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Abstract

Riordan matrix methods and manipulation of various generating functions are used

to find curious relations among the Catalan, central binomial, and RNA generating

functions. In addition, the Wilf-Zeilberger method is used to find identities where

the gamma function and Catalan numbers are expressed in terms of the Gauss hy-

pergeometric function. As a consequence of the identities, new recurrence relations

are obtained. In particular, a new recurrence relation is given for the RNA numbers.

Furthermore, other representations of π and the Catalan numbers are obtained.

1 Introduction

In this paper we use Riordan matrix methods and manipulation of generating functions to
find curious relations among the Catalan, central binomial, and RNA generating functions.
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We also give relations between the Fibonacci and Catalan generating functions. In addition
to finding relations involving generating functions, the Wilf-Zeilberger (WZ) method is used
to find identities where the gamma function and Catalan numbers A000108 [13] are expressed
in terms of the Gauss hypergeometric function. As a consequence of the identities, new
recurrence relations are obtained. Furthermore, other representations of π and the Catalan
numbers A000108 [13] are presented.

The results of this paper are proved by the WZ method, manipulation of generating
functions, and Riordan matrix multiplication. The notion of a Riordan matrix is used to
prove combinatorial sums and identities (Shapiro et al. [12] and Sprugnoli [14]). The WZ
method is based on an algorithm that finds recurrence relations that are satisfied by certain
sums (Wilf and Zeilberger [20] and Petkovsek et al. [10]). The recurrence relations given
in this paper by Equations (15) , (17) , and (24) are automatically generated by the Maple
package EKHAD, which can be downloaded from Zeilberger’s website [23]. In addition, the
SumTools package in Maple that implements Zeilberger’s algorithm can also be used. For
an excellent exposition of Zeilberger’s algorithm, see Petkovsek et al. [10].

This paper is arranged as follows. Preliminary material on hypergeometric functions, the
WZ method, the gamma function, generating functions, and Riordan matrices are given in
Section 2. Readers familiar with these topics may skip this section. In Section 3, Riordan
matrix and generating function methods are utilized to find curious relations among the
Catalan, central binomial, and RNA generating functions. Curious relations involving the
Fibonacci generating function are given in Section 4. The WZ method is used to find new
recurrence relations that are presented in Section 5. The main result of the paper, Theorem
11, which is an identity involving the Catalan numbers A000108 [13], is also given in this
section. In addition, we present in this section other representations of the irrational number
π and the ubiquitous Catalan numbers. Some concluding comments are given in Section 6.

2 Preliminary material

Throughout this paper we denote the sets {1, 2, . . . } A000027 [13] and {0, 1, . . . } A001477
[13] by N and N0, respectively. Let (x)k denote the rising factorial defined by

(x)k = x(x+ 1) · · · (x+ k − 1)

for k ∈ N and (x)0 = 1. The gamma function denoted by Γ (z) is defined as

Γ (z) =

∫ ∞

0

tz−1e−tdt,

if Re (z) > 0. For z = n where n ∈ N0

Γ (n+ 1) = n! = (1)n.
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Some useful properties are Γ (1/2) =
√
π and

(x)k =
(x+ k − 1)!

(x− 1)!
=

Γ (k + x)

Γ (x)
. (1)

The Gauss hypergeometric function 2F1 is defined by

2F1(a, b; c; z) =
∞
∑

k=0

(a)k(b)k
(c)k

zk

k!

where a, b and c are arbitrary complex constants. If we take z = 1, then

2F1(a, b; c; 1) =
Γ (c− a− b) Γ (c)

Γ (c− a) Γ (c− b)
.

For more information on the gamma and hypergeometric functions, see Petkovsek et al. [10].
The Wilf-Zeilberger algorithm was developed by Wilf and Zeilberger [20] as a method

for certifying the truth of certain combinatorial identities. The identities involve certain
hypergeometric functions. A discrete function F (n, k) is called hypergeometric if

F (n+ 1, k) /F (n, k) and F (n, k + 1) /F (n, k)

are both rational functions in n and k. The WZ proof method is briefly described as follows.
Suppose we want to prove the identity

∞
∑

k=0

U (n, k) = r (n) .

If r (n) 6= 0, then dividing through by r (n) the given identity is equivalent to

∞
∑

k=0

{

U (n, k)

r (n)

}

= 1.

Now set F (n, k) = U (n, k) /r (n). We want to prove
∑∞

k=0
F (n, k) = 1. To certify the

validity of this, it would suffice to find a function G (n, k) such that

F (n+ 1, k)− F (n, k) = G (n, k + 1)−G (n, k) .

The production G comes as a result of using the WZ algorithm. The pair of functions F
and G are called WZ pairs. See Wilf and Zeilberger [20], Petkovsek et al. [10], Wilf [21], and
Gessel [4] for more information on the WZ algorithm and WZ pairs. See Tefera [17] for a
quick review of the WZ method.

A formal power series of the form

a (z) = a0 + a1z + a2z
2 + · · · =

∑

n≥0

anz
n
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where z is an indeterminate is called the ordinary generating function of the sequence
{a0, a1, . . .}. Let

b (z) =
∑

n≥0

bnz
n =

1√
1− 4z

denote the central binomial generating function of the sequence {b0, b1, . . .}. Then

{bn}n≥0
= {1, 2, 6, 20, . . .} =

{(

2n

n

)}

n≥0

where bn denotes the nth central binomial coefficient A00984 [13]. Let

c (z) =
∑

n≥0

cnz
n =

1−
√
1− 4z

2z
(2)

denote the Catalan generating function of the sequence {c0, c1, . . .}. Then

{cn}n≥0
= {1, 1, 2, 5, . . .} =

{

1

1 + n

(

2n

n

)}

n≥0

(3)

where cn denotes the nth Catalan number A000108 [13]. See Stanley [15, 16] for a number
of combinatorial and analytical interpretations of the Catalan numbers A000108 [13]. Let

f (z) =
∑

n≥0

fnz
n =

1

1− z − z2
(4)

denote the Fibonacci generating function of the sequence {f0, f1, . . .}. Then

{fn}n≥0
= {1, 1, 2, 3, . . .} =







1√
5





(

1 +
√
5

2

)n+1

−
(

1−
√
5

2

)n+1










n≥0

where fn denotes the nth Fibonacci number A000045 [13]. We now let

s (z) =
∑

n≥0

snz
n =

1− z + z2 −
√
1− 2z − z2 − 2z3 + z4

2z2
(5)

denote the RNA generating function from discrete mathematical biology (Waterman [18,
19]). Then s0 = 0, s1 = 1,

sn =
∑

k≥1

1

n− k

(

n− k

k

)(

n− k

k − 1

)

(k < n) , (6)
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and {sn}n≥0
= {0, 1, 1, 1, 2, 4, 8, . . .} where sn denotes the nth RNA number (A004148 [13]

and Waterman [19]). We now define the Fine generating function, which we denote by Φ (z) .
Let

Φ (z) =
∑

n≥0

Φnz
n =

1−
√
1− 4z

3−
√
1− 4z

1

z
.

Then {Φn}n≥0
= {1, 0, 1, 2, 6, 18, . . .} where Φn denotes the nth Fine number A000957 [13].

See Deutsch and Shapiro [3] for more information on the Fine numbers. For more information
on generating functions, hypergeometric functions, and the WZ method, see Petkovsek et
al. [10].

The definition of a Riordan matrix and rules for multiplying Riordan matrices are pre-
sented.

Definition 1. (Shapiro et al. [12], Sprugnoli [14]) An infinite matrix

L = (ln,k)n,k∈N0

with complex entries in C is called a Riordan matrix if the kth column satisfies
∑

n≥0

ln,k zn = g(z)f(z)k

where g(z) = g0 + g1z + g2z
2 + · · · and f(z) = f1z + f2z

2 + · · · belong to the ring of formal
power series C[[z]], and f1 6= 0 and g0 6= 0.

Riordan matrices are typically written in pair form as (g(z), f(z)) where g(z) and f(z)
are ordinary generating functions. Note that Riordan matrices can also be defined for ex-
ponential generating functions. However, the Riordan matrices in this paper are defined by
ordinary generating functions and are the proper Riordan arrays as given by Sprugnoli [14].
Pascal’s triangle A007318 [13] written in lower-triangular form is an example of a Riordan
matrix and is denoted by

P = (1/(1− z), z/(1− z)) .

Let us denote by L ∗ N , or by simple juxtaposition LN , the row-by column product of
two Riordan matrices. If

L = (ln,k)n,k∈N0
= (g(z), f(z)) and N = (νn,k)n,k∈N0

= (h(z), l(z))

are Riordan matrices, then

LN =

(

n
∑

j=0

ln,jνj,k

)

n,k∈N0

= (g(z), f(z)) ∗ (h(z), l(z))

= (g(z)h(f(z)), l(f(z))) .

For more information on Riordan matrices and arrays, see Shapiro et al. [12] and Sprugnoli
[14].

5

http://oeis.org/A004148
http://oeis.org/A000957
http://oeis.org/A007318


3 Catalan, central binomial and RNA relations

Consider the following Riordan matrix relation

B = C0R
2E (7)

where C0 = (c(z2), zc(z2)) is Catalan array A053121 [13], R = (s(z), zs(z)) is the RNA array
A097724 [13] from mathematical biology, and E = (1/ (1− z) , z) is the lower-triangular
array A000012 [13] with entries with all ones on and below the main diagonal. Recall that
the generating functions c (z) and s(z) are, respectively, given by Equations (2) and (5). The
matrix B A111418 [13] can also be obtained from

B = P 2C0E (8)

where P is Pascal matrix A007318 [13] (Nkwanta [8, 9]). By Riordan matrix multiplication,
the right side of Equation (8) gives

B =
(

c(z)/
√
1− 4z, zc2(z)

)

=



















1 0 0 0 0 · · ·
3 1 0 0 0 · · ·
10 5 1 0 0 · · ·
35 21 7 1 0 · · ·
126 84 36 9 1 · · ·
...

...
...

...
...

. . .



















. (9)

The generating function of the left component of B can also be expressed as

c(z)/
√
1− 4z = c2(z)/

(

1− zc2(z)
)

(10)

and is well known as a special case of

Bk (z) = ck(z)/
√
1− 4z =

∑

n≥0

(

2n+ k

n

)

zn. (11)

For more information on Equation (11), see Graham et al. [5], Riordan [11], and Wilf [21].
For more information and a combinatorial interpretation of B, see Nkwanta [8]. The inverse
of B is given below

B−1 =
(

(1− z) / (1 + z)2 , z/ (1 + z)2
)

=



















1 0 0 0 0 ...
−3 1 0 0 0 ...
5 −5 1 0 0 ...

−7 14 −7 1 0 ...
9 −30 27 −9 1 ...
...

...
...

...
...

. . .



















.
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The entries of B−1 form monic orthogonal polynomials whose moments are certain binomial
coefficients. The moments are associated with the the Chebyshev polynomials of the first
kind. See Nkwanta and Barnes [7] for more on the connection of B to the Chebyshev
polynomials.

By multiplying the matrices on the right side of Equation (7) and equating generating
function components of the matrix with Equation (9) , the left components give

c(z)/
√
1− 4z =

(

c
(

z2
)

· r (z) · t (z)
)

/
(

1− zc
(

z2
)

· r (z) · t (z)
)

(12)

where r (z) = s (zc (z2)) and

t (z) = s
[

zc
(

z2
)

· s
(

zc
(

z2
))]

.

Recall that s (z) is the RNA generating function. This leads to curious relations among the
central binomial, Catalan and RNA generating functions given by Equation (12). Thus, we
have the following theorem.

Theorem 2. Let r (z) = s (zc (z2)) and t (z) = s [zc (z2) · s (zc (z2))] where c (z) and s (z)
are the Catalan and RNA generating functions, respectively. Then

(a) c (z) =
((√

1− 4z
)

· c (z2) · r (z) · t (z)
)

/ (1− zc (z2) · r (z) · t (z)).

(b) b (z) = B0 (z) = (c (z2) · r (z) · t (z)) / (c (z) · (1− zc (z2) · r (z) · t (z))).

Proof. The theorem follows as a result of Riordan matrix multiplication and Equation (7).

As a consequence of Theorem 2, the central binomial and Catalan generating functions
are expressed in terms of the RNA generating function. An alternative expression of the
RNA generating function is now given.

Proposition 3. Let w (z) = (s (z)− 1) /z where s (z) is the RNA generating function. Then

w (z) = 1/
(

1−
(

z + z2 + z3w (z)
))

or (13)

s (z) = 1/
(

1− z − z2 (s (z)− 1)
)

.

Proof. The proof follows by using Equation (5) and simplifying.

Note that the constant term of the formal power series of Equation (5) is removed from
Equation (13). For more information on the derivation of Equation (13), see Nkwanta [9].

Remark 4. As a consequence of Equation (13) the RNA generating function s (z) can be
expressed as the following continued fraction expansion

s (z) = 1 +
z

1− z − z2 − z3

1−z−z2− z3

1−z−z2−···

.

7



4 In terms of the Fibonacci generating function

The following generating function

f (z) /
(

1 + z2f (z)
)

= 1/ (1− z) , (14)

where f (z) is the Fibonacci generating function given by Equation (4), leads to curious
relations involving 1/ (1− αz) where α 6= 0 and α ∈ R, binomial generating functions, the
Catalan generating function c (z), and the Fine generating function Φ (z).

Proposition 5. (a) 1/ (1− αz) = f (αz) / (1 + α2z2f (αz)).

(b) Bk (z) = f (zc2 (z)) ck (z) / (1 + z2c4 (z) f (zc2 (z))).

(c) c (z) = f (zc (z)) / (1 + z2c2 (z) f (zc (z)))

(d) Φ (z) = f (z2c2 (z)) / (1 + z4c4 (z) f (z2c2 (z))).

Proof. (a) Use Equation (14) and some simplification.

(b) Use Equation (14) and multiply by ck (z). Then use Equation (11).

(c) For (c) use Equation (14). Then, use the fact from Deutsch and Shapiro [2] that

c (z) = 1/ (1− zc (z)) .

(d) Use Equation (14). Then, use the fact from Deutsch and Shapiro [2] that

Φ (z) = 1/
(

1− z2c2 (z)
)

.

We observe that for k = 0 and 1, respectively, the central binomial generating function
b (z) and Equation (10) are special cases of Proposition 5(b). As a result of Proposition 5,
the binomial, Catalan, and Fine generating functions are expressed in terms of the Fibonacci
generating function. For more information on the derivation of Equation (14), see Jean-
Louis and Nkwanta [6]. See Deutsch and Shapiro [2, 3] for more information on the Fine
numbers A000957 [13] and Fine generating function.

Remark 6. By combining Theorem 2 and Proposition 5, we observe that the generating
functions b (z) and c (z) can be simultaneously expressed in terms of the Fibonacci and RNA
generating functions.
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5 Finding recurrence relations

We now use the Wilf-Zeilberger algorithm to find various recurrence relations. Applying the
WZ algorithm to Equation (6) gives the following recurrence relation for the RNA numbers
A004148 [13].

Proposition 7. For n ≥ 0, sn satisfies

(n+ 5) sn+4 = (2n+ 7) sn+3 + (n+ 2) sn+2 + (2n+ 1) sn+1 − (n− 1) sn

where s0 = 0, s1 = 1, s2 = 1, and s3 = 1.

Proof. Let F (n, k) denote the summand of sn, that is,

F (n, k) =
1

n− k

(

n− k

k

)(

n− k

k − 1

)

.

Now, applying the WZ algorithm on F (n, k) we get

(n+ 5)F (n+ 4, k)− (2n+ 7)F (n+ 3, k)− (n+ 2)F (n+ 2, k)
− (2n+ 1)F (n+ 1, k) + (n− 1)F (n, k) = G (n, k + 1)−G (n, k)

(15)

where G (n, k) = F (n, k)R (n, k) and

R (n, k) = − (k − 1) k (n+ 1− k) (n− k)

(n+ 5− 2k)(n+ 4− 2k)2(n+ 3− 2k)2(n+ 2− 2k)2(n+ 1− 2k)
P (n, k)

where P (n, k) = − (332 + 304n+ 196n2 + 107n3 + 30n4 + 3n5)

+
(

716 + 446n+ 203n2 + 81n3 + 12n4
)

k

−
(

567 + 183n+ 47n2 + 13n3
)

k2

−2
(

−98− 2n+ n2
)

k3 + (−25 + 7n) k4

Summing both sides of Equation (15) for all values of k we get the result.

We now find curious identities involving the Catalan numbers, π, hypergeometric func-
tions, and the gamma function. Consider the following hypergeometric functions

a) A (n) := 2F1 (−1/2, 2n+ 3; 2n+ (5/2) ;−1)

b) M (n) := 2F1 (1/2, 2n+ 3; 2n+ (5/2) ;−1) .

Then we obtain the following propositions.

Proposition 8. Let D (n) = A (n)− 2M (n) . Then

(a) D (n) = (4n+ 5)−1
2F1 (1/2, 2n+ 3; 2n+ (7/2) ;−1).
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(b) D (n) =
∑∞

k=1

(− 1

2
)
k

(2n+ 5

2
)
k

(

2n+k+1

k−1

)

(−1)k.

Proof. Use properties of hypergeometric functions.

The next proposition follows as a result of the WZ algorithm.

Proposition 9. D (n) satisfies

16 (n+ 2)2 D (n+ 1)− (4n+ 5) (4n+ 7)D (n) = 0. (16)

Proof. Let F (n, k) denote the summand of D (n), that is,

F (n, k) =

(

−1

2

)

k
(

2n+ 5

2

)

k

(

2n+ k + 1

k − 1

)

(−1)k.

Now, applying the WZ algorithm on F (n, k) we get

16 (n+ 2)2 F (n+ 1, k)− (4n+ 5) (4n+ 7)F (n, k) = G (n, k + 1)−G (n, k) (17)

where G (n, k) = F (n, k)R (n, k) and

R (n, k) =
(2n+ 3) (4n+ 5 + 2k)

(k − 1) (4n+ 5)(4n+ 7)
.

Summing both sides of Equation (17) for all values of k we get Equation (16) .

Corollary 10. Solving the recurrence relation given by Equation (16) gives

D (n) =

√
πΓ (2n+ 5/2)

22n+4 (n+ 1)!2
(18)

where D (0) = 3π
64
.

Proof. Using a symbolic algebra system (such as Mathematica or Maple) to solve Equation
(16) gives the result.

We note here that D (n) appears below in the numerator of Equation (21). The motiva-
tion for the next theorem comes from evaluating the following integral

∫

1

0

22n+5

(

x2 (1− x2)
2n
)

π (1 + x2)2n+3
dx. (19)

It is known by Dana-Picard [1] that the value of Expression (19) is the nth Catalan number
cn A000108 [13]. Using Maple to integrate Expression (19) gives

∫

1

0

22n+5

(

x2 (1− x2)
2n
)

π (1 + x2)2n+3
dx =

Γ (n+ 1/2) 4n√
πΓ (n+ 2)

10
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where by using properties of the gamma function the right side simplifies to cn. Consequently,

cn
D (n)

=

(

(2n)!

(n+ 1)n!2

)(

22n+4 (n+ 1)!2√
πΓ (2n+ 5/2)

)

=
22n+4 (n+ 1) Γ (2n+ 1)√

πΓ (2n+ 5/2)
. (20)

Thus, we find that

∫

1

0

22n+5

(

x2 (1− x2)
2n
)

π (1 + x2)2n+3
dx =

22n+4 (n+ 1)D (n) Γ (2n+ 1)√
πΓ (2n+ 5/2)

. (21)

The right side of Equation (21) is indeed cn. This can also be directly obtained by using
Equation (18) and some simplification. Given Equation (18) and rearranging and simplifying
the right hand side of Equation (21) leads to the following simple identity connecting the
Catalan numbers A000108 [13] and the gamma function. For n ∈ N0

cn =
Γ (2n+ 1)

Γ (n+ 1) Γ (n+ 2)
.

We now note here that by using the Wolfram Alpha Widget: Definite Integral Calculator
[22] to integrate Expression (19) gives

22n+5n (n+ 1)D (n) Γ (2n)√
π

, if Re (n) > −1/2, (22)

which does not simplify to cn. As a consequence of this, we observe from Equation (21) that
the Wolfram calculator does not include Γ (2n+ 5/2) in the denominator of Expression (22).
This has been reported to Wolfram by the authors. We have been informed by Wolfram that
the appropriate computer technicians are investigating this issue with their calculator.

We now rearrange the right side of Equation (21) as Equation (23) in the theorem be-
low. This theorem leads to curious relations where the Catalan numbers A000108 [13] are
expressed in terms of π, hypergeometric functions, and the gamma function. The proof of
the theorem follows as a result of the WZ algorithm.

Theorem 11. For n ∈ N0,

∞
∑

k=1

26n+6
(

−1

2

)

k

(4n+ 3)
(

2n+ 5

2

)

k

(

4n+ 2

2n+ 2

)−1(

2n+ k + 1

k − 1

)

(−1)k = πcn. (23)

Proof. Divide both sides of Equation (23) by πcn and let H (n) be the resulting left hand
side and F (n, k) be its summand, that is,

F (n, k) =
26n+6

(

−1

2

)

k

πcn (4n+ 3)
(

2n+ 5

2

)

k

(

4n+ 2

2n+ 2

)−1(

2n+ k + 1

k − 1

)

(−1)k.
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Then proving Equation (23) is equivalent to showing H (n) = 1 for n ∈ N0. Now, applying
the WZ algorithm on F (n, k) we get

F (n+ 1, k)− F (n, k) = G (n, k + 1)−G (n, k) (24)

where G (n, k) = F (n, k)R (n, k) and

R (n, k) = − k − 1

(2n+ 3)(5 + 2k + 4n)
.

Summing both sides of Equation (24) for all values of k we get

H (n+ 1)−H (n) = 0.

Since H (0) = 1,we have H (n) = 1 for n ∈ N0.

Corollary 12. For n ∈ N0

1

cn

∞
∑

k=1

26n+6
(

−1

2

)

k

(4n+ 3)
(

2n+ 5

2

)

k

(

4n+ 2

2n+ 2

)−1(

2n+ k + 1

k − 1

)

(−1)k = π.

Corollary 13. For n ∈ N0

1

π

∞
∑

k=1

26n+6
(

−1

2

)

k

(4n+ 3)
(

2n+ 5

2

)

k

(

4n+ 2

2n+ 2

)−1(

2n+ k + 1

k − 1

)

(−1)k = cn.

Theorem 11 can be rearranged and written in terms of the π, cn, and D (n) as the
following identity.

Proposition 14. For n ∈ N0

26n+6D (n)

(4n+ 3) πcn
=

(

4n+ 2

2n+ 2

)

=
4n+ 1

n+ 1

(

4n

2n

)

.

Proof. Using Equations (3) and (18), Γ (1/2) =
√
π and some simplification gives

26n+6D (n)

(4n+ 3) πcn
=

26n+6

(4n+ 3) π
· (n+ 1)n!n!

(2n)!
·
√
πΓ (2n+ 5/2)

22n+4 (n+ 1)!2
(25)

=
Γ (2n+ 5/2)√

π
· 24n+2

(4n+ 3) (n+ 1) (2n)!

=
Γ (2n+ 5/2)

Γ (1/2)
· 24n+2

(4n+ 3) (n+ 1) (2n)!
.

RewritingΓ (2n+ 5/2) as Γ (2 (n+ 1) + 1/2), applying Equation (1), and using

Γ (n+ 1/2)

Γ (1/2)
= (1/2)n =

(2n)!

n!4n
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gives
Γ (2n+ 5/2)

Γ (1/2)
=

Γ (2 (n+ 1) + 1/2)

Γ (1/2)
= (1/2)

2n+2
=

(4n+ 4)!

(2n+ 2)!42n+2
. (26)

Substituting Equation (26) into Equation (25) yields

26n+6D (n)

(4n+ 3) πcn
=

(4n+ 4)!

(2n+ 2)!42n+2
· 24n+2

(4n+ 3) (n+ 1) (2n)!
.

Now apply properties of factorials and binomial coefficients and some simplification we obtain

26n+6D (n)

(4n+ 3) πcn
=

(4n+ 2)!

(2n+ 2)! (2n)!
=

(

4n+ 2

2n+ 2

)

,

which proves the result.

We note that Equation (26) gives an exact formula for Γ (2n+ 5/2) . This can also be
obtained by direct computation by using Proposition 14 and Equation (18) .

6 Conclusion

We now give some concluding comments. The binomial, Catalan, and Fine generating func-
tions are expressed in terms of the Fibonacci generating function by Proposition 5. This
result may lead to new properties of these generating functions, which in turn may lead to
new properties of the counting numbers associated the generating functions. The recurrence
relations given by Propositions 7 and 9 are open for combinatorial interpretations. In par-
ticular, finding an RNA interpretation of Proposition 7 would be of interest to those who
study discrete and combinatorial mathematical biology. The Wolfram calculator anomaly
given by Expression (22) is what sparked the authors’ interest in looking at relations among
hypergeometric functions, the gamma function, and the Catalan numbers A000108 [13].
This generated further investigation and analysis of D (n), which subsequently led to the
derivation of Equation (21) . As a result of the right side of Equation (21) and using the
Wilf-Zeilberger algorithm we were able to find other representations of the irrational num-
ber π and the ubiquitous Catalan numbers cn A000108 [13]. Thus, Theorem 11, which is
the main result of the paper, demonstrates the roles in which symbolic computation, numer-
ical computation, and experimental mathematics play in the discovery of new mathematical
results.
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