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Abstract
We study the Diophantine system

l'1+"'+.’1}n:a,

23+ ad =0,
where a,b € Q,ab # 0,n > 4, and prove, using the theory of elliptic curves, that it
has infinitely many rational parametric solutions depending on n — 3 free parameters.

Moreover, this Diophantine system has infinitely many positive rational solutions with
no common element for n = 4, which partially answers a question in our earlier paper.

1 Introduction

Ren and Yang [10] considered the positive integer solutions of the Diophantine chains
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where a, b are positive integers and determined by k n-tuples (z;1, zi2, ..., Tpm), i = 1,... k.
For n = 2,k = 2, Eq. (1) has no nontrivial integer solutions [12], so we consider n > 3.
For n =3,k = 2, Eq. (1) reduces to

(2)

1+ To+2x3=Y1 + Y2+ Y3,
o} + ol + o =y 4+ s + s

Systems like (2) has been investigated by many authors, at least since 1915 [7, p. 713];
see [1, 2, 3, 4, 5, 8. Eq. (2) is interesting because it reveals the relation between all of
the nontrivial zeros of weight-1 65 Racah coefficients and all of its non-negative integer
solutions. More recently, Moreland and Zieve [9] showed that “for triples (a, b, ¢) of pairwise
distinct rational numbers such that for every permutation (A, B, C') of (a, b, ¢), the conditions
(A+ B)(A—B)*# (B+ C)(B — C)? and AB? + BC? + CA? # A3 + B? + C® hold, then
the Diophantine system

r+y+z=a+b+c,
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has infinitely many rational solutions (x,y, z).” This gives a complete answer to Question 5
in an earlier paper of the author [10].

For n = 3,k > 3, Choudhry [5] proved that Eq. (1) has a parametric solution in rational
numbers, but the solutions are not all positive. There are arbitrarily long Diophantine chains
of the form Eq. (1) with n = 3.

For n > 3, Ren and Yang [10] obtained a special result of Eq. (1) with (21,22, ...,2,-3) =
(1,2,...,n—3), which leads to Eq. (1) has infinitely many coprime positive integer solutions
for n > 3.

Now we study the case of Eq. (1) for n > 4 with the greatest possible generality. For
convenience, let us consider the non-zero rational solutions of the Diophantine system

{x; + + xg a, (3)
234423 =b,

where a,b € Q,ab # 0,n > 4.
Using the theory of elliptic curves, we prove the following theorems:

Theorem 1. Forn > 4, the Diophantine system (3) has infinitely many rational parametric
solutions depending on n — 3 free parameters.

Theorem 2. For n = 4, the Diophantine system (3) has infinitely many positive rational
solutions.

From these two theorems, we have

Corollary 3. For n > 4 and every positive integer k, there are infinitely many primitive
sets of k n-tuples of polynomials in Z[ty, 1o, ... t,_ 3] with the same sum and the same sum
of cubes.



Corollary 4. For n = 4 and every positive integer k, there are infinitely many primitive
sets of k 4-tuples of positive integers with the same sum and the same sum of cubes.

2 The proofs of the theorems

In this section, we give the proofs of our theorems, which are related to the rational points
of some elliptic curves. The proof of Theorem 1 is inspired by the method of [13].

Proof. In view of the homogeneity of Eq. (3), we let a,b € Z,ab # 0. First, we prove it for
n = 4 and then deduce the solution of Eq. (3) for all n > 5. In the following Diophantine
system

T+ Ty + X3+ 74 = 0,75 + 25 + 25 + 75 = b, (4)

eliminating x4 from the first equation and letting x3 = tx,, we get

3(t$2 + To — CL)Z'% + 3(tl’2 + Ty — a)2x1 + 3t(t + 1).%3

)
—3a(t +1)%23 + 3a*(t + Dag +b—a® = 0. (5)

To prove Theorem 1 for n = 4, it is enough to show that the set of xo € Q(¢), such that
Eq. (5) has a solution (with respect to z1), is infinite. Then we need to show that there are
infinitely many xo € Q(¢) such that the discriminant of Eq. (5) is a square, which leads to
the problem of finding infinitely many rational parametric solutions on the following curve

C: y? =9(t* — 1)%x5 + 36at(t + 1)}
—18a*(t + 1)%x5 + 12(a® — b)(t + 1)z — 3a(a® — 4b).
The discriminant of C' is
A(t) = — 5038848(t + 1)* ((—b + )2 + (=2b — a®)t — b+ a®)’
((90° + a® — 10a®b)t* + (—36b> + 14a’b — 2a°)t* + (54b* — 24a’b + 3a°)t?
+ (—360* + 14a®b — 2a°)t + 9b* + a® — 10a”b),

and is non-zero as an element of Q(¢). Then C' is smooth.
By [6, Prop. 7.2.1, p. 476], we can transform the curve C' into a family of elliptic curves

E: Y?=X3—-18a*(1+1)32X
+ 108a(1 + t)Q((a3 4b ) + (2a® + 4b)t + a® — 4b) X
—648(1 +)*((a® — — 26H)t* + (—8ba® + 4b* + 4a°)t* + a® — 8ba® — 2b7),

by the inverse birational map ¢ : (zq,y) — (X,Y). Because the coordinates of this map
are quite complicated, we omit these equations.



An easy calculation shows that the point
P = (18@2(154 +1)/(t —1)%36((a® — b)t° + (2b+ a®)t°
+ (b= a®)t' + (4a® — 4b)t* + (b— a®)t* + (2b+ a®)t — b+ a®) /(t — 1)3)

lies on E. To prove that the group E(Q(¢)) is infinite, it is enough to find a point on E with
infinite order. By the group law of the elliptic curves, we can get [2]P. Let [2]P, be the
point of specialization at t = 2 of [2] P. The X-coordinate of [2] P, is

18a2(—567b% + 2322ba3 + 80937a°)
(—9b + 111a3)?

Let E5 be the specialization of E at t = 2, i.e.,
Ey: Y= X?—162a>X* + 972a(9a” — 12b) X — 192456a° + 979776ba” + 104976b°.

There are two cases we need to discuss.
1. For b = 37a®/3, the curve E; becomes

Y? = X2 —162a°X?% — 135108a* X + 27859464a°.

Now [2]P, is the point at infinity on E,, and we need find a point of infinite order. Let
Y =Y/a® X' = X/a*. We have an elliptic curve

By Y%= X" 162X — 135108X’ + 27859464.

It is easy to show that @) = (234, —432) is a point of infinite order on E). Then there are
infinitely many rational points on E), and F.

2. For b # 37a3/3, when the numerator of the X —coordinate of [2]P, is divided by the
denominator with respect to b, the remainder equals

r = 69984a°(—3b + 43a”).

1. For a # 0 and b # 43a3/3, we see that r is not zero. By the Nagell-Lutz theorem ([11,
p. 56]), [2] P, is a point of infinite order on E,. Thus P is a point of infinite order on FE.
2. For a # 0 and b = 43a®/3, the curve E; becomes

Y? = X% —162a>X* — 158436a* X + 35417736a".
Let Y/ =Y/a®, X' = X/a*. We have an elliptic curve

By Y%= X" 162X — 158436 X’ + 35417736.



It is easy to show that R = (306, —648) is a point of infinite order on E). Then there are
infinitely many rational points on E) and F.

In summary, for a,b € Z,ab # 0, there are infinitely many rational points on F. By the
birational map ¢, we can get infinitely many rational solutions of Egs. (5) and (4). This
completes the proof of Theorem 1 for n = 4.

Next, we will deal with Eq. (3) for n > 5. Let x%, 5, ..., x), be rational parameters and

set
n n
I / / /3
a = E x;, U= E x;.
i=5 i=5

From the proof of the previous part, we know that Eq. (4) has infinitely many rational
solutions

(x/1j7 x/Qja xéj? xilj)aj Z 17
depending on one parameter ¢t for A = a — a’ and B = b — b'. This leads to the conclusion
that for each 57 > 1, the n-tuple of the following form

Ty = Ty, Ty = Ty, Ty = Ty, Ty = Ty, Ty = i1 > 5
satisfies Eq. (3). O
Example 5. For n = 4, from the point [2]P, we get

q(t)

T TR D)@ — 4+ (- 1Pp(0)
B ah(t)

T —0%0)

T3 = 12X,

_ s(1)
3a?t(t + 1)(t2 —t + 1)(t — 1)%p(t)’

where ¢(t) and s(t) have degree 13 as a polynomial of Q(t), h(t) has degree 8, and p(t) has
degree 6.

Ty = — X1 — Ty — T3

From the above example, it seems too difficult to prove that these rational parametric
solutions are positive, so we need a new idea to prove Theorem 2.

Proof. In the proof of Theorem 1, for n = 4 we get the curve
C: y* =9(t* — 1)%x3 + 36at(t + 1)z5
—18a%(t + 1)%22 + 12(a® — b)(t + 1)z — 3a(a® — 4b).
The discriminant of C'is
A(t) = — 5038848(t + 1)* ((—b + a®)t* + (=2b — a®)t — b+ a*)”
((90% + a® — 10a®b)t* + (—360% + 14a’b — 2a°)t® + (54b* — 24a°b + 3a°)t?
+ (—36b" + 14a°b — 2a°)t + 9b* + a® — 10a®D).
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Let us consider A(t) = 0, so that C' has multiple roots. Put
(=b+a*)t? + (=2b—a®)t —b+a® =0,

and solving for t, we get
2b + a3 £+ /12ba3 — 3ab
t = .
—b+a?
In order to make t be a rational number, take

12ba® — 3a® = 2,
where c is a rational parameter. Then we have

; 3a8 + 2 3a + ¢ 3a® — ¢
= e . or .
12a3 3a3 — ¢ 3a® + ¢

According to the symmetry of ¢, consider

t_3a3+c
303 — ¢
Let
6at X 3 9
Yi=Y + P +36(a” —b)(t —1)(t + 1),
we get

B Y?=X?—18a%(t + 1)°X?* — 108a(t + 1)*((a® — 4b)t* + (4b + 2a*)t + a® — 4b) X
— 648(¢ + 1)*((a® — 8ba® — 20*)t* + (—8ba® + 4b* + 4a°)t* + a® — 8ba® — 2b%).
Substituting
34+ 3adP+c
o 12a3 7 3a3—c

into F', we get

((3a® — ¢)2X + 72a*c?)((3a® — ¢)*X — 36a*(c* + 9a%))?

Yy =
! (3a® — ¢)b

To get infinitely many solutions of (Y7, X), put
(3a® — ¢)?X + 72a*c* = d?,
which leads to

d? — 7242

X=—F7.
(3a3 — ¢)?



Then
d(d + 12ca)(27a” + 9ac® — dc)

Y =
c(3a® — ¢)3

Tracing back, we get

(—3a® + ¢)d* + (54a” + 18ac?)d + 108a*(3a® + ¢)(3a® + ¢?)

e 72a?(dc + 274" + 9c%a) ’
_d(d+12ca)(3a® — ¢)
2= 72a3(dc + 274" + 9c2a)’
~d(d+ 12ca)(3a® + ¢)
= 72a3(dc + 2747 + 9c2a)’
oy (—3a® — ¢)d* + (—54a” — 18ac?)d + 108a*(3a® — ¢)(3a® + ¢?)
4= :

72a3(dc + 274" + 9c2a)
To prove x; > 0,7 = 1,2, 3,4, assume that a > 0,¢ > 0,d > 0. Then we have
72a*(dc + 27a” + 9c%a) > 0,13 > 0,

so we just need to consider the numerators of x1, x9, z4. Moreover, set 3a® — ¢ > 0, we have
r9 > 0, and the discriminants of

(=3a® + ¢)d® + (54a” + 18ac?)d + 108a*(3a® + ¢)(3a°® + )
and
(—=3a® — ¢)d® + (—54a” — 18ac?)d + 108a*(3a® — ¢)(3a® + ¢?)

are 108(—c? + 45a%)(3a® + ¢*)a? > 0. We see that the intervals of d such that z; > 0,24 > 0
are given by

3a3 — ¢ ’ 3a3 — ¢

(3(9a6 +3¢2 —V8)a 3(9a + 3¢ + \/S)a)

and

3(=9a° — 3¢> — Vé)a 3(—9a® — 32 4+ Vd)a
3a + ¢ ’ 3a% + ¢ ’
respectively, where § = 405a'? + 126a°c? — 3¢*. It is easy to show that

3(=9a° — 3¢ +Vd)a 3(9a% + 3¢ — Vd)a
> 0, < 0,
3a3 + ¢ 3a3 — ¢
and
3(9a° + 3¢ + Vd)a N 3(=9a° — 3¢ +Vé)a

3a3 — ¢ 3a3 + ¢ ’
Hence if

ae (o 3(—9a° — 3¢ +Vd)a |

3a3 + ¢

we have x1, x4 > 0. This completes the proof of Theorem 2. O
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Example 6. If we take a = ¢ =1, then t =2, b = 1/3, and

 —d® +36d + 864 d(d +12) d(d + 12) —d? —18d + 216

T TT36(d 1 36) 2T 36(d36) " T 18(d+36) T T 18(d+36)

where d € (0, —9+3v/33 ~ 8.233687940) and d is a rational number. Takingd = 1,2,3,4,5,6,
7,8, we get eight 4-tuples of positive rational solutions with the same sum 1 and the same
sums of cubes 1/3, which are as follows:

(01, 23, 72, 72) = 809 13 13 197\ (233 7 7 44
L7273 7] 7 13327 13327 666° 666 /) \ 3427 3427 1717 171 )

1075 5 17\ (31 2 4 83 (1019 8 8 101

156’ 156" 78’ 78 )7 \ 45 4545745 )" \ 1476’ 1476 738’ 738 )

20 1 1 2\ (1067 133 133 41 (68 10 20 1

4271477721 )7\ 15487 1548 7747 774 )7\ 99799799799 )
3 The proofs of the corollaries

In this section, we give the proofs of the corollaries and two examples.

Proof. Take any k rational parametric solutions (z;1,...,;,),7 < k of Eq. (3), where x;5 =
to, ..., Tip = ty_3,1 < k are parameters. Let ¢ = lem, j(x;;,7 = 1,...,n,i < k), and write
Yy
Tig = = Vi € Zlt1,ta, ... tns),

with (ged, ;(vij,¢)) = 1 and ¢ € Z[ty,to, ..., t,_3], where t; =¢. Then

n n

_ 3 _ 13
g Yij = ac, E Yy = be.
j=1 j=1

Hence
ged (yi) = 1.
27]

For two sets of solutions {(z;1,...,xy), 1 < k} and {(a}y,...,2},),i < k}, if the sets of n-
tuples {(yi1, - - -, Yin), ¢ < k} and {(¢}1,...,4.,),1 < k} coincide, then d = d’ and the n-tuples
coincide. Since there are infinitely many choices of k£ elements, for every k there are infinitely
many primitive sets of k£ n-tuples of polynomials with the same sum and the same sum of

cubes. This finishes the proof of Corollary 3. O



Example 7. For n = 4, we have the rational parametric solutions

P q(t)

LUt D@ —t+ 1)(t— 1)%p(t)
o ah(t)

T D - 1%()
x3 = lxg,

s(t)

3a2t(t + )(2 —t+ 1)(t — 1)2p(t)

Multiply the least common multiple of the denominator of z;,7 = 1,...,4. When a,b € Z,
we get that

71 = —q(t), 10 = 3a*t(t* —t + 1)h(t), v3 = 3a*t*(t* — t + 1)h(t), 14 = s(t)

Ty =—=Q — X1 — Ty — T3 =

are the 4-tuples of polynomials in Z[t] satisfying Eq. (3).

Proof. The proof of Corollary 4 is similar to the proof of Corollary 3, so we omit it. O

Example 8. From the eight 4-tuples of positive rational solutions of Example 6, we get the

following eight 4-tuples of positive integers

(Y1, Yo, Y3, ya) =(150719584015, 2179482305, 4358964610, 66055079090),

(152140218230, 4570736170, 9141472340, 57460683280),
(153169889565, 7157471475, 14314942950, 48670806030),
(153837920236, 9925027112, 19850054224, 39700108448),
(154170771755, 12860172325, 25720344650, 30561821290),
(154192385490, 15950936430, 31901872860, 21267915240),
(153924475705, 19186462295, 38372924590, 11829247430),
(153386782640, 22556879800, 45113759600, 2255687980)

with the same sum 223313110020 and the same sum of cubes 3712114854198399246457100577
336000.

4 A remaining question

Ren and Yang [10, Ques. 4] raised the following question:

Question 9. Are there infinitely many n-tuples of positive integers, having no common
element, with the same sum and the same sum of their cubes for n > 47

It’s easy to calculate that any 4-tuples (x1, z9, x3,24), given by the same method from
Example 6, have no common element for d € Q((0, =9 + 3+/33). This gives a positive
answer to Question 9 for n = 4. When n > 5, it seems out of our reach. However, we
conjecture that the answer to Question 9 is yes.
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