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Abstract

A closed-form expression is derived for the enumeration of all palindromic binary

strings of length n > r having no r-runs of 1’s, in terms of the r-Fibonacci sequence. A

similar closed-form expression for the number of zeros contained in all such palindromic

binary strings is derived in terms of the number of zeros contained in all binary strings

having no r-runs of 1’s.

1 Introduction

Grimaldi [2] and Hayes [5] have noted the well-known fact that the number of binary strings
of length n, in which there are no consecutive 1’s is given by Fn+2, where Fn denotes the n-th
Fibonacci number generated from the difference equation Fn = Fn−1+Fn−2, for n ≥ 2, with
F0 = 0 and F1 = 1. Thus for binary strings of length, say n = 3, there are exactly F5 = 5
binary strings in which there are no consecutive 1’s, namely 000, 001, 010, 100 and 101. The
property of a binary string having no consecutive 1’s (or equivalently no consecutive zeros),
can easily be generalized to the property that a binary string has no substrings of length r
consisting of r consecutive ones, where r is a fixed integer greater than or equal to 2. We
shall refer to this property in short, by saying that a binary string has no r-runs of 1’s. Both
the author [6] and Bollinger [1] showed that the number of such binary strings is given by
Un+r, where {Un} denotes the well-known r-Fibonacci sequence generated by the r-th order
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linear difference equation Un =
∑

r

i=1 Un−i, for n ≥ r, with U0 = U1 = · · · = Ur−2 = 0 and
Ur−1 = 1.

In this paper we shall first be concerned with counting the number of palindromic binary
strings, having no r-runs of 1’s. Letting Pr(n) denote the number of such binary strings
having length n > r ≥ 2, we will show that

Pr(n) =







∑⌊
r−1+(−1)r+1

2
⌋

i=0 Un

2
+r−1−i, if n even;

∑⌊
r−2+(−1)r

2
⌋

i=−1 Un−1
2

+r−1−i
, if n odd.

(1)

where {Un} is the r-Fibonacci sequence. Thus for example when r = 2 and so Un = Fn,
then the number of palindromic binary strings of length, say n = 3, having no consecutive
1’s, would be P2(3) = F3 + F2 = 2 + 1 = 3, namely 000, 101 and 010.

In addition to establishing the closed-form expression for Pr(n) in Section 2, we shall
also address the problem of enumerating the total number of zeros contained in the Pr(n)
palindromic strings. Such a characteristic was studied by Grimaldi et al. [3, 4] for both
binary and ternary strings, as well as their palindromic counterparts, and was expressed
in terms of Fibonacci and Lucas numbers. In the case of the palindromic binary strings in
question, we shall approach the problem of enumerating the number of zeros, by first deriving
an r-th order non-homogeneous difference equation for the number of zeros, denoted Zr(n),
in all Un+r binary strings of length n ≥ 1 having no r-runs of 1’s. By employing a similar
argument used to derive Pr(n), we shall then in Section 3 produce a closed-form expressions
in the style of (1) for the number of zeros contained in all Pr(n) palindromic binary strings,
in terms of the characteristic Zr(·) and the r-Fibonacci sequence Un.

2 Main result

To begin we note that all palindromic binary string of length n ≤ r will have no r-runs of
1’s, with the exception of the string 11 · · · 11

︸ ︷︷ ︸

r 1’s

. Thus as the number of palindromic binary

strings of length n is 2
2n+1+(−1)n+1

4 , we have Pr(n) = 2
2n+1+(−1)n+1

4 for 1 ≤ n < r and Pr(r) =

2
2r+1+(−1)r+1

4 − 1. To establish the closed-form expression for Pr(n), when n > r, we will
require the following technical lemma.

Lemma 1. Given an integer r ≥ 1, then max{s ∈ Z : 2s + 1 < r} =
⌊
r−2+(−1)r

2

⌋

and

max{s ∈ Z : 2s < r} =
⌊
r−1+(−1)r+1

2

⌋

.

Proof. By definition of the floor function ⌊·⌋, the largest s ∈ Z such that 2s+1 ≤ r is ⌊ r−1
2
⌋.

Now if r is even then 2⌊ r−1
2
⌋ + 1 < r, while if r is odd then ⌊ r−1

2
⌋ − 1 = ⌊ r−3

2
⌋ will be such

that 2⌊ r−3
2
⌋ + 1 < r. By inspection we see the first formula reduces to both these cases. A

similar argument establishes the second formula.
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We now establish the closed-form expression for Pr(n) when n > r.

Theorem 2. The number of palindromic binary strings of length n > r ≥ 2 having no r-runs
of 1’s is given by

Pr(n) =







∑⌊
r−1+(−1)r+1

2
⌋

i=0 Un

2
+r−1−i, if n even;

∑⌊
r−2+(−1)r

2
⌋

i=−1 Un−1
2

+r−1−i
, if n odd.

where {Un} is the r-Fibonacci sequence.

Proof. We first note that all palindromic binary strings of an even length n = 2m, are
constructed by concatenating to the left of a binary string with its mirror image of length
m. Similarly all palindromic binary strings of an odd length n = 2m + 1, are constructed
by concatenating to the right and left of a central entry, containing either a 0 or 1, a binary
string of length m and its mirror image respectively.

Mirror String of Length m Binary String of Length m
Mirror String of Length m 0/1 Binary String of Length m

Table 1: Even and odd length palindromic binary strings

Thus all palindromic binary strings in question are constructed in this manner, using the
binary strings having no r-runs of 1’s, provided that a possible resulting central substring
consisting entirely of 1’s does not exceed or reach a length equal to r. With this in mind
we further observe that for a fixed integer r ≥ 2, the set of Un+r binary strings of length
n > r having no r-runs of 1’s, can be partitioned into r disjoint sets containing those binary
strings whose left-hand entries are 0, 10, 110, . . . , 11 · · · 1

︸ ︷︷ ︸

(r−1) 1’s

0 respectively. We now examine

more closely the construction of the even and odd length palindromic binary strings in
question.

Case 1: Even Length n = 2m > r.

In this instance, if the right binary string of length m has a left-hand entry of 0, then the
remaining binary string of length m− 1 cannot contain r-runs of 1’s, and so there must be
Um−1+r such strings in total. Similarly, if the right binary string of length m has a left-hand
entry of 11 · · · 1

︸ ︷︷ ︸

s 1’s

0, where 1 ≤ s < r, then the remaining binary string of length m − s − 1

cannot contain r-runs of 1’s, and so there must be Um−s−1+r such strings in total.
Now if r = 2, then the set of binary strings having a left-hand entry of 10 cannot be

used to construct the palindromic binary strings in question, as this would result in a central
substring of 11, and so P2(2m) = Um+1. However, if r > 2, then both the above sets of binary
strings can be used, provided the binary strings having the left-hand entry of 11 · · · 1

︸ ︷︷ ︸

s 1’s

0 are
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Mirror String of Length m− 1 0 0 String of Length m− 1
Mirror String of Length m− s− 1 01 · · · 11 11 · · · 10 String of Length m− s− 1

Table 2: Even length palindromic binary strings having no r-runs of 1’s

such that 2s < r. Thus by Lemma 1 we conclude 1 ≤ s ≤ ⌊ r−1+(−1)r+1

2
⌋, and so

Pr(2m) = Um−1+r +

⌊
r−1+(−1)r+1

2
⌋

∑

s=1

Um−s−1+r =

⌊
r−1+(−1)r+1

2
⌋

∑

i=0

Un

2
+r−1−i , (2)

noting here that the right-hand side of (2) agrees with P2(2m) = Um+1, when r = 2.

Case 2: Odd Length n = 2m+ 1 > r.

Now if the palindromic strings in question of length n = 2m + 1 have a central entry
containing a 0, then any binary string of length m having no r-runs of 1’s can be used to
concatenate to the right of this central entry, and to the left with its mirror image, and so
there must be Um+r such strings in total. Alternatively if the central entry contains a 1,
then if the right binary string of length m has a left-hand entry of 0, then the remaining
binary string of length m − 1 cannot contain r-runs of 1’s, and so there must be Um−1+r

such strings in total. Similarly if the right binary string of length m has a left-hand entry
of 11 · · · 1

︸ ︷︷ ︸

s 1’s

0, where 1 ≤ s < r, then the remaining binary strings of length m− s− 1 cannot

contain r-runs of 1’s, and so there must be Um−s−1+r such strings in total. Now if r = 2, 3
then the set of binary strings having

Mirror String of Length m 0 Binary String of Length m
Mirror String of Length m− 1 0 1 0 Binary String of Length m− 1

Mirror String of Length m− s− 1 01 · · · 11 1 11 · · · 10 String of Length m− s− 1

Table 3: Odd length palindromic binary strings having no r-runs of 1’s

a left-hand entry of 10 cannot be used to construct the palindromic binary strings in question,
as this would result in a central substring of 111, and so P2(2m + 1) = Um+2 + Um+1, and
P3(2m + 1) = Um+3 + Um+2. However if r > 3, then the above three sets of binary strings
can be used, provided the binary strings having a left-hand entry of 11 · · · 1

︸ ︷︷ ︸

s 1’s

0 are such that

2s+ 1 < r. Thus again by Lemma 1 we conclude 1 ≤ s ≤
⌊
r−2+(−1)r

2

⌋

, and so

Pr(2m+ 1) = Um+r + Um−1+r +

⌊

r−2+(−1)r

2

⌋

∑

s=1

Um−s−1+r =

⌊
r−2+(−1)r

2
⌋

∑

i=−1

Un−1
2

+r−1−i
, (3)
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noting here that the right-hand side of (3) agrees with P2(2m + 1) = Um+2 + Um+1 and
P3(2m+ 1) = Um+3 + Um+2, when r = 2 and r = 3 respectively.

3 Characteristics of palindromic binary strings

We now turn our attention to the problem of enumerating the total number of zeros contained
in the set of all palindromic binary strings of length n > r having no r-runs of 1’s. To help
achieve this end, it will first be necessary to obtain a recurrence relation for the number of
zeros contained in all Un+r binary strings having no r-runs of 1’s, of length n ≥ 1. We first
note that the total number of zeros contained in the set of all 2n binary strings of length
n ≥ 1, is given by Z(n) = n2n−1. Interested readers can consult Nyblom [6] for a proof.

Lemma 3. For a fixed integer r ≥ 2, the total number of zeros that occur in the Un+r binary

strings of length n ≥ 1 having no r-runs of 1’s, satisfy the following r-th order recurrence

relation

Zr(n) =
r∑

i=1

Zr(n− i) + Un+r ,

for n > r, with the r initial conditions Zr(n) = n2n−1, for n = 1, 2, . . . , r.

Proof. Recall that the binary strings of length n > r having no r-runs of 1’s, can be
partitioned into r disjoint sets containing those binary strings whose left-hand entry are
0, 10, 110, . . . , 11 · · · 1

︸ ︷︷ ︸

(r−1) 1’s

0 respectively. Now if the binary strings in question have a left-hand

entry of 0, then the remaining Un−1+r substrings of length n− 1 will by definition contribute
Zr(n − 1) zeros, making a total contribution of Zr(n − 1) + Un−1+r zeros. Similarly if the
binary strings in question have a left-hand entry of 11 · · · 1

︸ ︷︷ ︸

i 1’s

0, where 1 ≤ i < r, then the

remaining Un−i−1+r substrings of length n− i− 1 will contribute Zr(n− i− 1) zeros, making
a total contribution of Zr(n− i− 1) + Un−i−1+r zeros. Thus for n > r

Zr(n) = Zr(n− 1) + Un−1+r +
r−1∑

i=1

(Zr(n− i− 1) + Un−i−1+r)

=
r∑

i=1

(Zr(n− i) + Un−i+r)

=
r∑

i=1

Zr(n− i) +
r∑

i=1

Un−i+r

=
r∑

i=1

Zr(n− i) + Un+r .
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Clearly the number of zeros that occur in the binary strings of length 1 ≤ n ≤ r having no
r-runs of 1’s, must be equal to the number of zeros in all binary strings having corresponding
length, consequently Zr(n) = Z(n) = n2n−1, for n = 1, 2, . . . , r.

By employing a similar argument used to establish Theorem 2, we can now obtain an
expression for the number of zeros contained in all palindromic binary strings of length
n > r ≥ 2 having no r-runs of 1’s, in terms of the characteristic Zr(·), and the r-Fibonacci
sequence {Un}.

Theorem 4. For a fixed integer r ≥ 2, the total number of zeros that occur in the Pr(n)
palindromic binary strings of length n > r having no r-runs of 1’s is

Z̃r(n) =







2
∑⌊

r−1+(−1)r+1

2
⌋

i=0 (Un

2
+r−1−i + Zr(

n

2
− 1− i)), if n even;

Un−1
2

+r
+ 2Zr(

n−1
2
) + 2

∑⌊
r−2+(−1)r

2
⌋

i=0 (Un−1
2

+r−1−i
+ Zr(

n−1
2

− 1− i)), if n odd.

(4)

Proof. In what follows recall the construction of the Pr(n) palindromic binary strings of
length n > r outlined in the proof of Theorem 2. Now in the case of an even length n = 2m
when r = 2, then the Um−1+r = Um+1 right substrings contained in

Mirror String of Length m− 1 0 0 String of Length m− 1

will by definition contribute Zr(m−1) = Z2(m−1) zeros, together with the additional Um+1

left-hand zeros bringing a total contribution, with the mirror string, of 2(Um+1+Z2(m− 1))
zeros, and so Z̃2(2m) = 2(Um+1 + Z2(m− 1)). However when r > 2, then the above string,
together with the Um−s−1+r additional right substrings contained in

Mirror String of Length m− s− 1 01 · · · 11 11 · · · 10 String of Length m− s− 1

for, 1 ≤ s ≤ ⌊ r−1+(−1)r+1

2
⌋, will each contribute Zr(m − s − 1) zeros, together with the

additional Um−s−1+r zero from each substring 11 · · · 1
︸ ︷︷ ︸

s 1’s

0, bringing a total contribution, with

the mirror string, of

Z̃r(2m) = 2(Um−1+r + Zr(m− 1)) + 2

⌊
r−1+(−1)r+1

2
⌋

∑

s=1

(Um−s−1+r + Zr(m− s− 1))

= 2

⌊
r−1+(−1)r+1

2
⌋

∑

i=0

(Un

2
−i−1+r + Zr(

n

2
− i− 1)) (5)

zeros, noting here that the right-hand side of (5) agrees with Z̃2(2m), when r = 2.
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Mirror String of Length m 0 Binary String of Length m

Mirror String of Length m− 1 0 1 0 Binary String of Length m− 1

In the case of an odd length n = 2m + 1 when r = 2 and r = 3, then the Um+r and
Um−1+r right substring contained in
for respectively, will each contribute Zr(m) and Zr(m − 1) zeros. In the first palindromic
string, by adding the Um+r centered zeros brings a total contribution, with the mirror sub-
string, of Um+r + 2Zr(m) zeros. However in the second palindromic string, by adding the
Um−1+r left-hand zeros brings a total contribution, with the mirror substring, of 2(Um−1+r +
Zr(m − 1)) zeros. Thus the total number of zeros contained in the first two palindromic
strings is

(Um+r + 2Zr(m)) + 2(Um−1+r + Zr(m− 1)) ,

and so Z̃2(2m + 1) = (Um+2 + 2Z2(m)) + 2(Um+1 + Z2(m− 1)) and Z̃3(2m+ 1) = (Um+3 +
2Z3(m))+ 2(Um+2 +Z3(m− 1)). Now when r > 3, then the above two strings together with
the Um−s−1+r additional right substrings contained in

Mirror String of Length m− s− 1 01 · · · 11 1 11 · · · 10 String of Length m− s− 1

for 1 ≤ s ≤ ⌊ r−2+(−1)r

2
⌋, will each contribute Zr(m−s−1) zeros, together with the additional

Um−s−1+r zeros from the substring 11 · · · 1
︸ ︷︷ ︸

s 1’s

0, bringing a total contribution, with the mirror

string, of

Z̃r(2m+ 1) = Um+r + 2Zr(m) + 2(Um−1+r + Zr(m− 1))

+ 2

⌊
r−2+(−1)r

2
⌋

∑

s=1

(Um−s−1+r + Zr(m− s− 1))

= Um+r + 2Zr(m) + 2

⌊
r−2+(−1)r

2
⌋

∑

i=0

(Um+r−1−i + Zr(m− 1− i)) (6)

zeros, noting here that the right-hand side of (6) agrees with Z̃2(2m + 1) and Z̃3(2m + 1),
when r = 2 and r = 3 respectively.

To illustrate both Theorem 2 and Theorem 4, suppose we wish to calculate the total
number of Palindromic binary strings of length n = 5 having no consecutive 1’s, and the
total number of zeros contained in these strings. In this case when we set r = 2 and
n = 5 into (1) and (4), noting here that the 2-Fibonacci sequence Un = Fn, one finds that
P2(5) = F4+F3 = 3+2 = 5 while Z̃2(5) = F4+2Z2(2)+2(F3+Z1)) = 3+(2)(4)+2(2+1) = 17,
which is in agreement with palindromic strings displayed below.
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0 0 0 0 0
0 1 0 1 0
1 0 0 0 1
0 0 1 0 0
1 0 1 0 1

Table 4: The 5 palindromic binary strings of length 5 having no 2-runs of 1’s
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