(xk) = xk−1 for k =
3, . . . , n and since L(x2) = x1xn.

Proof. (of the Proposition) Let W ∈ {L,R}∗ be the word downwards from
the root corresponding to w on the tree of Christoffel-Lyndon words. Then
by construction of the tree, w = W (x1xn) and by Corollary 2, w has the
standard factorization w = W (x1)W (xn). We have to show that W (x1) = u
and W (xn) = v.
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Then either W contains the letter R, in which case W = URLi, with
U ∈ {L,R}∗; or W = Li.

In the first case, the word downwards from the root corresponding to u
is U (so that U(x1xn) = u) and we have W (x1) = URLi(x1) = UR(x1) =
U(x1xn) = u. In the second case, u = x1 and W (x1) = Li(x1) = x1 = u.
This proves the assertion for u.

Now, either W has the letter L at least n − 1 times or only j < n − 1
times. In the first case, we may write W = V LRin−1 · · ·LRi2LRi1 and V is
the word downwards from the root corresponding to v (so that V (x1xn) = v);
in the second case, we have W = LRij · · ·LRi2LRi1 and v = xn−j. Thus in
the first case, by Lemma 6, W (xn) = V (x1xn) = v. And in the second case,
by the lemma, W (xn) = xn−j = v.

3 The order on tuples and a geometrical in-

terpretation

The motivation of this section goes as follows. The alphabetical order of
Christoffel words is equivalent to the order of their slopes [B, BL], where the
slope of a Christoffel word w on the alphabet {x < y} is by definition the
quotient |w|y/|w|x. Moreover, Christoffel words have a geometrical interpre-
tation; an example is given in Figure 6. The discrete path coded by w is
obtained step by step, starting from the origin, by maximizing the slope but
staying under the slope of w.

(0, 0)

(7, 3)

Figure 6: the Christoffel word xxxyxxyxxy of slope 3/7

3.1 The order on tuples

We begin by a result on the ordering of Christoffel-Lyndon words.
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Lemma 7. Let the alphabet be {x1, . . . , xn}.
(i) Let u, v be Christoffel-Lyndon words containing the letter x1 and of

length at least 2. Then L(u) < x1xn < R(v).
(ii) Let W,U, V ∈ {L,R}∗. Then WLU(x1xn) < W (x1xn) < WRV (x1xn).

Proof. (i) We have u = x1xi · · ·, so that L(u) = x1xj with j < n. Thus
L(u) < x1xn. Moreover, v = x1xk · · ·, so that R(v) = x1xnR(xk) · · · > x1xn.

(ii) Let u = U(x1xn), v = V (x1xn). Then by Lemma 4, u, v are Christoffel-
Lyndon words; they both contain the letter x1 and are of length at least 2.
Thus by (i), LU(x1xn) < x1xn < RV (x1xn). Thus (ii) follows, since W is
order-preserving by Corollary 2.

We order tuples of relatively prime natural numbers according to the
alphabetical order of their associated Christoffel-Lyndon word; this is well-
defined by Theorem 4. The lemma implies the following result, which com-
pletely describes the order on Tn.

Proposition 8. Let t1, t2 be two n-tuples on the tree of n-tuples and let t be
their first common ancestor; the following conditions are equivalent:

(i) t1 ≤ t2;
(ii) t1 is in the left subtree under t or equal to t, and t2 is in the right

subtree under t or equal to t.
(iii) one of the two following conditions holds:

• rule L is applicable to t1 or t1 = (1, 0, . . . , 0, 1), and rule R is applicable
to t2 or t2 = (1, 0, . . . , 0, 1);

• t1 →T t
′
1, t2 →T t

′
2, with T = L or R and t′1 ≤ t′2.

In other words, by (ii), the order (for Christoffel-Lyndon words, and for
n- tuples) corresponds to the so-called infix order of the corresponding tree.

Proof. Let Wi be the word on L,R which codes the path from the root to
ti. Let wi = Wi(x1xn). Then by Lemma 3, ti →Wi

(1, 0, . . . , 0, 1). Moreover,
t1 ≤ t2 is equivalent to w1 ≤ w2. Let W be the longest common prefix of
W1,W2. Then W corresponds to the first common ancestor of w1, w2 in the
tree.

Suppose first that t1 ≤ t2 and argue by contradiction. Since t is their
smallest common ancestor, they are not in the same left or right subtree
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under t and we must have: either t2 is in the left subtree under t or equal to
t, and t1 is in the right subtree under t or equal to t; moreover t1 = t = t2
does not hold. Then W1 = WRU or W1 = W , and W2 = WLV or W2 = W
and moreover W1 = W = W2 does not hold. Then by Lemma 7, we reach
the contradiction w2 < w1. Thus (ii) must hold.

Suppose now that (ii) holds. Then we may write W1 = WLU or W1 = W ,
and W2 = WRV or W2 = W . Suppose that W is the empty word (which
means that t is the root); then W1 = LU or W1 is the empty word; in the first
case, we have by Lemma 3, t1 →LU (1, 0, . . . , 0, 1) so that rule L is applicable
to t1; in the second case, t1 = (1, 0, . . . , 0, 1). Thus, arguing similarly for
t2, the first condition in (iii) holds. Suppose now that W is nonempty and
let T be its first letter. Then by the same lemma, rule T is applicable to
both tuples t1, t2, giving two tuples t′1, t

′
2. Let W = TW ′. One has either

t1 →T t′1 →W ′LU (1, 0, . . . , 0, 1), or t1 →T t′1 →W ′ (1, 0, . . . , 0, 1). Let t′ be
the node corresponding to W ′. Then t′1 is in the left subtree under t′ or equal
to t′. Similarly, t′2 is in the right subtree under t′ or equal to it. Thus by
induction, we see that t′1 ≤ t′2 so that the second condition in (iii) holds.

Suppose now that (iii) holds. If the first condition holds, then, using
Lemma 3, we see that w1 = L(u) or w1 = x1xn, and w2 = R(v) or w2 =
x1xn for some Christoffel-Lyndon words u, v of length at least 2 , and which
contain both the letter x1. Thus (i) holds by Lemma 7. Suppose that the
second condition holds. If W1,W2 are both nonempty, then by lemma 3 and
this condition, they must begin by the same letter T ; then w1 = T (w′1),
w2 = T (w′2) with w′1 ≤ w′2, so that w1 ≤ w2 since T preserves the order; then
(i) holds. If Wi is empty, then ti = (1, 0, . . . , 0, 1) and the only applicable rule
is R, giving the tuple t′i = (1, 0, . . . , 0). Since this tuple corresponds to the
word x1, which is the smallest Christoffel-Lyndon word, and since t′1 ≤ t′2, we
must have t′1 = (1, 0, . . . , 0). Thus t1 = (1, 0, . . . , 0, 1), rule R is applicable to
t2 (since rule L is not applicable to t1). Then either W2 begins by R and we
deduce t1 ≤ t2 by Lemma 7 (i), or W2 is the empty words and t1 = t2. Thus
(i) holds.

For reasons which appear later, we need to extend this total order on
tuples of relatively prime natural numbers to a preorder on the set of all
nonvanishing tuples of natural numbers, by the following rule: for each such
tuples t, t′, we write t ≤ t′ if s ≤ s′, where s (resp. s′) is obtained from t
(resp. t′) by dividing it by its gcd.

In other words, call slope of a nonvanishing tuple of natural numbers the
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unique proportional tuple of relatively prime natural numbers. Then we have
t ≤ t′ if and only if s ≤ s′ where s, s′ are the slopes of t, t′.

We denote by T̄n the set of all n-tuples of natural numbers having at
least two nonzero components, one of them being the first. We deduce the
following result, which completely describes the preorder of these n-tuples.

Corollary 9. Let t1, t2 be two n-tuples in T̄n. Then t1 ≤ t2 if and only if
one of the following conditions holds:

(i) Rule L is applicable to t1 or t1 = (d, 0, . . . , 0, d) for some natural num-
ber d, and rule R is applicable to t2 (this includes the case t2 = (e, 0, . . . , 0, e)
for some natural number e);

(ii) t1 →T t
′
1, t2 →T t

′
2, with T = L or R and t′1 ≤ t′2.

Proof. Let si be the unique n-tuple in Tn proportional to ti. Then t1 ≤ t2 if
and only if s1 ≤ s2; a rule is applicable to si if and only if its is applicable to
ti; si = (1, 0, . . . , 0, 1) if and only if ti = (d, 0, . . . , 0, d). Moreover, condition
(ii) is equivalent to the similar condition for the si’s. Hence the corollary
follows from the proposition.

As noticed above, the order on 2-tuples (a, b) is completely described by
the natural order on their slopes b/a, which are nonnegative rational numbers
or∞. We do not know of a similar characterization of the order on n-tuples.

For later use, we prove the lemma below.

Lemma 8. Let t ∈ T̄n and denote by ei the canonical basis. Then t + e1 ≤
t ≤ t+ e2 ≤ . . . ≤ t+ en and t+ e1 + en ≤ t+ e2.

Proof. For n = 2, this follows easily from the definition of the order recalled
above: (a, b) ≤ (a′, b′) if and only if b/a ≤ b′/a′ for the natural order of real
numbers. Indeed, all we have to show is that if (a, b) is a nonvanishing pair of
nonnegative integers, then b/(a+ 1) ≤ b/a ≤ (b+ 1)/a and (b+ 1)/(a+ 1) ≤
(b+ 1)/a; the case a = 0 is treated separately, and the other cases are easy.

We claim that all the inequalities also hold for t = de1 (which is not in
T̄n) for any nonzero natural number d. This is easily verified by inspection.
Indeed, the tuples are then respectively (d + 1)e1, de1, de1 + e2, . . . , de1 + en
and (d + 1)e1 + en, de1 + e2, which after division by their gcd correspond to
the Christoffel-Lyndon words x1, x1, x

d
1x2, . . . , x

d
1xn and xd+1

1 xn, x
d
1x2.

We associate to each t ∈ T̄n the pair (l,m), its width, where l is the sum
of the components of t, and m is equal to (n + 1)− the highest index of
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a nonzero component of t; note that m ∈ {1, . . . , n − 1}. These pairs are
ordered lexicographically and we prove the lemma by induction on this order.

Let t = (a1, . . . , an). If a1 > an, then we have t+e1 = (a1 +1, . . . , an)→L

(a1−an+1, an, a2, . . . , an−1) and t→L t
′ = (a1−an, an, a2, . . . , an−1); then the

two tuples on the right-hand side of the arrows may be written respectively
t′ + e1 and t′; then t′ ∈ T̄n, with width (l′,m′) say; then either an > 0 and
l′ < l, or an = 0, l′ = l and m′ < m; then we conclude by induction and
Corollary 9 that t + e1 ≤ t. If we have a1 = an, then rule L is applicable to
t + e1 and rule R is applicable to t, so that again t + e1 ≤ t by Corollary 9.
Finally, if a1 < an, the tuples t + e1 and t are rewritten under rule R into
(a1 + 1, a2, . . . , an − a1 − 1) and (a1, a2, . . . , an − a1); these may be written
as t′ + e1 and t′ + en with t′ = (a1, a2, . . . , an − a1 − 1), so that we conclude
either by induction (since a1 > 0, so that l decreases) and Corollary 9 that
t + e1 ≤ t if t′ ∈ T̄n, or by the claim otherwise (since if t′ /∈ T̄n, we must
have t′ = a1e1 because its first component a1 is nonzero). This proves the
first inequality in all cases.

We prove now that t ≤ t + e2, under the hypothesis that n > 2. If
a1 > an, then rule L is applicable to both tuples, giving the tuples (a1 −
an, an, a2, . . . , an−1) and (a1− an, an, a2 + 1, . . . , an−1), which may be written
as t′ and t′ + e3, t

′ ∈ T̄n, and we conclude by induction (here l in the width
does not decrease, but m does). If a1 ≤ an, then rule R is applicable to both
tuples, giving the tuples t′ = (a1, a2, . . . , an−a1) and (a1, a2 +1, . . . , an−a1).
They may be written t′ and t′ + e2 and we conclude either by induction if
t′ ∈ T̄n, or by the claim otherwise.

We prove now that t + ei ≤ t + ei+1 for 2 ≤ i ≤ n − 2. If a1 > an, then
rule L is applicable to both tuples, giving the tuples t′ + ei+1 and t′ + ei+2,
with t′ = (a1−an, an, a2, . . . , an−1) and we conclude by induction. If a1 ≤ an,
then rule R is applicable to both tuples, giving the tuples t′+ei and t′+ei+1,
with t′ = (a1, a2, . . . , an − a1) and we conclude by induction if t′ ∈ T̄n, or by
the claim otherwise.

We prove now that t+en−1 ≤ t+en. If a1 > an+1, then rule L is applicable
to both tuples and gives respectively (a1 − an, an, . . . , an−2, an−1 + 1) and
(a1−an−1, an+1, . . . , an−2, an−1); these tuples may be written as t′+e1 +en
and t′ + e2, with t′ = (a1 − an − 1, an, . . . , an−2, an−1) ∈ T̄n, which allows to
conclude by induction. If a1 = an + 1, then rule L is applicable to t + en−1
and rule R is applicable to t+en, so that t+en−1 ≤ t+en by the corollary. If
a1 ≤ an, then rule R is applicable to both tuples, giving the tuples t′ + en−1
and t+en, with t′ = (a1, a2, . . . , an−a1) and we conclude either by induction
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if t′ ∈ T̄n, or by the claim otherwise.
It remains to prove that t + e1 + en ≤ t + e2. If a1 > an, then rule L is

applicable to both tuples, giving the tuples (a1−an, an + 1, a2, . . . , an−1) and
(a1−an, an, a2 +1, . . . , an−1) which may be written as t′+e2 and t′+e3, with
t′ = (a1−an, an, a2, . . . , an−1) and we conclude by induction. If a1 ≤ an, then
rule R is applicable to both tuples, giving the tuples (a1 + 1, a2, . . . , an− a1)
and (a1, a2 + 1, . . . , an − a1), which may written t′ + e1 and t′ + e2, and we
conclude either by induction if t′ ∈ T̄n, or by the claim otherwise.

3.2 A geometrical property of Christoffel-Lyndon words

We call slope of any word on the letters x1, . . . , xn the slope of the n-tuple
(|w|x1 , . . . , |w|xn), as defined in the previous section. Slopes are in bijection
with Christoffel-Lyndon words (Theorem 4) and ordered as them.

Theorem 10. Let w be a Christoffel-Lyndon word. For each prefix ux of w,
with u a word and x a letter, the letter x is uniquely defined by the condition
that the slope of ux is ≤ than the slope of w and that it is maximum subject
to this condition.

This result generalizes the geometrical interpretation of Christoffel words
(see [B, BL]) recalled at the beginning of Section 3.

For any word w, denote by sl(w) its slope, considered as a Christoffel-
Lyndon word. Hence, sl(w) is the unique Christoffel-Lyndon word such that
w and sl(w) have proportional commutative images. In particular, if w is a
Christoffel-Lyndon word, then sl(w) = w. Observe also that sl(w) = sl(w′)
if w′ is a rearrangement of w. For further use, note that by Lemma 8, for
any word u, we have

sl(ux1) ≤ sl(u) ≤ sl(ux2) ≤ . . . ≤ sl(uxn). (7)

Lemma 9. If T is the substitution L or R, then sl(T (w)) = T (sl(w)) for
any word w.

Proof. We know by Lemma 4 that T preserves Christoffel-Lyndon words;
thus T (sl(w)) is a Christoffel-Lyndon word. Since sl(w) and w have pro-
portional commutative images, so do T (sl(w)) and T (w). The lemma fol-
lows.
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Lemma 10. If w = R(m) or w = L(m) and xjxn is a factor of w for some
j satisfying 2 ≤ j ≤ n−1, it is also a factor of m. Consequently, this cannot
happen if w is on the tree of Christoffel-Lyndon words

Proof. If w = L(m), then each xn in w is preceded by x1; hence this cannot
happen. If w = R(m), then its factor xjxn must come from the same factor
in m, since 2 ≤ j ≤ n − 1. The final assertion follows, since the root x1xn
does not have the factor xjxn.

Proof. (of the theorem) We may assume that n ≥ 3, since for n = 2, this is
the property of Christoffel words recalled after the theorem. By induction on
the size of the alphabet, we may assume that w has the letter x1, together
with some other letter. In view of Eq.(7), it is enough to show that

(i) sl(v) ≤ w for each nontrivial prefix v of w;
(ii) if uxi is a prefix of w, i < n, then sl(uxi+1) > w.
We know that w appears on the tree of Christoffel-Lyndon words, and we

argue by induction on its depth in the tree. If w is the root, then w = x1xn
and we are done, since sl(x1) = x1 < x1xn and sl(x2) = x2 > x1xn.

In general, we have w = T (m) for T = R or L and we may assume
by induction that the theorem holds for m. Let v be a prefix of w. If
v = T (p) for some prefix p of m, then we have by induction sl(p) ≤ m; thus
sl(v) = sl(T (p)) = T (sl(p)) (by Lemma 9) ≤ T (m) = w, since T preserves
the order. If there is no prefix of m sent onto v by T , then, due to the special
form of L or R, we must have w = v1x1xnv2 with v = v1x1 and T (pxj) =
v1x1xn for some prefix pxj of m, with j = 2 if T = L and j = 1 if T = R.
Note that T (p) = v1. By induction, we have sl(p) ≤ m. Thus, as before,
sl(v1) = sl(T (p)) = T (sl(p)) ≤ T (m) = w. Since sl(v) = sl(v1x1) ≤ sl(v1)
by Eq.(7), we deduce that sl(v) ≤ w. This proves (i).

Suppose that T = R. Suppose that i = 1. Then ux1 is followed by xn in
w and ux1xn = R(px1), with px1 a prefix of m and R(p) = u. By induction,
sl(px2) > m thus sl(ux2) = sl(R(px2)) = R(sl(px2)) > R(m) = w, which
proves (ii) in this case. Suppose that i > 1. Then uxi = R(pxi) with pxi
prefix of m and R(p) = u. Then by induction sl(pxi+1) > m, which implies
sl(uxi+1) = sl(R(pxi+1)) = R(sl(pxi+1)) > R(m) = w. This proves (ii) in
this case.

We assume now that T = L, that is, w = L(m). Suppose that ux1 is a
prefix of w. Then either px1 is a prefix of m with L(p) = u or px2 is a prefix
of m with L(p) = u; in both cases sl(px3) > m by induction and Eq.(7).
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Thus we deduce that sl(ux2) = sl(L(px3)) = L(sl(px3)) > L(m) = w which
proves (ii) in this case.

Suppose now that uxi is a prefix of w with i = 2, . . . , n−2. Then pxi+1 is
prefix of m with L(p) = u; then by induction sl(pxi+2) > m and we deduce
that sl(uxi+1) = sl(L(pxi+2)) = L(sl(pxi+2)) > L(m) = w, which proves (ii)
in this case.

Finally, suppose that uxn−1 is a prefix of w. Then u is not the empty
word (w must begin by x1 and n − 1 > 1) and let xj be its last letter; thus
u = vxj and xjxn−1 is a factor of w.

Suppose that j = n. Then m must have the factor x2xn, which is not
possible by Lemma 10.

Suppose that 1 < j < n− 1. Then m must have xj+1xn as factor, which
again is not possible by Lemma 10.

Thus j = 1 or n − 1 and we deduce by iterating this argument that
uxn−1 = vx1x

r
n−1, r ≥ 1, hence u = vx1x

r−1
n−1.

Case 1: r = 1, that is vx1xn−1 = uxn−1 is a prefix of w. Then px1xn
is a factor of m, with L(p) = v. Then by induction sl(px2) > m, thus
sl(uxn) = sl(vx1xn) = sl(L(px2)) = L(sl(px2)) > L(m) = w, which proves
(ii) in this case.

Case 2: r > 1. Then sl(uxn) = sl(vx1x
r−1
n−1xn) = sl(vx1xnx

r−1
n−1) (by

rearrangement) ≥ sl(vx1xn) (by Eq.(7) since n − 1 ≥ 2) > w, by the r = 1
case, since vx1xn−1 is a prefix of w, because uxn−1 = vx1xn−1x

r−1
n−1.

4 The infinite algorithm: periodicity and con-

vergence

We may apply the rewriting system of Section 2.5 to any n-tuple of real
numbers. We consider only n-tuples of nonnegative real numbers whose first
component is positive. Note that the first component will remain positive
during the algorithm.We say that the algorithm, applied to (a1, . . . , an), is
infinite if one never obtains an n-tuple of the form (d, 0, . . . , 0). Equivalently,
by Lemma 2, the n-tuple is not of the form α(b1, . . . , bn) for some real α and
some integers b1, . . . , bn; equivalently, the Q-subspace spanned by the ai’s is
not of dimension 1.

There is an infinite word over the alphabet L,R generated by the al-
gorithm, assumed to be infinite, applied to some given n-tuple t as above:
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Figure 7: Paths corresponding to the Christoffel-Lyndon words acbacbb and
acbacc

this word is defined by the condition that its prefix Wk of length k satis-
fies t →Wk

tk for some n-tuple tk. Let wk be the Christoffel-Lyndon word
Wk(x1xn), where Wk is the corresponding substitution. In analogy with the
case n = 2 (Christoffel words and continued fractions, see e.g.[BLRS]), one
is tempted to conjecture that for i = 2, . . . , n (we denote | w |i the number
of xi’s in the word w):

lim
k→∞

| wk |i
| wk |1

=
ai
a1
. (8)

There is an equivalent statement, using incidence matrices. Recall that
the incidence matrix (or commutative image) of the substitution f is defined
to be the matrix (| f(xj) |xi)1≤i,j≤n. We take the same notation for a sub-
stitution and its incidence matrix. See the proof of Lemma 11 where the
incidence matrices L and R are shown explicitly. Let
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 α1(k)
...

αn(k)

 = Wk


1
0
...
0
1

 . (9)

Then the conjecture in Eq.(8)is equivalent to

lim
k→∞

αi(k)

α1(k)
=
ai
a1
. (10)

We prove this conjecture in the case where W is ultimately periodic, that
is, for some p > 0 and some k0 ≥ 0, one has wk = wk+p for any k ≥ k0. We
also obtain that in this case the limits are algebraic numbers.

Theorem 11. Suppose that the algorithm applied to the n-tuple of nonnega-
tive real numbers (a1, . . . , an) generates the ultimately periodic infinite word
W over the alphabet {L,R}. Then Eq.(8) and (10) hold and the limits are
algebraic numbers belonging to the same number field of degree at most n.

The theorem will be proved after several lemmas. The next lemma is a
particular case of a well-known result, and is a partial converse of Lemma 3.

Lemma 11. Let W be a finite word over L,R such that (a1, . . . , an) →W

(b1, . . . , bn). Then  a1
...
an

 = W

 b1
...
bn

 .

Note that in accordance with our abuse of notation, here W represents
the incidence matrix of the substitution W .

Proof. Let W = TV with T = L or R. Denote by a, b the two n-tuples in
the statement. Let a′ be the n-tuple such that a →T a′ →V b. Then by
induction, we have  a′1

...
a′n

 = V

 b1
...
bn

 .
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We claim that ta = T ta′. This implies that ta = T ta′ = TV tb = W tb, which
ends the proof.

Let us prove this claim. If T = L, then a′1 = a1−an, a′2 = an, a′3 = a2,. . .,
a′n = an−1. Moreover,

L =


1 1 0 . . . 0

0 0 1
. . .

...
...

...
. . . 0

0 0 1
0 1 0 . . . 0

 .

Thus

L

 a′1
...
a′n

 =


a′1 + a′2
a′3
...
a′n
a′2

 =


a1
a2
...

an−1
an

 .

If T = R, then a′i = ai for i = 1, . . . , n− 1 and a′n = an − a1. Moreover,

R =


1 0 . . . . . . 0

0 1
. . .

...
... 0

. . . . . .
...

0
. . . 1 0

1 0 . . . 0 1

 .

Thus

R

 a′1
...
a′n

 =


a′1
a′2
...

a′n−1
a′1 + a′n

 =


a1
a2
...

an−1
an

 ,

which proves the claim.

Recall that a nonnegative square matrix is called primitive if one of its
powers is positive (that is, all its entries are > 0). Recall that, by the Perron
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theorem, M then has a nonnegative eigenvector, unique up to positive factors,
which is associated to the so-called Perron eigenvalue of M . The latter is
positive, simple and has maximum modulus among all eigenvalues of M . See
[DZ] Theorem 2.6 page 27. The next result is certainly well-known.

Lemma 12. Let M be a primitive n by n matrix with m11 6= 0. Let αi(k),
i = 1, . . . , n denote n nonnegative sequences, with α1(k) positive, such that α1(k + 1)

...
αn(k + 1)

 = M

 α1(k)
...

αn(k)

 (11)

and such that the limits in Eq.(10) exist. Then these limits are in the number
field generated by the Perron eigenvalue of M . Moreover they do not depend
on the initial values α1(0), . . . , αn(0).

Proof. Let li, i = 1, . . . , n, be these limits; note that l1 = 1. Let l =

(1, 0, . . . , 0)M

 l1
...
ln

 =
∑

jm1jlj. Note that l > 0. We have

αi(k + 1)

α1(k + 1)
=

∑
jmijαj(k)∑
jm1jαj(k)

=

∑
jmij

αj(k)

α1(k)∑
jm1j

αj(k)

α1(k)

.

Taking the limit, we obtain li = (1/l)
∑

jmijlj. Thus l1
...
ln

 = (1/l)M

 l1
...
ln

 .

Since l1 = 1 and li ≥ 0, we have found a nonnegative eigenvector and 1/l
is the Perron eigenvalue. Now note that if λ is an eigenvalue of M , then
there is an eigenvector t(a1, . . . , an) for λ whose coefficients ai are in the field
generated by λ. By unicity of the nonnegative eigenvector, t(l1, . . . , ln) =
t(1, a2/a1, . . . , an/a1), which proves the lemma.

Lemma 13. Let M be a primitive matrix with Perron eigenvalue λ > 1

and consider a matrix of the form A =

(
M B
0 I

)
, where I is an identity
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matrix, B is nonnegative with no zero column. Then for any indices i, i′, j,
with i′ within the row indices of M , the sequence (Ak)ij/(A

k)i′j is defined
for k large enough and has a limit when k → ∞, independent of j. This
limit is 0 if i is not within the row indices of M . Moreover, for any indices
i, i′, j, j′ with i′ within the row indices of M , the limit of ((Ak)i′j′(A

k)ij −
(Ak)i′j(A

k)ij′)/(A
k)i′j′(A

k)i′j is 0.

Proof. It follows from the theorem of Perron that for some rank 1 matrix
M ′ one has Mk ∼ λkM ′, see Section ”Perron projection as a limit” in:
http://en.wikipedia.org /wiki/Perron-Frobenius theorem. The matrix M ′ is

positive since M is primitive and λ > 1. Now, one has Ak =

(
Mk Bk

0 I

)
,

where Bk =
∑

0≤i≤k−1M
iB. We have

∑
0≤i≤k−1M

i ∼ λk

λ−1M
′. Moreover,

Mk is positive for k large enough, so that Bk too, by the assumption on the
columns. Thus Bk ∼ λkC for some positive matrix C = 1

λ−1M
′B of rank 1.

Thus the first statement follows when the index i is within the row indices
of M . Now, when the index i is not within the row indices of I, then the
sequence has limit 0. This is due to λ > 1, so that the coefficients of Mk and
Bk tend to ∞, while those of 0 and I are bounded.

Recall that each entry of the k-th power of a square matrix is given, for
k large enough, by an exponential polynomial, which is a linear combination
over C of terms, each of which is of the form P (k)µk, where P (k) is a poly-
nomial in k and µ a nonzero complex number. In our case, each i, j-entry
of Ak, with i within the row indices of M , is of the form sijλ

k + a linear
combination of P (k)µk with | µ |< λ. What precedes implies that the matrix
(sij) is of rank 1. Hence, if i, i′ are both within the row indices of M , then
(Ak)i′j′(A

k)ij − (Ak)i′j(A
k)ij′ is given by an exponential polynomial having

only µ’s with | µ |< λ2. Since the exponential polynomials for (Ak)i′j′ and
(Ak)i′j both have a term with λ, the final assertion is proved in this case,
because sij > 0.

Suppose now that i′ is within the row indices of M and i is not. Then
we conclude similarly, since (Ak)ij and (Ak)ij′ are constants independent of
k.

Lemma 14. Let A(k), k ∈ P, be a sequence of nonnegative n by n matrices
taken from a finite set of matrices. Let M(k) = A(1) · · ·A(k). Let (pk)k≥0
be a stricty increasing sequence of natural integers such that the differences
pk+1− pk are bounded. Suppose that M(k)1j is > 0 for any j and for k large
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enough. Suppose further that for any indices i, j in {1, . . . , n}, the sequence
M(pk)ij/M(pk)1j has a limit when k → ∞, independent of j. Then for any
indices i, j in {1, . . . , n}, the sequence M(k)ij/M(k)1j has the same limit,
independent of j.

Proof. 1. Suppose that f(k), g1(k), . . . , gs(k) are sequences such that the gi
have the same limit l and that for any k, f(k) is equal to gi(k) for some
i = 1, . . . , s. Then clearly f has the limit l, too.

2. With the pk as in the statement, suppose that for some sequence x(k),
and any natural number h, the sequence x(pk + h) has the limit l when k
tends to infinity. It is then standard to show that the sequence x(k) converges
to l, using the fact that the differences pk+1 − pk are bounded, so that only
finitely many h’s have to be considered.

3. We claim that if 2n nonnegative sequences ui(k), vi(k), i = 1, . . . , n,
are such that the sequences ui(k)/vi(k) have the same limit l (with the vi(k)
positive), then for any nonnegative numbers a1, . . . , an, not all 0, the sequence
(a1u1(k) + . . . + anun(k))/(a1v1(k) + . . . + anvn(k)) also has the limit l. We
may assume that the an are positive. We have ui(k) = lvi(k) + vi(k)εi(k)
where limk→∞ εi(k) = 0. Then

a1u1(k) + . . .+ anun(k)

a1v1(k) + . . .+ anvn(k)

=
a1lv1(k) + . . .+ anlvn(k) + a1v1(k)ε1(k) + . . .+ anvn(k)εn(k)

a1v1(k) + . . .+ anvn(k)
= l + r(k),

where r(k) =
∑

i
aivi(k)εi(k)

a1v1(k)+...+anvn(k)
is bounded by

∑
i
aivi(k)εi(k)
aivi(k)

=
∑

i εi(k),
which proves the claim.

4. Now, let H be any nonnegative matrix H = (hrs) and put N(k) =
M(pk)H; we show that the sequence N(k)ij/N(k)1j has the same limit as the
sequence M(pk)ij/M(pk)1j. We have N(k)ij =

∑
sM(pk)ishsj and N(k)1j =∑

sM(pk)1shsj. By assumption, the sequences M(pk)is/M(pk)1s have, for
any s, the same limit l. Thus we conclude with the claim in 3.

5. Fix i and j and let x(k) = M(k)ij/M(k)1j. To prove the lemma, it
is enough by 2. to show that for each h, the sequence x(pk + h) converges,
when k tends to infinity, to a limit l, independent of j. An element x(pk +h)
has the form N(k)ij/N(k)1j, with the notations in 4., by the definition of
M(k), with H = A(pk + 1) · · ·A(pk + h); for fixed h, there are finitely many
possible H’s. Hence we conclude using 1. and 4.
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Lemma 15. Let A(k), k ∈ N, be a sequence of nonnegative n by n matrices
taken from a finite set of matrices. Let M(k) = A(1) · · ·A(k). Suppose that
M(k)1j > 0 for k large enough and A(0)11 > 0. Suppose further that for any
indices i, j in {1, . . . , n}, the sequence M(k)ij/M(k)1j has a limit li, inde-
pendent of j. Let M ′(k) = A(0)M(k). Then the sequence M ′(k)ij/M

′(k)1j
has a limit l′i, and the limits are related by

l′i =

∑
j A(0)ijlj∑
j A(0)1jlj

.

Proof. We have

M ′(k)ij/M
′(k)1j =

∑
q A(0)iqM(k)qj∑
q A(0)1qM(k)qj

=

∑
q A(0)iq

M(k)qj
M(k)1j∑

q A(0)1q
M(k)qj
M(k)1j

.

Note that M ′(k)1j ≥ A(0)11M(k)1j > 0 for k large enough. The limit of this

is clearly
∑

q A(0)iqlq∑
q A(0)1qlq

. Note that the denominator is > 0, since A(0)11 > 0 and

l1 = 1.

LetX = {x1, . . . , xn}. Let γ be the substitution γ = (x1, xn, x2, . . . , xn−1);
note that γn−1 is the identity.

Lemma 16. Let k > 0 and i1, . . . , ik, j1, . . . , jk > 0 and let f be the substitu-
tion f = RjkLik · · ·Rj1Li1 with i1+ · · ·+ ik ≡ 0 mod n−1. Let S be the set of
partial sums, S = {ik, ik+ ik−1, . . . , ik+ · · ·+ i1}. Let Y = {x1}∪{γs(xn), s ∈
S}. Then

(i) x1, xn ∈ Y ;
(ii) for any x ∈ Y , f(x) ∈ Y ∗ and each y ∈ Y appears in f(x1).
(iii) x1 appears in each f(x), x ∈ X;
(iv) for each x ∈ X \ Y , f(x) ∈ Y ∗x.

For example, if n = 5, let f = RL5RL3. Then Y = {x1, γ5(x5), γ8(x5)} =
{x1, x4, x5}. One verifies that (we write i instead of xi)

f = (15154, 15154152, 15154153, 15154154, 15155).

Proof. By construction, x1 is in Y and by hypothesis on the sum of the ij’s,
Y contains xn. This proves (i).

32



We claim that for i, j > 0,

RjLi = (x1x
j
n, (x1x

j
n)q+1xn+1−s, . . . , (x1x

j
n)q+1xn, (x1x

j
n)qx2, . . . , (x1x

j
n)qxn−s),

where i = s+ (n− 1)q, s ∈ {1, . . . , n− 1}. This is proved as follows:

L = (x1, x1xn, x2, . . . , xn−1), L
s = (x1, x1xn+1−s, . . . , x1xn, x2, . . . , xn−s),

Ln−1 = (x1, x1x2, . . . , x1xn), L(n−1)q = (x1, x
q
1x2, . . . , x

q
1xn),

Li = Ls+(n−1)q = (x1, x
q+1
1 xn+1−s, . . . , x

q+1
1 xn, x

q
1x2, . . . , x

q
1xn−s),

R = (x1xn, x2, . . . , xn), Rj = (x1x
j
n, x2, . . . , xn),

and the claim follows by multiplying Rj and Li, that is, by replacing in Li

above each x1 by x1x
j
n.

We claim now that for i1, . . . , ik, j1, . . . jk > 0, f = RjkLik · · ·Rj1Li1 is of
the form f = (u1, u2γ

I(x2), . . . , unγ
I(xn)) where I = i1 + · · · + ik and each

uh is a word whose alphabet is a subset of

{x1, xn, γik(xn), . . . , γik+···+i2(xn)},

while for u1 it is exactly this set. This is true by the previous claim for k = 1:
indeed, since γi = γs, and γs(x2) = xn+1−s, . . . , γ

s(xn) = xn−s, we have

RjLi = (x1x
j
n, (x1x

j
n)q+1γi(x2), . . . , (x1x

j
n)qγi(xn)).

Suppose now it is true for k and let g = RjLif . Then g(x1) = RjLi(u1); since
the alphabet of u1 is as above, we see by the form of RjLi, that the alpha-
bet of g(x1) is {x1, xn, γi(xn), γi+ik(xn), . . . , γi+ik+···+i2(xn)}. Next, g(x2) =
RjLi(u2γ

I(x2)) = RjLi(u2)R
jLi(γI(x2)); the alphabet of RjLi(u2) is, simi-

larly, a subset of the alphabet of g(x1) = RjLi(u1); moreover, RjLi(γI(x2)) is
the product of a word on x1, xn by the letter γi+I(x2), which shows that g(x2)
is of the required form. For the letters x3, . . . , xn the argument is similar.

Suppose now that i1 + · · ·+ ik ≡ 0 mod n− 1. Then we have

{x1, xn, γik(xn), . . . , γik+···+i2(xn)} = Y.

This proves (ii) and (iv). Now, in order to prove property (iii), it is enough
to show that the incidence matrix of f has a positive first row. The incidence
matrix of R is the identity matrix + an elementary matrix. Hence the inci-
dence matrix of f is coefficientwise ≥ the incidence matrix of some positive
power of Ln−1. The latter has a positive first row, as shown in a previous
calculation. Thus we conclude that property (iii) holds.
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Corollary 12. Let f be as in Lemma 16. Then its incidence matrix has the
following properties, for some subset I of {1, . . . , n} such that 1, n ∈ I:

(i) its first row is positive;
(ii) each ei, i ∈ I, is sent to a linear combination of ej, j ∈ I, and the

submatrix corresponding to rows and columns in I is primitive;
(iii) the submatrix corresponding to rows and columns not indexed by I

is the identity matrix.

As an example, the incidence matrix of f given after Lemma 16 is
2 3 3 3 2
0 1 0 0 0
0 0 1 0 0
1 1 1 2 0
2 3 3 3 3


The italicized submatrix is the identity matrix and the boldfaced submatrix
is primitive, since it has positive entries on the first row and column; the
subset I is {1, 4, 5}; (ii) is true as show the regular 0’s.

Proof. (of theorem 11) Suppose first that the infinite word W is strictly
periodic, of the form W = V ∞ for some nonempty finite word V beginning
by R and finishing by L and such that the number of L’s in V is divisible by
n−1. Then by Corollary 12, the incidence matrix of V , which we still denote
V , is after applying some permutation of rows and columns, without moving
the first row (which is positive), of the form of the matrix A indicated in
Lemma 13. Thus the limits limk→∞(V k)ij/V

k)1j exist and are independent
of j. Hence, by Lemma 14, the limits limk→∞(Wk)ij/(Wk)1j exist and are
independent of j.

Now take the notation of Eq.(9). It follows that the limits in Eq.(10) exist,

since αi(k) = (Wk)i1 + (Wk)in, so that αi(k)
α1(k)

= (Wk)i1+(Wk)in
(Wk)11+(Wk)1n

, whose limit is

the same as the common limit of (Wk)i1/(Wk)11 and of (Wk)in/(Wk)1n (as
follows from the claim in part 3. of the proof of Lemma 14).

It follows from Lemma 12 that the limits are in the number field generated
by the Perron eigenvalue of M ; the degree of this field is at most the order
of M , which by Lemma 16 is equal to the cardinality of Y , with the notation
of this lemma.

To prove Eq.(10), it is enough to show that limk→∞(V k)i1/V
k)11 = ai/a1.

Define a sequence of real row vectors by (a1, . . . , an) →V k (bi(k), . . . , bn(k)).
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Using Lemma 11, we have

ai/a1 − (V k)i1/(V
k)11 =

∑
j(V

k)ijbj(k)∑
h(V

k)1hbh(k)
− (V k)i1

(V k)11

=

∑
j bj(k)((V k)ij(V

k)11 − (V k)i1(V
k)1j)

(V k)11(
∑

h(V
k)1hbh(k))

=

∑
j
bj(k)

b1(k)
((V k)ij(V

k)11 − (V k)i1(V
k)1j)

(V k)11(
∑

h(V
k)1h

bh(k)
b1(k)

)

=
∑
j

bj(k)

b1(k)
((V k)ij(V

k)11 − (V k)i1(V
k)1j)

(V k)11(
∑

h(V
k)1h

bh(k)
b1(k)

)
.

In absolute value, this is bounded by∑
j

bj(k)

b1(k)
| (V k)ij(V

k)11 − (V k)i1(V
k)1j |

(V k)11(V k)1j
bj(k)

b1(k)

=
∑
j

| (V k)ij(V
k)11 − (V k)i1(V

k)1j |
(V k)11(V k)1j

The limit when k →∞ of each term in the previous sum is 0, by Lemma 13.
Thus Eq.(10) holds.

The general case, when W is ultimately periodic, follows from Lemma 15
and Lemma 11, since W may be written as W = UV ∞, for some finite words
U, V such that V begins by R and ends with L and that the number of L’s
in V is divisible by n− 1. Indeed, this follows from periodicity and from the
fact that W has infinitely many L’s and R’s, since in the algorithm, a given
rule can be applied only finitely many times.

5 Acknowledgments
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