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Abstract

Archibald and Knopfmacher recently considered the largest missing value in a com-
position of an integer and established the mean and variance. Our alternative, proba-
bilistic approach produces (in principle) all moments in an almost automatic way. In
order to show that our forms match the ones given by Archibald and Knopfmacher,
we have to derive some identities which are interesting on their own. We construct a
one-parameter family of identities, and the first one is (equivalent to) the celebrated
identity due to Allouche and Shallit. We finally provide a simple direct analysis of
the LMV(−1) case: if the largest missing value is exactly one smaller than the largest
value, we say that the sequence has the LMV(−1) property.
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1 Introduction

Our attention was recently attracted by a paper by M. Archibald and A. Knopfmacher [1]
about some asymptotic properties of a sequence of n geometric independent identically dis-
tributed random variables, with distribution pqj−1, q := 1−p. In the particular case p = 1/2,
(which is related to compositions of integers, see below), and using generating functions tech-
niques, the authors study the asymptotic mean and variance of largest missing value (if it
exists). If the largest missing value is exactly one smaller than the largest value, they say
that the sequence has the LMV(−1) property. They compute the LMV(−1) probability, and
the corresponding mean value.

Here, within our alternative and more powerful approach, we think about an urn model,
with urns labelled 1, 2, . . ., the probability of each ball falling into urn j being given by pqj−1.
In this probabilistic urn model, we throw n balls, and have the following properties, which
we collect below although the full relevance of them will only appear later in the text.

• We have asymptotic independence of urns, for all events related to urn j, j = O(log n).
This is proved, by Poissonization-DePoissonization, in [11], [3] and [8] (in this paper
for p = 1/2, but the proof is easily adapted). The error term is O(n−C) where C is a
positive constant.

• We obtain asymptotic distributions of the random variables (RV) of interest. The
number of balls in urn j, j = O(log n) is now Poisson-distributed with parameter
(np/q)qj. The asymptotic distributions are related to Gumbel distribution functions
or convergent series of such. The error term is O(n−1).

• We have uniform integrability for the moments of our RV. To show that the limiting
moments are equivalent to the moments of the limiting distributions, we need a suitable
rate of convergence. This is related to a uniform integrability condition (see Loève [9,
Section 11.4]). For the kind of limiting distributions we consider here, the rate of
convergence is analyzed in detail in [10, 3]. The error term is O(n−C).

• Asymptotic expressions for the moments are obtained by Mellin transforms. The error
term is O(n−C).

• Γ(s) decreases exponentially in the direction i∞ ([5]):

|Γ(σ + it)| ∼
√
2π|t|σ−1/2e−π|t|/2.

Also, we have a “slow increase property” for all other functions we encounter. So
inverting the Mellin transforms is easily justified.

We proceed as follows: from the asymptotic properties of the urns, we obtain the asymptotic
distributions of our RV of interest. Next we compute the Laplace transform φ(α) from which
we can derive the dominant part of probabilities and moments as well as the (tiny) periodic
part in the form of a Fourier series.

If we compare the approach in this paper with other ones that appeared previously (re-
lated to similar problems), then we notice the following. Traditionally, one would stay with
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exact enumerations as long as possible, and only at a late stage move to asymptotics. Doing
this, one would, in terms of asymptotics, carry many unimportant contributions around,
which makes the computations quite heavy, especially when it comes to higher moments.
Here, however, approximations are carried out as early as possible, and this allows for stream-
lined (and often automatic) computations of the higher moments.

The paper is organized as follows: in Section 2, we consider compositions of an integer.
Section 3 is devoted to a first computation of the dominant part of the moments. In Section
4, we analyze the periodicities and we briefly consider the conditioning on the event that
there exists a largest missing value. Section 5 contains the main result of this paper: we
present some general Allouche-Shallit-type formulas1 and the direct moments computations.
Section 6 is devoted to the LMV(−1) case and Section 7 concludes the paper.

2 Compositions of an integer

Let us consider the composition of an integer υ with n parts, i.e., υ =
∑n

i=1 xi, where xi
are natural numbers. Considering all compositions as equiprobable, we know ([8]) that the
number of parts n is asymptotically Gaussian, υ → ∞:

n ∼ N
(υ

2
,
υ

4

)

, (1)

and that the part sizes are asymptotically identically distributed as GEOM(1/2) and in-
dependent. All distributions we analyze in this paper depend on log2 n. Hence, with (1),
the same random variables related to υ are asymptotically equivalent by replacing log2 n by
log2 υ − 1 ([8]).

We will consider the case p = 1/2 and use the following notations:

n := number of balls, n large,

P(λ, u) := e−λλu/u!, (Poisson distribution),

log := log2,

η := j − log n,

L := ln 2,

α̃ := α/L,

χl :=
2lπi

L
.

Let B be the event that there exists a largest missing value, i.e., a maximal empty urn
before the last non-empty urn. Following previous results of the authors [10], let J be the
position of this maximal empty urn before the last non-empty urn. We have (here and in

1We were kindly informed by Allouche that the first forms of the identities in question are due to Woods
and Robbins [13, 12]. However, Allouche and Shallit greatly extended them and made them into what they
are today, thanks to the great book [4]. Thus, also, since this is the birthday volume for Jean-Paul Allouche,
we took the liberty to use the term Allouche-Shallit-type identities.

3



the sequel ∼ always denotes ∼n→∞)

P[J = j;B] ∼ ϕ(η),

ϕ(η) := exp(−e−Lη)
∑

r≥1

r
∏

i=1

[

1− exp(−e−L(η+i))
]

exp(−e−L(η+r)).

Here is the explanation: we recall that we have i.i.d. geometrically distributed RVs, and
that the urns are asymptotically independent, for all events related to urn j containing O(1)
balls. Also the number of balls in each such urn is now asymptotically Poisson-distributed
with parameter npqj−1 in urn j. So the asymptotic number ℓ of balls in urn j is given by

exp
(

−npqj−1
) (npqj−1)

ℓ

ℓ!
,

and with p = 1/2, η = j − log n, this is equivalent to P
(

e−Lη, ℓ
)

. Here, urn j is empty, we
have r ≥ 1 non-empty urns after urn j, and all urns after urn j + r are empty. This leads to

P[J = j;B] ∼ P
(

e−Lη, 0
)

∑

r≥1

r
∏

i=1

[

1− P
(

e−L(η+i), 0
)]

P
(

e−L(η+r), 0
)

.

Following [10] again, we now compute the Laplace transform (with the change of variables
y = e−Lη):

φ(α) =

∫ ∞

−∞

e−αηϕ(η)dη

=

∫ ∞

0

y−α̃e−y
∑

r≥1

r
∏

i=1

[

1− e−ye−Li

]

e−ye−Lr dy

Ly
(2)

=

∫ ∞

0

y−α̃e−y
∑

r≥1

r
∏

i=1

[

1− e−y2−i

]

e−y2−r dy

Ly
.

Again by [10], we have, with

F0(s) := φ(α)|α=−Ls , (3)

P(B) ∼ φ(0) +
∑

l 6=0

F0(χl)e
−2lπi logn. (4)

But, from [11] and [7], we know that P(B) = 1/2. So we should first independently confirm
that

φ(0) =

∫ ∞

0

e−y
∑

r≥1

r
∏

i=1

(

1− e−y/2i
)

e−y/2r dy

Ly
=

1

2
. (5)

To do that, set

f0(y) :=
∑

r≥1

r
∏

i=1

(

1− e−y/2i
)

e−y/2r .
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Then

f0(2y) =
∑

r≥1

r
∏

i=1

(

1− e−y/2i−1
)

e−y/2r−1

=
∑

r≥0

r
∏

i=0

(

1− e−y/2i
)

e−y/2r

= (1− e−y)e−y +
∑

r≥1

r
∏

i=0

(

1− e−y/2i
)

e−y/2r

= (1− e−y)e−y + (1− e−y)
∑

r≥1

r
∏

i=1

(

1− e−y/2i
)

e−y/2r

= (1− e−y)e−y + (1− e−y)f0(y).

Now

G0(t) :=

∫ ∞

0

e−tyf0(y)
dy

y
=

∫ ∞

0

e−2tyf0(2y)
dy

y

=

∫ ∞

0

e−2ty
[

(1− e−y)e−y + (1− e−y)f0(y)
]dy

y

= ln(2t+ 2)− ln(2t+ 1) +

∫ ∞

0

e−2ty(1− e−y)f0(y)
dy

y
.

So

G0(t) = ln(2t+ 2)− ln(2t+ 1) +G0(2t)−G0(2t+ 1).

If one iterates this formally, one gets

G0(1) =
∑

n≥3

(−1)ν(n−1) lnn.

Here ν(k) is the number of ones in the binary expansion of the integer k. We will only need
the properties ν(2k) = ν(k) and ν(2k + 1) = 1 + ν(k).

This is not a convergent series, but it makes good sense as follows. We have

G0(1) =
∑

n≥2

(−1)ν(n) ln(n+ 1)

=
∑

j≥1

(−1)ν(j)[ln(2j + 1)− ln(2j + 2)]

=
∑

j≥0

(−1)ν(j) ln

[

2j + 1

2j + 2

]

+ ln 2

= −1

2
ln 2 + ln 2 =

ln 2

2
=
L

2
(6)
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by the Allouche-Shallit (or Woods-Robbins) identity ([4, 2, 11]). This proves (5).
Now we must confirm that F0(χl) = 0 in order to prove that the second part of (4) is

null. Set

fα(y) =
∑

r≥1

r
∏

i=1

(

1− e−y/2i
)

e−y/2ry−α.

Then

fα(2y) =
∑

r≥1

r
∏

i=1

(

1− e−y/2i−1
)

e−y/2r−1

(2y)−α

=
∑

r≥0

r
∏

i=0

(

1− e−y/2i
)

e−y/2r(2y)−α

= (1− e−y)e−y(2y)−α +
∑

r≥1

r
∏

i=0

(

1− e−y/2i
)

e−y/2r(2y)−α

= (1− e−y)e−y(2y)−α + (1− e−y)
∑

r≥1

r
∏

i=1

(

1− e−y/2i
)

e−y/2r(2y)−α

= (1− e−y)e−y(2y)−α + (1− e−y)2−αfα(y).

Now

Gα(t) :=

∫ ∞

0

e−tyfα(y)
dy

y
=

∫ ∞

0

e−2tyfα(2y)
dy

y

=

∫ ∞

0

e−2ty
[

(1− e−y)e−y(2y)−α + (1− e−y)fα(y)2
−α

]dy

y

= 2−αΓ(−α)[(2t+ 1)α − (2t+ 2)α] +

∫ ∞

0

e−2ty(1− e−y)fα(y)2
−αdy

y
.

So

Gα(t) = Γ(−α)2−α[(2t+ 1)α − (2t+ 2)α] + 2−αGα(2t)− 2−αGα(2t+ 1).

By iteration we find

M(α) := Gα(1) = −Γ(−α)
∑

k≥1

2k−1
∑

j=0

(−1)ν(2
k+j)2−αk(2k + j + 1)α

= Γ(−α)
∑

k≥1

2k−1
∑

j=0

(−1)ν(j)2−αk(2k + j + 1)α, (7)

and
φ(α) =M(α̃)/L. (8)
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Now, by (3) and setting s = χl,

F0(χl) =
1

L
Γ(χl)

∑

k≥1

2k−1
∑

j=0

(−1)ν(j)(2k + j + 1)−χl .

It is already proved in [11] that this is zero. (But it follows readily from the computations
that appear in this paper.)

3 The moments

The purpose of this section is to obtain the dominant terms of the moments of J , the first
two of which have been computed already in [1].

The paper [10] contains the following theorem, which we express in our notation

Fk(s) := φ(k)(α)
∣

∣

α=−Ls
.

Theorem 1. Let J be the position of the maximal empty urn before the last non-empty urn.
The first two moments of the parameter J are asymptotically given by

E(J − log n;B) ∼ φ′(0) +
∑

l 6=0

F1(χl)e
−2lπi logn,

E((J − log n)2;B) ∼ φ′′(0) +
∑

l 6=0

F2(χl)e
−2lπi logn.

�

Now, by (7) and (8),

φ(α) =M(α̃)/L,

M(α) = Γ(−α)H(α), with (9)

H(α) :=
∑

k≥1

2k−1
∑

j=0

(−1)ν(j)2−αk(2k + j + 1)α.

The following expansion is well known, where γ is the Euler’s constant ([5]):

Γ(−α) = − 1

α
− γ −

(

π2

12
+
γ2

2

)

α + · · · .
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Now we expand H(α):

H(α) = 0 +H ′(0)α +H ′′(0)
α2

2
+H ′′′(0)

α3

6
+ · · · ,

H ′(0) =
∑

k≥1

[

−Lk
2k−1
∑

j=0

(−1)ν(j) + L
2k−1
∑

j=0

(−1)ν(j) log(2k + j + 1)

]

,

H ′′(0) =
∑

k≥1

[

L2k2
2k−1
∑

j=0

(−1)ν(j) − 2L2k
2k−1
∑

j=0

(−1)ν(j) log(2k + j + 1) (10)

+ L2

2k−1
∑

j=0

(−1)ν(j) log2(2k + j + 1)

]

,

H ′′′(0) =
∑

k≥1

[

−L3k3
2k−1
∑

j=0

(−1)ν(j) + 3L3k2
2k−1
∑

j=0

(−1)ν(j) log(2k + j + 1)

− 3L3k

2k−1
∑

j=0

(−1)ν(j) log2(2k + j + 1) +
2k−1
∑

j=0

(−1)ν(j) log3(2k + j + 1)

]

.

Note that, as φ(0) = 1/2, the first term in these equations is identically 0 and H ′(0) = −L
2
.

Set

f(x) =
∑

k≥0

k

2k−1
∑

j=0

(−1)ν(j) log(2k + j + x),

g(x) =
∑

k≥0

2k−1
∑

j=0

(−1)ν(j) log(2k + j + x).

A similar computation as before shows that

f(x) = f
(x

2

)

− f
(x+ 1

2

)

+ g(x)− log(1 + x)

and

g(x) = log(1 + x) + g
(x

2

)

− g
(x+ 1

2

)

.

(Later we will make one general observation that produces all the necessary identities at
once.) Therefore

g(0) = g(0)− g(1
2
) ⇒ g(1

2
) = 0 ⇒ g(1) = 1 + g(1

2
)− g(1) ⇒ g(1) = 1

2
.

Likewise

f(0) = f(0)− f(1
2
) + g(0) ⇒ f(1

2
) = g(0) ⇒

f(1) = f(1
2
)− f(1) + g(1)− 1 ⇒ f(1) = 1

2
g(0) + 1

4
− 1

2
= 1

2
g(0)− 1

4
.
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We don’t know what g(0) is, but it will cancel out later on. Furthermore, we note that
the constant g(0) is related to N ′(0) from a paper by Flajolet and Martin [6]; this observation
is, however, irrelevant here. The notation refers to N(s) which is the analytic continuation
of

∑

j≥1

(−1)ν(j)/js.

Set

h(x) =
∑

k≥0

2k−1
∑

j=0

(−1)ν(j) log2(2k + j + x).

Then we derive in a similar fashion that

h(x) = log2(1 + x) + 2g
(x

2

)

+ h
(x

2

)

− 2g
(x+ 1

2

)

− h
(x+ 1

2

)

.

Hence

h(0) = 2g(0) + h(0)− 2g(1
2
)− h(1

2
) ⇒ 0 = 2g(0)− h(1

2
) ⇒ h(1

2
) = 2g(0),

and

h(1) = 1 + 2g(1
2
) + h(1

2
)− 2g(1)− h(1) ⇒ 2h(1) = 1 + 2g(0)− 1 ⇒ h(1) = g(0).

Note that
f(1)− 1

2
h(1) = 1

2
g(0)− 1

4
− 1

2
g(0) = −1

4
,

and the quantity g(0) cancels out. Writing it in extended form,

∑

k≥1

k

2k−1
∑

j=0

(−1)ν(j) log(2k + j + 1)− 1

2

∑

k≥0

2k−1
∑

j=0

(−1)ν(j) log2(2k + j + 1) = −1

4
.

Hence H ′′(0) = −L2/2.
Let us turn to the third derivative. Omitting the details (introducing various auxiliary

functions), we can prove that H ′′′(0) = −L3/2. But we will soon show (in Section 5) how
one can streamline these computations to get all moments in a mechanical way.

Now we substitute α = α̃ in M(α)/L and expand w.r.t. α. By (8) and (9), this immedi-
ately gives

φ(0) =
1

2
,

φ′(0) =
1

2

(

γ

L
+

1

2

)

,

φ′′(0) =
1

2

(

1

3
+
γ

L
+
γ2

L2
+

π2

6L2

)

.

Note that this conforms to [1], as it should.
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4 The periodicities

Let us analyze F1(χl). To simplify the notation, we will simply write χ. We have

φ(α) =
1

L
Γ(−α/L)

∑

k≥1

2k−1
∑

j=0

(−1)ν(j)e−αk(2k + j + 1)α/L,

φ′(α) =
1

L

[

− 1

L
Γ(−α/L)ψ(−α/L)

∑

k≥1

2k−1
∑

j=0

(−1)ν(j)e−αk(2k + j + 1)α/L

+ Γ(−α/L)
[

−
∑

k≥1

2k−1
∑

j=0

k(−1)ν(j)e−αk(2k + j + 1)α/L

+
∑

k≥1

2k−1
∑

j=0

log(2k + j + 1)(−1)ν(j)e−αk(2k + j + 1)α/L
]]

,

F1(χ) = − 1

L2
Γ(χ)

∑

k≥1

2k−1
∑

j=0

(2k + j + 1)−χ
(

ψ(χ) + kL− L log(2k + j + 1)
)

.

We need an auxiliary function

g(x) :=
∑

k≥0

2k−1
∑

j=0

(−1)ν(j)(2k + j + x)−χ.

As usual,

g(x) = (1 + x)−χ +
∑

k≥0

2k+1−1
∑

j=0

(−1)ν(j)(2k+1 + j + x)−χ

= (1 + x)−χ +
∑

k≥0

2k−1
∑

j=0

(−1)ν(j)
(

2k + j +
x

2

)−χ

−
∑

k≥0

2k−1
∑

j=0

(−1)ν(j)
(

2k + j +
x+ 1

2

)−χ

,

and so

g(x) = (1 + x)−χ + g
(x

2

)

− g
(x+ 1

2

)

.

Therefore

g(0) = 1 + g(0)− g(1
2
) ⇒ g(1

2
) = 1 ⇒ g(1) = 1 + g(1

2
)− g(1)

⇒ 2g(1) = 2 ⇒ g(1) = 1.

We need a further auxiliary function

f(x) :=
∑

k≥0

k
2k−1
∑

j=0

(−1)ν(j)(2k + j + x)−χ

10



and derive

f(x) =
∑

k≥1

(k − 1)
2k−1
∑

j=0

(−1)ν(j)(2k + j + x)−χ − (1 + x)−χ + g(x)

= f
(x

2

)

− f
(x+ 1

2

)

− (1 + x)−χ + g(x).

Therefore

f(0) = f(0)− f(1
2
)− 1 + g(0) ⇒ f(1

2
) = −1 + g(0) ⇒ f(1) = f(1

2
)− f(1)

⇒ f(1) = −1
2
+ 1

2
g(0).

We need a third function

h(x) :=
∑

k≥0

2k−1
∑

j=0

(−1)ν(j)(2k + j + x)−χ log(2k + j + x).

The usual procedure (that we suppress) leads to

h(x) = h
(x

2

)

− h
(x+ 1

2

)

+ g
(x

2

)

− g
(x+ 1

2

)

+ (1 + x)−χ log(1 + x).

Therefore

h(0) = h(0)− h(1
2
) + g(0)− g(1

2
) ⇒ h(1

2
) = g(0)− 1 ⇒

h(1) = h(1
2
)− h(1) + g(1

2
)− g(1) + 1 ⇒ h(1) = 1

2
g(0).

Now

F1(χ) = − 1

L2
Γ(χ)

[

ψ(χ)(g(1)− 1) + Lf(1)− L(h(1)− 1)
]

= − 1

L
Γ(χ)

[

− 1

2
+

1

2
g(0)− 1

2
g(0) + 1

]

= − 1

2L
Γ(χ).

Finally, we turn to F2(χ). Omitting the details, we can prove that

F2(χ) = −Γ(χ)

2L
+

Γ(χ)ψ(χ)

L2
.

Note that the periodicities conform to [1]. We will not pursue these computations as we
will soon give a simple, direct way of getting all the expressions we need.

To obtain the conditioned moments, we divide by P(B) = 1/2. So

E(J − log n|B) ∼ 2

[

φ′(0) +
∑

l 6=0

F1(χl)e
−2lπi logn

]

,

E((J − log n)2|B) ∼ 2

[

φ′′(0) +
∑

l 6=0

F2(χl)e
−2lπi logn

]
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and we have the conditioned variance

V(J |B) ∼ 2φ′′(0)− 4(φ′(0))2 + 2
∑

l 6=0

F2(χl)e
−2lπi logn

− 8φ′(0)

[

∑

l 6=0

F1(χl)e
−2lπi logn

]

− 4

[

∑

l 6=0

F1(χl)e
−2lπi log n

]2

.

This has been computed in [1] already.

5 General Allouche-Shallit-type formulas and direct

moments computations

In this section, we first prove a very simple expression for H(m)(0) which translates to φ(α).
As a byproduct, we have a direct form for all moments and also a family of new interesting
identities.

Set

A(a, b) :=
∑

k≥0

ka
2k−1
∑

j=0

(−1)ν(j) logb(2k + j + 1).

We have seen already, by (6), that

A(0, 1) =
1

2
,

which is the Allouche-Shallit identity, and

A(0, 2)− 2A(1, 2) =
1

2
.

Introducing more and more auxiliary functions, one is led to

A(0, 3)− 3A(1, 2) + 3A(2, 2) =
1

2
,

A(0, 4)− 4A(1, 3) + 6A(2, 2)− 4A(3, 1) =
1

2
.

An obvious pattern appears:

m
∑

l=0

(

m

l

)

(−1)m−lA(l,m− l) =
1

2
.

All these formulas follow from the master formula for m ≥ 0:

Theorem 2.
∑

k≥0

2k−1
∑

j=0

(−1)ν(j)
(

log(2k + j + 1)− k
)m

=
1

2
.

12



Proof. Here is the simple proof. Set

f(x) :=
∑

k≥0

2k−1
∑

j=0

(−1)ν(j)
(

log(2k + j + x)− k
)m

.

Then

f(x) = logm(1 + x) +
∑

k≥0

2k+1−1
∑

j=0

(−1)ν(j)
(

log(2k+1 + j + x)− k − 1
)m

= logm(1 + x) +
∑

k≥0

2k+1−1
∑

j=0

(−1)ν(j)
(

log(2k +
j + x

2
)− k

)m

= logm(1 + x) +
∑

k≥0

2k−1
∑

j=0

(−1)ν(j)
(

log(2k +
2j + x

2
)− k

)m

−
∑

k≥0

2k−1
∑

j=0

(−1)ν(j)
(

log(2k +
2j + 1 + x

2
)− k

)m

= logm(1 + x) + f
(x

2

)

− f
(x+ 1

2

)

.

Therefore, by setting x = 0,
f(1

2
) = 0,

and by setting x = 1,

f(1) =
1

2
.

The master theorem leads to (note that the summation on k is from k = 0, but the summation
in H(m) starts from k = 1)

H(m)(0) = −1

2
Lm, m ≥ 1.

This gives the following Laplace transforms:

Theorem 3.

M(α) = Γ(−α)H(α) = −1

2
Γ(−α)(eLα − 1),

φ(α) =M(α̃)/L = − 1

2L
Γ(−α̃)(eLα̃ − 1).

Now that we found that φ(α) has such a simple explicit form, we recover immediately
φ(0), φ′(0), φ′′(0), and a new expression φ′′′(0) related to the third moment:

φ′′′(0) =
ζ(3)

L3
+
π2γ

4L3
+

π2

8L2
+

γ

2L
+

γ3

2L3
+

1

8
+

3γ2

4L2
. (11)
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Similarly, we recover F1(χ), F2(χ), and a new expression

F3(χ) = Γ(χ)

[

−3ψ(1, χ)

2L3
− 3ψ2(χ)

2L3
+

3ψ(χ)

L2
− 1

2L

]

. (12)

For instance, we can state the third moment:

Theorem 4.

E
(

(J − log n)3;B
)

∼ φ′′′(0) +
∑

l 6=0

F3(χl)e
−2lπi log n

with (11) and (12).

All moments can in principle be computed automatically.

6 The LMV(−1) case

If the largest missing value is exactly one smaller than the largest value, we say, following
Archibald and Knopfmacher [1], that the sequence has the LMV(−1) property. In this
case, contrarily to the previous sections, our urn model leads almost immediately to all
probabilistic properties: we have here a very simple form for φ(α). Let B be now the event
that the LMV(−1) property is satisfied, and J be the largest missing value exactly one
smaller than the largest value. We easily derive (we just plug r = 1 into (2))

φ(α) =

∫ ∞

0

y−α̃e−y
[

1− e−ye−L

]

e−ye−L dy

Ly

=
1

L

(

2−α̃3α̃ − 2α̃
)

Γ(−α̃).

Hence, automatically,

φ(0) = 2− log 3,

φ′(0) =
2γ

L
+ log 3− γ log 3

L
− log2 3

2
,

φ′′(0) = − log3 3

3
+

2

3
+ log2 3− log 3γ2

L2
+ 2

γ log 3

L
− π2 log 3

6L2
− log 3 +

π2

3L2
+ 2

γ2

L2
− γ log2 3

L
.

The first two expressions are already given in [1]. The third one is new. All moments are
obtained in the same way.

Also we easily derive

F0(χl) =
1

L
(3−χl − 1)Γ(χl),

F1(χl) = −Γ(χl)3
−χl

L2
[L− L log 3 + L3χl + ψ(χl)− ψ(χl)3

χl ] ,

F2(χl) = −Γ(χl)3
−χl

L3

[

−L2 + L23χl + 2 log 3L2 − 2ψ(χl)L− 2ψ(χl)L3
χl

− log2 3L2 + 2ψ(χl) log 3L− ψ(1, χl) + ψ(1, χl)3
χl − ψ2(χl) + ψ2(χl)3

χl

]

.
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Again the first two expressions are already given in [1]. The third one is new. That described
the moments, but we can also get the (asymptotic) probability that B holds:

P(B) ∼ φ(0) +
∑

l 6=0

F0(χl)e
−2lπi logn.

7 Conclusion

We succeeded in analyzing the instance p = 1/2, related to random compositions. The
(semi)automatic computations of all moments led us to a one parameter extension of the
celebrated identity due to Allouche and Shallit. Unfortunately, this analysis cannot be
extended to the case p 6= 1/2, as no expansions that involve ν(k) are available. Of course we
could use a general integral form similar to (2) and use the theorems we developed in [10],
but it would not be really explicit. One could also use some recursion on the number of gaps
and some inclusion-exclusion expressions, but it would not be simpler.

The instance p = 1/2 is privileged inasmuch as it leads to very beautiful mathematics,
and this is just appropriate for the present birthday issue.

References

[1] M. Archibald and A. Knopfmacher. The largest missing value in a composition of an
integer. Discrete Math. 311 (2011), 723–731.

[2] J.-P. Allouche, H. Cohen, M. Mendès France, and J. O. Shallit. De nouveaux curieux
produits infinis. Acta Arith. 49 (1987), 141–153.

[3] G. Louchard, H. Prodinger, and M. D. Ward. The number of distinct values of some
multiplicity in sequences of geometrically distributed random variables. Discr. Math.
and Theoret. Comp. Sci. (2005), 231–256. 2005 International Conference on Analysis
of Algorithms.

[4] J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, Cambridge, 2003.

[5] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover, 1965.

[6] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applica-
tions. J. Comput. Syst. Sci. 31 (1985), 182–209.

[7] P. Hitczenko and A. Knopfmacher. Gap-free samples of geometric random variables.
Discrete Math. 294 (2005), 225–239.

[8] P. Hitczenko and G. Louchard. Distinctness of compositions of an integer: a probabilistic
analysis. Random Structures & Algorithms 19 (2001), 407–437.
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