Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.1

The Central Component of a Triangulation

Alon Regev
Department of Mathematical Sciences
Northern Illinois University
DeKalb, IL 60115
USA
regev@math.niu.edu

Abstract

We define the central component of a triangulation of a regular convex polygon as the diameter or triangle containing its geometric center. This definition yields a new recursion relation for Catalan numbers, which can be used to derive congruence relations. We generalize this idea to k-angulations, giving congruences of k-Catalan numbers. We also enumerate the triangulations that include a fixed vertex in their central components.

1 Introduction

Considering a triangulation of a regular convex polygon as a subset of \mathbb{R}^{2} centered at the origin, define its central component to be the diameter or triangle that contains the origin (see Figure 1). More generally, every dissection of a polygon can be associated with its set of components, including one central component. Bowman and the author used components and central components to enumerate symmetry classes of dissections in a paper [2], where these notions are more formally defined. In this note we use central components to obtain new recursion relations for Catalan and k-Catalan numbers, and use these recursions to prove congruence relations of these numbers. We also enumerate the triangulations that include a fixed vertex in their central components.

Let C_{n} be the n-th Catalan number, so C_{n-2} is the number of triangulations of an n-gon, and let $C_{x}=0$ unless x is a nonnegative integer. The Catalan numbers satisfy the recursion

$$
\begin{equation*}
\sum_{k=0}^{n} C_{k} C_{n-k}=C_{n+1} \tag{1}
\end{equation*}
$$

Figure 1: A central triangle with $n=12, i=3, j=4$ and $k=5$.

Consider a triangulation of an n-gon as a labeled graph with vertices $0,1, \ldots, n-1$ and edges denoted $x y$ for distinct vertices x and y. The edges include n sides $01,12, \ldots,(n-1) 0$ and $n-3$ diagonals. The cyclic length of an edge $x y$, with $x<y$, is defined as

$$
\min \{y-x, n+x-y\} .
$$

By enumerating the triangulations of an n-gon according to their central components, we obtain the following new recursion relation, which is one of the main results of this paper.

Lemma 1. For any $n \geq 3$,

$$
\begin{equation*}
C_{n-2}=\frac{n}{2} C_{n / 2-1}^{2}+\sum_{\substack{i+j+k=n \\ i \leq j \leq k<n / 2}} m_{i j k} C_{i-1} C_{j-1} C_{k-1} \tag{2}
\end{equation*}
$$

where

$$
m_{i j k}= \begin{cases}\frac{n}{3}, & \text { if } i=j=k \\ n, & \text { if } i<j=k \text { or } i=j<k \\ 2 n, & \text { if } i<j<k\end{cases}
$$

Proof. The first term of (2) enumerates the triangulations whose central component is a diameter: there are $n / 2$ possible positions for a diameter, and for each of these there are $C_{n / 2-1}$ triangulations of each of the two resulting $(n / 2+1)$-gons. In the summation, $m_{i j k}$ is the number of ways to position a triangle whose sides have cyclic lengths i, j, k inside an n-gon (see Figure 1). The conditions under the summation ensure that indeed this is a central triangle. The three cases determining $m_{i j k}$ correspond to the central triangle being equilateral, isosceles or scalene. Each position of the triangle results in an $(i+1)$-gon, a $(j+1)$-gon and a $(k+1)$-gon, and these can be triangulated in C_{i-1}, C_{j-1}, and C_{k-1} ways, respectively.

2 Congruence relations

Congruence relations of Catalan numbers C_{n} and related sequences have been the object of extensive study (see $[1,3]$ and the references therein). We next show that Lemma 1 can be used to derive some results of this nature. Note that the following result can also be proved using (1). In what follows we use the notation

$$
t_{i j k}=m_{i j k} C_{i-1} C_{j-1} C_{k-1},
$$

with $m_{i j k}$ as in Lemma 1.
Theorem 2. C_{n} is odd if and only if $n=2^{a}-1$ for some integer $a \geq 0$.
Proof. We use induction on n, with the base cases easily verified. The proof will follow from the next observation: the term $t_{i j k}$ (with $i \leq j \leq k$) is odd if and only if $i=1$ and $j=k=2^{c}$ for some $c \geq 1$. To see this, first note that by induction, any term of the form $t_{1,2^{c}, 2^{c}}$ is odd. Conversely, if $t_{i j k}$ is odd then by induction, $i=2^{b}, j=2^{c}$ and $k=2^{d}$ for some $0 \leq b \leq c \leq d$. Since $n=2^{b}+2^{c}+2^{d}$ is odd it follows that $b=0$, and since $m_{i j k}$ is odd then $c=d$ as claimed.

Now let $n=2^{a}+1$, with $a \geq 1$. On the right hand side of (2) we have $C_{n / 2-1}=0$, and the observation above implies that $t_{i j k}$ is odd for exactly one term of the summation, so C_{n-2} is odd.

Conversely, suppose that C_{n-2} is odd. If n is even then so are the terms $t_{i j k}$, so that $\frac{n}{2} C_{n / 2-1}^{2}$ must be odd. Therefore $n / 2$ is odd, and at the same time by induction $n / 2=2^{b}$ for some $b \geq 0$. Thus $b=0$ and $n=0=2^{0}-1$. If n is odd then $C_{n / 2-1}=0$, so at least one of the $t_{i j k}$ must be odd, and by the observation above this implies $n=1+2^{c}+2^{c}=1+2^{c+1}$, completing the proof.

We next use Lemma 1 to prove a recent result of Eu, Liu and Yeh [4]. Another proof is given by Xin and $\mathrm{Xu}[8$, Theorem 5].

Theorem 3. [4, Theorem 2.3] For all $n \geq 0$,

$$
C_{n} \equiv_{4} \begin{cases}1, & \text { if } n=2^{a}-1 \text { for some } a \geq 0 \tag{3}\\ 2, & \text { if } n=2^{a}+2^{b}-1 \text { for some } b>a \geq 0 \\ 0, & \text { otherwise. }\end{cases}
$$

Proof. In what follows, we repeatedly make use without mention of Theorem 2 and of the uniqueness of binary representation. By verifying the base cases we may assume $n \geq 10$ and proceed by induction on n. Consider the three cases on the right hand side of (3).

1. The case $n=2^{a}-1$:

Let $n=2^{a}+1$ with $a \geq 4$, and we show that $C_{n-2} \equiv_{4} 1$. Reducing (2) modulo 4 gives

$$
\begin{equation*}
C_{n-2} \equiv{ }_{4} \sum_{\substack{i+j+k=n \\ i \leq j \leq k<n / 2}} m_{i j k} C_{i-1} C_{j-1} C_{k-1} . \tag{4}
\end{equation*}
$$

Since $C_{2^{a-1}-1}$ is odd,

$$
\begin{equation*}
t_{1,2^{a-1}, 2^{a-1}}=n C_{0} C_{2^{a-1}} C_{2^{a-1}} \equiv_{4} 1, \tag{5}
\end{equation*}
$$

and in fact this is the only term not divisible by 4 . To see this, consider the terms for which $t_{i j k} \not \equiv_{4} 0$.
(a) Suppose $i=j=k$. Then C_{i-1} must be odd, so $i=2^{c}$ for some $c \geq 0$. Therefore

$$
3\left(2^{c}-1\right)=i+j+k=n=2^{a}+1,
$$

or equivalently, $2^{c+1}+2^{c}=2^{a}+2^{2}$. Therefore $a=3, c=2$ and $n=9$, contrary to the assumption that $n \geq 10$.
(b) Suppose $i=j<k$. Then C_{i-1} must be odd, so $i=j=2^{c}$ for some $c \geq 0$. Since $C_{k-1} \not \equiv_{4} 0$, by induction either $k=2^{d}$ with $d>c$, or $k=2^{d}+2^{e}$ with $e>d \geq c$. In the former case, this implies

$$
2^{a}+1=2 i+k=2^{c+1}+2^{d},
$$

and in the latter case

$$
2^{a}+1=2^{c+1}+2^{d}+2^{e}
$$

both cases resulting in a contradiction.
(c) Suppose $i<j=k$. As above, it follows that $j=k=2^{e}$ and either $i=2^{c}$, with $e>c$, or $i=2^{c}+2^{d}$, with $e \geq d>c$. In the former case,

$$
2^{a}+1=i+2 j=2^{c}+2^{e+1},
$$

which implies $c=0$ and $e=a-1$, yielding the term given by (5). The latter case again results in a contradiction.
(d) Suppose $i<j<k$. Since $m_{i j k}$ is even, $C_{i-1} C_{j-1} C_{k-1}$ must be odd. Therefore $i=2^{c}, j=2^{d}$ and $k=2^{e}$ for some $e>d>c \geq 0$, but then $2^{e}+2^{d}+2^{c}=2^{a}+1$, which is impossible.
2. The case $n=2^{a}+2^{b}-1$:

Let $n=2^{a}+2^{b}+1$, and we show that $C_{n-2} \equiv_{4} 2$. If $a=0$, then $n / 2-1=2^{b-1}$, so by induction on b we have $C_{n / 2-1} \equiv_{4} 2$. If $a \geq 1$, then by definition $C_{n / 2-1}=0$. In either case, (4) still holds. Note that $C_{2^{0}}=1$ and if $a \geq 1$ then by induction $C_{2^{a}} \equiv_{4} 2$. Therefore

$$
\begin{equation*}
t_{2^{a}+1,2^{b-1}, 2^{b-1}}=n C_{2^{a}} C_{2^{b-1}-1} C_{2^{b-1}-1} \equiv_{4} 2 \tag{6}
\end{equation*}
$$

Again, we show that all other $t_{i j k}$ are divisible by 4 , by considering the terms for which $t_{i j k} \not \equiv_{4} 0$.
(a) Suppose $i=j=k$. Then we must have $i=2^{c}$ for some $c \geq 0$, but this implies

$$
2^{c+1}+2^{c}=n=2^{a}+2^{b}+1,
$$

which is impossible for sufficiently large n.
(b) Suppose $i<j<k$. Then $C_{i-1} C_{j-1} C_{k-1}$ is odd, so $i=2^{c}, j=2^{d}$ and $k=2^{e}$ for some $e>d>c \geq 0$. Therefore

$$
2^{c}+2^{d}+2^{e}=n=2^{a}+2^{b}+1 .
$$

Since we may assume $a \geq 1$ (otherwise $2 n \equiv{ }_{4} 0$), it follows that $c=0, d=a$ and $e=b$. But this implies $k \geq n / 2$, contrary to the conditions under the summation.
(c) Suppose that $i<j=k$. Since C_{k-1} must be odd, $k=2^{e}$ for some $e \geq 0$. Now if $i=2^{d}$ for some $d<e$ then

$$
2^{a}+2^{b}+1=2^{d}+2^{e+1}
$$

which is impossible. Therefore by induction we have $i=2^{c}+2^{d}$, with $e>d>$ $c \geq 0$. This gives

$$
2^{a}+2^{b}+1=i+2 k=2^{c}+2^{d}+2^{e+1}
$$

so $c=0$ and $2^{a}+2^{b}=2^{d}+2^{e+1}$. It follows that $e=b-1$ and $d=a$, which is the term given by (6). A similar analysis of the case $i=j<k$ results in a contradiction.

3. Otherwise:

We show that $C_{n-2} \equiv{ }_{4} 0$ unless $n-2$ has one of the forms above. If $C_{n / 2-1}^{2} \not \equiv_{4} 0$ then $n / 2=2^{a}$ for some $a \geq 0$. For n sufficiently large this implies $8 \mid n$ so that $\frac{n}{2} C_{n / 2-1}^{2} \equiv{ }_{4} 0$. Next, consider the terms for which $t_{i j k} \not \equiv_{4} 0$.
(a) Suppose $i=j=k$. Since $C_{n / 3-1}^{3} \not \equiv_{4} 0$, we must have $n / 3=2^{a}$ for some $a \geq 0$. Thus $n=3 \cdot 2^{a}$. However, for sufficiently large n this would imply that $m_{i j k}=n / 3 \equiv{ }_{4} 0$.
(b) Suppose $i=j<k$ or $i<j=k$. If $C_{i-1} C_{j-1} C_{k-1}$ is odd then

$$
\begin{equation*}
n=2^{b+1}+2^{c} \tag{7}
\end{equation*}
$$

for some $b, c \geq 0$. Now

$$
2^{c}<n / 2=2^{b}+2^{c-1}
$$

so $c-1<b$ and in fact $c<b$ (since $c-1=b$ would imply $n=2^{c} \equiv_{4} 0$). Therefore (7) implies that $c=0$ or $c=1$, so $n-2=2^{b+1}-1$ or $n-2=2^{b+1}+2^{0}-1$.

The only case left to check is when n is odd and $C_{i-1} C_{j-1} C_{k-1} \equiv_{4} 2$. In this case, by induction $n=2 \cdot 2^{b}+\left(2^{c}+2^{d}\right)$ with $b, c, d \geq 0$ and $d>c$. Since n is odd then $c=0$, so that $n-2=2^{b+1}+2^{d}-1$.
(c) Suppose $2 n C_{i} C_{j} C_{k} \not \equiv_{4} 0$. Since C_{i}, C_{j} and C_{k} are odd, $n=2^{b}+2^{c}+2^{d}$ for some $d>c>b \geq 0$. Since n is odd, $b=0$ and $n-2=2^{c}+2^{d}-1$.

Another congruence relation follows immediately from reducing (2) modulo a prime $p \geq 5$.
Theorem 4. If $p \geq 5$ is prime and $n \equiv_{p}-2$ then $C_{n} \equiv_{p} 0$.

3 Generalization to k-angulations

Lemma 1 can be generalized to give a recursion for the number of k-angulations, which are partitions of a polygon into k-gons. Let $f_{n, k}$ be the number of k-angulations of an n-gon. It is well known (see, for example, the paper of Przytycki and Sikora [5]) that

$$
\begin{equation*}
f_{(k-1) n+2, k+1}=C_{n, k} \tag{8}
\end{equation*}
$$

where

$$
C_{n, k}=\frac{1}{(k-1) n+1}\binom{k n}{n}
$$

are the k-Catalan numbers [7, A137211]. Define $f_{n, k}=0$ unless $n=(k-2) m+2$ for some integer $m \geq 0$. The proof of the following Lemma is completely analogous to that of Lemma 1.

Lemma 5. For any $n \geq 2$ and $k \geq 3$,

$$
\begin{equation*}
f_{n, k}=\frac{n}{2} f_{n / 2+1, k}^{2}+\sum_{\substack{i_{1}+\ldots+i_{k}=n \\ i_{1} \leq \ldots \leq i_{k}<n / 2}} m_{i_{1} \ldots i_{k}} f_{i_{1}+1, k} \cdots f_{i_{k}+1, k} \tag{9}
\end{equation*}
$$

where $m_{i_{1} \ldots . i_{k}}$ is the number of ways to position a k-gon with sides of cyclic lengths i_{1}, \ldots, i_{k} inside an N-gon for $N=i_{1}+\ldots+i_{k}$.

For example, let

$$
Q_{n}=\frac{1}{2 n+1}\binom{3 n}{n}
$$

be the number of quadrangulations of a ($2 n+2$)-gon, and let $Q_{x}=0$ unless x is a nonnegative integer. Then

$$
\begin{equation*}
Q_{n}=(n+1) Q_{n / 2}^{2}+\sum_{\substack{i+j+k+l=2 n+2 \\ i \leq j \leq k \leq l<n+1}} m_{i j k l} Q_{(i-1) / 2} Q_{(j-1) / 2} Q_{(k-1) / 2} Q_{(l-1) / 2}, \tag{10}
\end{equation*}
$$

where

$$
m_{i j k l}= \begin{cases}\frac{N}{4}, & \text { if } i=l ; \tag{11}\\ N, & \text { if } i=k<l \text { or } i<j=l \\ \frac{3 N}{2}, & \text { if } i=j<k=l ; \\ 3 N, & \text { if } i=j<k<l \text { or } i<j=k<l \text { or } i<j<k=l \\ 6 N, & \text { if } i<j<k<l\end{cases}
$$

for $N=i+j+k+l$.
Theorem 4 can be generalized by reducing equation (9) modulo a prime $p \geq 3$.
Theorem 6. If $p \geq 3$ is prime with $p \nmid k$ and $p \mid n$ then $f_{n, k} \equiv_{p} 0$.
Proof. For a given k-gon, the number of cyclic permutations of the k sides that leave the k-gon unchanged is divisible by k. Therefore the number of inequivalent rotations of the k-gon inside the n-gon is divisible by n / k. It follows that $m_{i_{1} \ldots i_{k}}$ is divisible by n / k, and so the given assumptions imply that p divides $f_{n, k}$.

4 Triangulations with a fixed vertex in their central component

L. Shapiro [6] proposed the following question: how many triangulations include the vertex 0 in their central component? The following theorem answers this question.

Theorem 7. Let $n \geq 3$. The number $f(n)$ of triangulations of an n-gon with the vertex 0 outside their central component is

$$
f(n)=\frac{1}{2} C_{n-1}-C_{n-2}+\frac{1}{2} C_{n / 2-1}^{2} .
$$

Proof. Enumerate these triangulations according to the cyclic length l of the shortest diagonal that separates 0 form the center (see Figure 2).

Given such l, suppose this diagonal is given by $k(n+k-l)$. Note that $1 \leq k \leq l-1$. Since this is the shortest such diagonal, the triangulation must also include the diagonals $0 k$ and $0(n+k-l)$, forming a triangle. The regions outside of this triangle can be triangulated arbitrarily. Therefore

$$
\begin{aligned}
f(n) & =\sum_{l=2}^{\lfloor n / 2\rfloor} \sum_{k=1}^{l-1} C_{n-l-1} C_{l-k-1} C_{k-1} \\
& =\sum_{l=2}^{\lfloor n / 2\rfloor} C_{n-l-1} C_{l-1} \\
& =\sum_{m=1}^{\lfloor n / 2\rfloor-1} C_{m} C_{n-2-m} \\
& =\frac{1}{2} \sum_{m=1}^{n-3} C_{m} C_{n-2-m}+\frac{1}{2} C_{n / 2-1}^{2},
\end{aligned}
$$

where the second equality follows from (1). The result now follows by again applying (1).

Figure 2: Triangulations with the vertex 0 outside the central component.

It seems that the sequence $a(n)=f(n-3)$ is given in an entry of Sloane's encyclopedia [7, A027302]:

$$
a(n)=\sum_{0 \leq k<n / 2} T(n, k) T(n, k+1)
$$

where

$$
T(n, k)=\frac{n-2 k+1}{n-k+1}\binom{n}{k} .
$$

In this entry it also asserted that $a(n)$ is the number of Dyck $(n+2)$-paths with $U U$ spanning their midpoint. It would be interesting to determine whether any known bijection between triangulations and Dyck paths gives this correspondence.

References

[1] R. Alter and K. Kubota, Prime and prime power divisibility of Catalan numbers, J. Combin. Theory Ser. A 15 (1973), 243-256.
[2] D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, preprint, http://arxiv.org/abs/1209.6270.
[3] E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Number Theory 117 (2006), 191-215.
[4] S. Eu, S. Liu, and Y. Yeh, Catalan and Motzkin numbers modulo 4 and 8, European J. Combin. 29 (2008), 1449-1466.
[5] J. H. Przytycki and A. Sikora, Polygon dissections and Euler, Fuss, Kirkman and Cayley numbers, J. Comb. Theory A 92 (1) (2000), 68-76.
[6] L. Shapiro, Private communication, 2012.
[7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[8] G. Xin and J. Xu, A short approach to Catalan numbers modulo 2r , Electron. J. Combin. 18 (2011), P177.

2010 Mathematics Subject Classification: Primary 05A15; Secondary 05A10.
Keywords: Catalan numbers, polygon triangulation, polygon dissection, congruence.
(Concerned with sequences A000108, A137211, and A027302.)

Received October 21 2012; revised version received March 1 2013. Published in Journal of Integer Sequences, March 92013.

Return to Journal of Integer Sequences home page.

