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Abstract

We study values of k for which the interval (kn, (k + 1)n) contains a prime for
every n > 1. We prove that the list of such integers k includes 1, 2, 3, 5, 9, 14 and no
others, at least for k ≤ 100, 000, 000. Moreover, for every known k in this list, we give
a good upper bound for the smallest Nk(m), such that if n ≥ Nk(m), then the interval
(kn, (k + 1)n) contains at least m primes.

1 Introduction and main results

In 1850, Chebyshev proved the famous Bertrand postulate (1845) that every interval [n, 2n]
contains a prime (for a very elegant version of his proof, see Redmond [10, Theorem 9.2]).
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Other nice proofs were given by Ramanujan in 1919 [8] and Erdős in 1932 (reproduced
in Erdős and Surányi [4, p. 171–173]). In 2006, El Bachraoui [1] proved that every interval
[2n, 3n] contains a prime, while Loo [6] proved the same statement for every interval [3n, 4n].
Moreover, Loo found a lower bound for the number of primes in the interval [3n, 4n]. In
1952, Nagura [7] proved that there is always a prime between n and 6

5
n for n ≥ 25. From his

result, it follows that the interval [5n, 6n] always contains a prime. In this paper we prove
the following:

Theorem 1. The list of integers k for which every interval (kn, (k + 1)n), n > 1, contains
a prime includes k = 1, 2, 3, 5, 9, 14 and no others, at least for k ≤ 100, 000, 000.

To prove Theorem 1, in Section 3 we introduce and study the so-called k-Chebyshev
primes. We give them, and the generalized Ramanujan primes, the best estimates of the
form ptn, where pn is the n-th prime. Note that the core of the proof of Theorem 1 is
Proposition 9, which in turn depends on Proposition 8.

In passing, for every k = 1, 2, 3, 5, 9, 14, we give an algorithm for finding the smallest
Nk(m), such that for n ≥ Nk(m), the interval (kn, (k + 1)n) contains at least m primes.

Proof of Theorem 1 is completed in Section 7 by computer research of sequence A218831
in [13].

2 Case k = 1

Ramanujan [8] not only proved Bertrand’s postulate, but also provided the smallest integers
{R(m)}, such that if x ≥ R(m), then the interval

(

x
2
, x
]

contains at least m primes, or
equivalently, π(x)− π(x/2) ≥ m. It is easy to see that it is sufficient to consider integer x,
and it is also evident that every term of {R(m)} is prime. The numbers {R(m)} are called
Ramanujan primes [14]. It is sequence A104272 in [13]:

2, 11, 17, 29, 41, 47, 59, 67, 71, 97, . . . (1)

Since π(x)− π(x/2) is not a monotonic function, to calculate the Ramanujan numbers one
should have an effective upper bound for R(m). Ramanujan [8] showed that

π(x)− π(x/2) >
1

ln x

(x

6
− 3

√
x
)

, x > 300. (2)

In particular, for x ≥ 324, the left-hand side is positive and thus ≥ 1. Using direct descent,
he found that π(x) − π(x/2) ≥ 1 from x ≥ 2. Thus R(1) = 2, which proves the Bertrand
postulate. Further, e.g., for x ≥ 400, the left-hand side of (2) is more than 1 and thus ≥ 2.
Again, using direct descent, he found that π(x)− π(x/2) ≥ 2 from x ≥ 11. Thus R(2) = 11,
etc. Sondow [14] found that R(m) < 4m ln(4m) and conjectured that

R(m) < p3m (3)

2

http://oeis.org/A218831
http://oeis.org/A104272


which was proved by Laishram [5]. Since, for n ≥ 2, pn ≤ en lnn (cf. [3, Section 4]), then
(3) yields R(m) ≤ 3em ln(3m), m ≥ 1. Let x = 2n. If 2n ≥ R(m), then π(2n)− π(n) ≥ m.
Thus the interval (n, 2n) contains at least m primes, if

n ≥
⌈

R(m) + 1

2

⌉

=

{

2, if m = 1;
R(m)+1

2
, if m ≥ 2.

Let N1(m) denote the smallest number such that if n ≥ N1(m), then the interval (n, 2n)
contains at least m primes. It is clear that N1(1) = R(1) = 2. If m ≥ 2, formally the
condition x = 2n ≥ 2N1(m) is not stronger than the condition x ≥ R(m), since the latter

holds for x even and odd. Therefore, for m ≥ 2, we have N1(m) ≤ R(m)+1
2

. Let us show that,
in fact, we have the equality

Proposition 2. For m ≥ 2,

N1(m) =
R(m) + 1

2
. (4)

Proof. Note that the interval
(

R(m)−1
2

, R(m)− 1
)

cannot contain more than m− 1 primes.

Indeed, it is an interval of type
(

x
2
, x
)

for integer x and the following such interval is
(

R(m)
2

, R(m)
)

. By definition, R(m) is the smallest number such that if x ≥ R(m), then

{(x
2
, x)} contains≥ m primes. Therefore, the supposition that the interval

(

R(m)−1
2

, R(m)− 1
)

contains ≥ m primes contradicts the minimality of R(m). Since the following interval of type

(y, 2y) with integer y ≥ R(m)−1
2

is
(

R(m)+1
2

, R(m) + 1
)

, Eq. (4) then follows.

So the sequence {N1(m)}, by (1), is A084140 in [13]:

2, 6, 9, 15, 21, 24, 30, 34, 36, 49, . . . (5)

3 Generalized Ramanujan numbers

Our research is based on a generalization of Ramanujan’s method. With this aim, we define
generalized Ramanujan numbers (cf. [12, Section 10], and the earlier comment in A164952
in [13]).

Definition 3. Let v > 1 be a real number. A v-Ramanujan number, Rv(m), is the smallest
integer such that if x ≥ Rv(m), then π(x)− π(x/v) ≥ m.

It is known [10] that all v-Ramanujan numbers are primes. In particular, R2(m) =
R(m), m = 1, 2, . . . are the proper Ramanujan primes.

Definition 4. For a real number v > 1 the v-Chebyshev number, Cv(m), is the smallest
integer such that if x ≥ Cv(m), then ϑ(x)− ϑ(x/v) ≥ m ln x, where ϑ(x) =

∑

p≤x ln p is the
Chebyshev function.
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Since ϑ(x)−ϑ(x/v)
lnx

can increase by 1 only when x is prime, then all v-Chebyshev numbers
are primes.

Proposition 5. We have

Rv(m) ≤ Cv(m). (6)

Proof. Let x ≥ Cv(m). Then we have

m ≤ ϑ(x)− ϑ(x/v)

ln x
=
∑

x

v
<p≤x

ln p

ln x
≤
∑

x

v
<p≤x

1 = π(x)− π(x/v). (7)

Thus, if x ≥ Cv(m), then always π(x) − π(x/v) ≥ m. By Definition 3, this means that
Rv(m) ≤ Cv(m).

Now we give upper bounds for Cv(m) and Rv(m).

Proposition 6. Let x = xv(m) ≥ 2 be any number for which

x

ln x

(

1− 1300

ln4 x

)

≥ vm

v − 1
. (8)

Then

Rv(m) ≤ Cv(m) ≤ xv(m). (9)

Proof. We use the following inequality of Dusart [3] (see his Theorem 5.2):

|ϑ(x)− x| ≤ 1300x

ln4 x
, x ≥ 2.

Thus we have

ϑ(x)− ϑ(x/v) ≥ x

(

1− 1

v
− 1300

(

1

ln4 x
− 1

v ln4 x
v

))

≥ x

(

1− 1

v

)(

1− 1300

ln4 x

)

.

If now

x

(

1− 1

v

)(

1− 1300

ln4 x

)

≥ m ln x, x ≥ xv(m),

then
ϑ(x)− ϑ(x/v) ≥ m ln x, x ≥ xv(m)

and, by Definition 4, Cv(m) ≤ xv(m). So, according to (6), we conclude that Rv(m) ≤
xv(m).
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Proposition 6 gives the terms of sequences {Cv(m)}, {Rv(m)} for every v > 1, m ≥ 1.
In particular, if k = 1 we find {C2(m)}:

11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 223,

229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, (10)

419, 431, 433, 443, . . .

This sequence requires a separate comment. We observe that up to C2(100) = 1489 only two
terms of this sequence (C2(17) = 223 and C2(36) = 443) are not Ramanujan numbers, and
the sequence is missing only the following 6 Ramanujan numbers: 181,227,439,491,1283,1301
and no others up to the 104-th Ramanujan number 1489. The latter observation shows how
much the ratio ϑ(x)

lnx
exactly approximates π(x). Similar observations are also valid for the

following sequences for v = k+1
k

(and undoubtedly require an additional special study):
for k = 2, {Cv(m)},

13, 37, 41, 67, 73, 97, 127, 137, 173, 179, 181, 211, 229, 239, . . . ; (11)

for k = 2, {Rv(m)},
2, 13, 37, 41, 67, 73, 97, 127, 137, 173, 179, 181, 211, 229, 239, . . . ; (12)

for k = 3, {Cv(m)},
29, 59, 67, 101, 149, 157, 163, 191, 227, 269, 271, 307, 379, . . . ; (13)

for k = 3, {Rv(m)},
11, 29, 59, 67, 101, 149, 157, 163, 191, 227, 269, 271, 307, 379, . . . ; (14)

for k = 5, {Cv(m)},
59, 137, 139, 149, 223, 241, 347, 353, 383, 389, 563, 569, 593, . . . ; (15)

for k = 5, {Rv(m)},
29, 59, 137, 139, 149, 223, 241, 347, 353, 383, 389, 563, 569, 593, . . . ; (16)

for k = 9, {Cv(m)},
223, 227, 269, 349, 359, 569, 587, 593, 739, 809, 857, 991, 1009, . . . ; (17)

for k = 9, {Rv(m)},
127, 223, 227, 269, 349, 359, 569, 587, 593, 739, 809, 857, 991, 1009, . . . ; (18)

for k = 14, {Cv(m)},
307, 347, 563, 569, 733, 821, 1427, 1429, 1433, 1439, 1447, 1481, . . . ; (19)

for k = 14, {Rv(m)},
127, 307, 347, 563, 569, 733, 1423, 1427, 1429, 1433, 1439, 1447, . . . (20)
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Remark 7. In fact, Dusart [3, Theorem 5.2] gives several inequalities of the form

|ϑ(x)− x| ≤ ax

lnb x
, x ≥ x0(a, b)

From a computing point of view, the values a = 1300, b = 4 from Dusart’s theorem are not
always the best. The analysis for x ≥ 25 shows that the condition

x

(

1− 1

v

)(

1− ax

lnb x

)

≥ m ln x

is satisfied for the smallest xv(m) = xv(m; a, b), using the following values of a and b from
Dusart’s theorem:

a = 3.965, b = 2 for x in range (25, 7 · 107];
a = 1300, b = 4 for x in range (7 · 107, 109];
a = 0.001, b = 1 for x in range (109, 8 · 109];
a = 0.78, b = 3 for x in range (8 · 109, 7 · 1033];
a = 1300, b = 4 for x > 7 · 1033,

which minimizes the amount of calculations for v-Chebyshev primes.

4 Bounds of type (3)

Proposition 8. We have

C2(m− 1) ≤ p3m, m ≥ 2; (21)

R 3

2
(m) ≤ p4m, m ≥ 1; C 3

2
(m− 1) ≤ p4m, m ≥ 2; (22)

R 4

3
(m) ≤ p6m, m ≥ 1; C 4

3
(m− 1) ≤ p6m, m ≥ 2; (23)

R 6

5
(m) ≤ p11m, m ≥ 1; C 6

5
(m− 1) ≤ p11m, m ≥ 2; (24)

R 10

9
(m) ≤ p31m, m ≥ 1; C 10

9
(m− 1) ≤ p31m, m ≥ 2; (25)

R 15

14
(m) ≤ p32m, m ≥ 1; C 15

14
(m− 1) ≤ p32m, m ≥ 2. (26)

Proof. Firstly, let us find some values of m0 = m0(k), such that, at least, for m ≥ m0 all
formulas (21)–(26) hold. According to (8) and (9), it is sufficient to show that, for m ≥ m0,
we can take ptm, where t = 3, 4, 6, 11, 31, 32 for formulas (21)-(26) respectively, in the capacity
of xv(m). As we noted in Remark 7, in order to find possibly smaller values of m0, we use
the bound

x

ln x

(

1− 3.965

ln2 x

)

≥ vm

v − 1
(27)
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instead of (8). In order to get x = pmt satisfying this inequality, note that [11]

pn ≥ n lnn.

Therefore, it is sufficient to consider pmt satisfying the inequality

ln ptm ≤
(

1− 1

v

)

t ln(tm)

(

1− 3.965

ln2(tm ln(tm))

)

.

On the other hand, for n ≥ 2, (see [3, (4.2)])

ln pn ≤ lnn+ ln lnn+ 1.

Thus, it is sufficient to choose m so large that the following inequality holds

ln(tm) + ln ln(tm) + 1 ≤
(

1− 1

v

)

t ln(tm)

(

1− 3.965

ln2(tm ln(tm))

)

,

or, since 1− 1
v
= 1

k+1
, that

ln(tm) + ln ln(tm) + 1

ln(tm)(1− 3.965
ln2(tm ln(tm))

)
≤ t

k + 1
. (28)

For example, let k = 1, t = 3. We can choose m0 = 350. Then the left-hand side of (28)
equals 1.4976 · · · < 1.5. This means that at least for m ≥ 350, the estimate (21) is valid.
Using a computer for m ≤ 350, we obtain (21) for m ≥ 2. Other bounds are proved in the
same way.

5 Bounds and formulas for Nk(m)

Proposition 9.
Nk(1) = 2, k = 2, 3, 5, 9, 14. (29)

For m ≥ 2, k ≥ 1,

Nk(m) ≤
⌈

R k+1

k

(m)

k + 1

⌉

; (30)

besides, if R k+1

k

(m) ≡ 1 (mod k + 1), then

Nk(m) =

⌈

R k+1

k

(m)

k + 1

⌉

=
R k+1

k

(m) + k

k + 1
(31)

and, if R k+1

k

(m) ≡ 2 (mod k + 1), then

Nk(m) =

⌈

R k+1

k

(m)

k + 1

⌉

=
R k+1

k

(m) + k − 1

k + 1
. (32)
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Proof. If m ≥ 2, formally, the condition x = (k+1)n ≥ (k+1)Nk(m) is not stronger than the
condition x ≥ R k+1

k

(m), since the first one is valid only for x multiple of k+1. Therefore, for

m ≥ 2, (30) holds. It allows calculation of terms in the sequence {Nk(m)} for k > 1, m ≥ 2.
Since Nk(1) ≤ Nk(2), then, having Nk(2), we can also prove (29) using direct calculation.
Now let R k+1

k

(m) ≡ 1 (mod k + 1). Note, that for y = (R k+1

k

(m)− 1)/(k + 1) the interval

(ky, (k + 1)y) =

(

k

k + 1

(

R k+1

k

(m)− 1
)

, R k+1

k

(m)− 1

)

(33)

cannot contain more than m−1 primes. Indeed, it is an interval of type
(

k
k+1

x, x
)

for integer
x, and the following such interval is

(

k

k + 1

(

R k+1

k

(m)
)

, R k+1

k

(m)

)

.

By definition, R k+1

k

(m) is the smallest number such that if x ≥ R k+1

k

(m), then {( k
k+1

x, x)}
contains ≥ m primes. Therefore, the supposition that the interval (33) contains ≥ m primes
contradicts the minimality of R k+1

k

(m). Since the following interval of type (ky, (k + 1)y)

with integer y ≥ k
k+1

(R k+1

k

(m)− 1) is

(

k

k + 1
(R k+1

k

(m) + k), R k+1

k

(m) + k

)

,

then (31) follows.
Finally, let R k+1

k

(m) ≡ 2 (mod k+1). Again, for y = (R k+1

k

(m)− 2)/(k+1) the interval

(ky, (k + 1)y) =

(

k

k + 1
(R k+1

k

(m)− 2), R k+1

k

(m)− 2

)

(34)

cannot contain more than m− 1 primes. Indeed, comparing interval (34) with interval (33),
we see that they contain the same integers except for R k+1

k

(m)−2, which is multiple of k+1.

Therefore, they contain the same number of primes, and this number does not exceed m−1.
Again, since the following interval of type (ky, (k+1)y) with integer y ≥ k

k+1
(R k+1

k

(m)− 2)

is
(

k

k + 1
(R k+1

k

(m) + k − 1), R k+1

k

(m) + k − 1

)

,

then (32) follows.

As a corollary from (29), (31) and (32), we obtain the following formula in case k = 2.

Proposition 10.

N2(m) =







2, if m = 1;
⌈

R 3
2
(m)

3

⌉

, if m ≥ 2.
(35)
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Note that, if k ≥ 3 and R k+1

k

(m) ≡ j (mod k + 1), 3 ≤ j ≤ k, then, generally speaking,

(30) is not an equality. Evidently, Nk(m) ≥ Nk(m−1), and it is interesting that the equality
is attainable (see sequences (37)–(40) below).

Example 11. Let k = 3, m = 2. Then v = 4
3
and, by (14), R 4

3
(2) = 29 ≡ 1 (mod 4).

Therefore, by (31), N3(2) = 29+3
4

= 8. Indeed, interval (3 · 7, 4 · 7) already contains only
prime 23.

Example 12. Let k = 3, m = 3. Then, by (14), R 4

3
(3) = 59 ≡ 3 (mod 4). Here N3(3) = 11

which is essentially less than
⌈

R 4

3
(3)/4

⌉

= 15. Indeed, each interval

(3 · 15, 4 · 15), (3 · 14, 4 · 14), (3 · 13, 4 · 13), (3 · 12, 4 · 12), (3 · 11, 4 · 11)

contains more than 2 primes and only interval (3 · 10, 4 · 10) contains only 2 primes.

In any case, Proposition 9 allows us to calculate terms of sequence {Nk(m)} for every
considered value of k. So, we obtain the following few terms of {Nk(m)} :

for k = 2,

2, 5, 13, 14, 23, 25, 33, 43, 46, 58, 60, 61, 71, 77, 80, 88, 103, 104, . . . ; (36)

for k = 3,

2, 8, 11, 17, 26, 38, 40, 41, 48, 57, 68, 68, 70, 87, 96, 100, 108, 109, . . . ; (37)

for k = 5,

2, 7, 17, 24, 25, 38, 41, 58, 59, 64, 65, 73, 95, 97, 103, 106, 107, 108, . . . ; (38)

for k = 9,

2, 14, 23, 23, 34, 36, 57, 58, 60, 60, 77, 86, 100, 100, 102, 123, 149, . . . ; (39)

for k = 14,

2, 11, 24, 37, 38, 39, 50, 96, 96, 96, 96, 97, 97, 125, 125, 132, 178, 178, . . . (40)

Remark 13. If, as in [1, 6], instead of intervals (kn, (k+1)n), we consider intervals [kn, (k+
1)n], then sequences (5) and (36)–(38) would begin with 1.
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6 Method of small intervals

If we know a theorem of the type: for x ≥ x0(∆), the interval (x, (1+ 1
∆
)x] contains a prime,

then we can calculate a bounded number of the first terms of sequences (5) and (36)–(40).
Indeed, put x1 = kn, such that n ≥ x0

k
. Then (k + 1)n = k+1

k
x1 and, if 1 + 1

∆
< k+1

k
, i.e.,

∆ > k, then
(

x1, (1 +
1

∆
)x1

]

⊂ (kn, (k + 1)n).

Thus, if n ≥ x0

k
, then the interval (kn, (k + 1)n) contains a prime, and using method of

finite descent, we can find Nk(1). Further, put x2 = (1+ 1
∆
)x1. Then interval (x2, (1+

1
∆
)x2]

also contains a prime. Thus the union

(

x1, (1 +
1

∆
)x1

]

∪
(

x2, (1 +
1

∆
)x2

]

=

(

x1, (1 +
1

∆
)2x1

]

contains at least two primes. This means that if (1 + 1
∆
)2x1 < (k + 1)n or (1 + 1

∆
)2 < 1 + 1

k
,

then
(

x1, (1 +
1

∆
)2x1

]

⊂ (kn, (k + 1)n)

and the interval (kn, (k + 1)n) contains at least two primes; again, using method of finite
descent, we can find Nk(2) etc. If (1 +

1
∆
)m < 1 + 1

k
, then

(

x1, (1 +
1

∆
)mx1

]

⊂ (kn, (k + 1)n)

and the interval (kn, (k + 1)n) contains at least m primes and we can find Nk(m). In this

way, we can find Nk(m) for m <
ln(1+ 1

k
)

ln(1+ 1

∆
)
. In 2002, Ramaré and Saouter [9] proved that the

interval (x(1−28314000−1), x) always contains a prime if x > 10726905041, or, equivalently,
the interval (x, (1 + 28313999−1)x) contains a prime if x > 10726905419. This means that,
e.g., we can find N14(m) for m ≤ 1954471. Unfortunately, this method cannot give the exact
bounds and formulas for Nk(m) as (30)–(32).

We can also consider a more general application of this method. Consider a fixed infinite
set P of primes which we call P -primes. Furthermore, consider the following generalization
of v-Ramanujan numbers.

Definition 14. For v > 1, a (v, P )-Ramanujan number, R
(P )
v (m), is the smallest integer such

that if x ≥ R
(P )
v (m), then πP (x) − πP (x/v) ≥ m, where πP (x) is the number of P -primes

not exceeding x.

Note that every (v, P )-Ramanujan number is P -prime. If we know a theorem of the type:
for x ≥ x0(∆), the interval

(

x, (1 + 1
∆
)x
]

contains a P -prime, then using the above described
algorithm, we can calculate a bounded number of the first (v, P ) -Ramanujan numbers. For

10



example, let P be the set of primes p ≡ 1 (mod 3). From the result of Cullinan and Hajir
[2] it follows, in particular, that for x ≥ 106706, the interval (x, 1.048x) contains a P -prime.
Using the same algorithm, we can calculate the first 14 (2, P )-Ramanujan numbers. They
are

7, 31, 43, 67, 97, 103, 151, 163, 181, 223, 229, 271, 331, 337. (41)

Analogously, if P is the set of primes p ≡ 2 (mod 3), then the sequence of (2, P )-Ramanujan
numbers begins

11, 23, 47, 59, 83, 107, 131, 167, 227, 233, 239, 251, 263, 281, . . . ; (42)

if P is the set of primes p ≡ 1 (mod 4), then the sequence of (2, P )-Ramanujan numbers
begins

13, 37, 41, 89, 97, 109, 149, 229, 233, 241, 257, 277, 281, 317, . . . ; (43)

and, if P is the set of primes p ≡ 3 (mod 4), then the sequence of (2, P )-Ramanujan numbers
begins

7, 23, 47, 67, 71, 103, 127, 167, 179, 191, 223, 227, 263, 307, . . . ; (44)

Let N
(P )
k (m) denote the smallest number such that for n ≥ N

(P )
k (m), the interval (kn, (k +

1)n) contains at least m P -primes. It is easy to see that formulas (30)–(32) hold for N
(P )
k (m)

and R
(P )
k+1

k

(m). In particular, in cases k = 1, 2 we have the formulas

N
(P )
1 (m) =

R
(P )
2 (m) + 1

2
, N

(P )
2 (m) =









R
(P )
3

2

(m)

3









. (45)

Therefore, the following sequences for N
(P )
1 (m), correspond to sequences (41)–(44) respec-

tively:
4, 16, 22, 34, 49, 52, 76, 82, 91, 112, 115, 136, 166, 169, . . . ; (46)

6, 12, 24, 30, 42, 54, 66, 84, 114, 117, 120, 126, 132, 141, . . . ; (47)

7, 19, 21, 45, 49, 55, 75, 115, 117, 121, 129, 139, 141, 159, . . . ; (48)

4, 12, 24, 34, 36, 52, 64, 84, 90, 96, 112, 114, 132, 154, . . . (49)

7 The proof of Theorem 1

For k ≥ 1, let a(k) denote the least integer n > 1 for which the interval (kn, (k + 1)n)
contains no prime; if no such n exists, we put a(k) = 0. Taking into account (29), note that
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a(k) = 0 for k = 1, 2, 3, 5, 9, 14. Consider sequence {a(k)}. Its first few terms are (A218831
in [13])

0, 0, 0, 2, 0, 4, 2, 3, 0, 2, 3, 2, 2, 0, 6, 2, 2, 3, 2, 6, 3, 2, 4, 2, 2, 7, 2, 2, 4, 3, . . . (50)

Calculations of a(k) for k ∈ [1, 15], except for k = 1, 2, 3, 5, 9, 14, give positive values of a(k).
Computer calculations of a(k) in the range {16, . . . , 108} show that all values of a(k) in this
range are positive and belong to the interval [2, 16]. This completes the proof.

In conclusion, we present a distribution of numbers of values a(k) = 2, 3, . . . , 16 within
intervals {[1, 107(i)]}, i = 1, . . . , 10. All these numerical results are obtained using the fol-
lowing Mathematica program:

s t a r t =2; cutOf f =100;
a218831=Table [

NestWhile[#+1&, s ta r t ,
Union [PrimeQ [Range[# k+1,# (k+1)−1]] ] !={False}&,
1 , cutOf f ] ,

{k , 1 , 100000000} ] / .{ cutOf f+s ta r t −>0};
We have for a(k) = 2 the numbers

8729394, 17566347, 26437886, 35330619, 44238546,

53158353, 62087802, 71025543, 79969616, 88921064.

In general, here we have a simple explicit formula: the number of a(k) = 2, k ≤ K is
K + 1− π(2K + 1). Further, let

At(K) = |{k ≤ K : a(k) = t}|.

In cases t ≥ 3 we have no explicit formulas. But, taking into account the distribution of
primes into residue classes, a rough argument suggests that At(K) ≍ ctK(lnK)2−t. For
example, for a(k) = 3 within the considered intervals we have the numbers

1061880, 2050703, 3014798, 3963752, 4901317,

5830488, 6752801, 7668802, 8580597, 9486975,

and one can hope that c3 ≈ 1.7 · · · . In other cases we have

t = 4 : 173835, 321315, 461745, 597249, 729660, 859605, 987238, 1113288, 1237558, 1360344;

t = 5 : 25108, 45086, 63177, 80407, 97199, 113213, 128850, 144474, 159648, 174577;

t = 6 : 7312, 12542, 17150, 21536, 25714, 29734, 33616, 37243, 40952, 44503;

t = 7 : 1753, 2918, 3841, 4749, 5590, 6373, 7201, 7950, 8691, 9378;

t = 8 : 449, 703, 918, 1109, 1309, 1507, 1670, 1810, 1977, 2141;
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t = 9 : 149, 216, 278, 342, 400, 440, 508, 558, 606, 647;

t = 10 : 73, 109, 138, 164, 186, 203, 222, 232, 249, 262;

t = 11 : 18, 25, 29, 31, 35, 36, 42, 46, 48, 49;

t = 12 : 13, 15, 17, 19, 21, 25, 26, 29, 30, 31;

t = 13 : 2, 3, 3, 3, 3, 3, 3, 4, 7, 7;

t = 14 : 4, 5, 6, 6, 6, 6, 7, 7, 7, 8;

t = 15 : 0, 2, 3, 3, 3, 3, 3, 3, 3, 3;

t = 16 : 4, 5, 5, 5, 5, 5, 5, 5, 5, 5.

For those t when the difference

At(10
8)

108
(8 ln 10)t−2 − At(10

7)

107
(7 ln 10)t−2

remains less than 0.5, we can get an impression about the change of ct depending on t. So,
c2 = 1 and approximately c3 = 1.7, c4 = 4.6, c5 = 11, c6 = 49.
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