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Abstract

We introduce numbers, depending on three parameters, which we call skyscraper

numbers. We discuss properties of these numbers and their relationship with Stirling

numbers of the first kind, and we also introduce the skyscraper sequence.

1 Introduction

In skyscraper puzzles the player has to put an integer from 1 to n in each cell of a square
grid. Integers represent heights of buildings. Every row and column needs to be filled with
buildings of different heights and the numbers outside the grid indicate how many buildings
are visible from this direction. For example, in the sequence 213645 there are three buildings
(2,3,6) visible from the left and two (5,6) from the right.
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In mathematical terminology, we are asked to build a Latin square such that each row
and column is a permutation of length n with a given number of left-to-right and right-to-
left-maxima. The 7-by-7 skyscraper puzzle in Figure 1 is from the Eighth World Puzzle
Championship.

Figure 1: A skyscraper puzzle

Latin squares are notoriously complicated and difficult to enumerate. Thus, in this paper
we discuss the combinatorics of a single row instead of asking about the entire puzzle. We
give formal definitions and provide examples in Section 2. In Section 3 we give formulas for
skyscraper numbers and in Section 4 we define the skyscraper sequence. In Section 5 we
prove some properties of skyscraper numbers and the skyscraper sequence.

2 Definitions and Examples

What can we say about a row of a skyscraper puzzle if we ignore all information except the
numbers given at the two ends of the row? In particular, how many permutations of the
buildings are there that satisfy the given restrictions? Of course, the outside numbers have
to be between 1 and n, and we leave as an exercise the proof that their sum must be between
3 and n+ 1. Now we consider some of the simplest cases.

Suppose the two given numbers are n and 1. In this case, the row is completely defined.
There is only one possibility: the buildings should be arranged in the increasing order from
the side where we see all of them.

Suppose the grid size is n and the outside numbers are a and b. Let us denote the total
number of such permutations by fn(a, b). We will assume that a is on the left and b is on
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the right. We call these number fn(a, b) the skyscraper numbers and they are the object of
our study.

In the previous example, we showed that fn(n, 1) = 1. And of course we have fn(a, b) =
fn(b, a).

Let us discuss a couple of other examples.
First, we want to discuss the case when the sum of the border numbers is the smallest,

namely 3. In this case, fn(1, 2) is (n − 2)!. Indeed, we need to put the tallest building on
the left and the second tallest on the right. After that we can permute the leftover buildings
any way we want.

Second, we want to discuss the case when the sum of the border numbers is the largest:
n + 1. In this case fn(a, n + 1 − a) is

(

n−1

a−1

)

. Indeed, the position of the tallest building is
uniquely defined — it has to take the a-th spot from the left. After that we can pick a set of
a− 1 buildings that go to the left from the tallest building and the row is uniquely defined
by this set.

3 Skyscraper Numbers

3.1 One-sided skyscraper numbers

Before going further let us see what happens if only a is given and b is unknown. Let us
denote by c(n, a) the number of permutations of n buildings so that a buildings are visible
from the left. If we put the shortest building on the left then the leftover buildings need to
be arranged so that a− 1 of them are visible. If the shortest building is not on the left, then
it can be in any of the n − 1 places and we still need to rearrange the leftover buildings so
that we can see a of them. We just proved that the function c(n, a) satisfies the recurrence

c(n, a) = c(n− 1, a− 1) + (n− 1)c(n− 1, a),

and by iterating this recurrence we get

c(n, a) =
n−1
∑

k=1

(n− 1)!

(n− k − 1)!
c(n− k, a− 1).

Actually c(n, a) is a well-known function. The numbers c(n, a) are called unsigned Stirling

numbers of the first kind (see sequence A132393 in the Online Encyclopedia of Integer Se-
quences [1]); not only do they count permutations with a given number of left-to-right (or
right-to-left) maxima, but they also count permutations with a given number of cycles, and
they appear as the coefficients in the product (x+ 1)(x+ 2)(x+ 3) . . . (x+ n), among other
places; see for example [2, Chapter 1].
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b=2 b=3 b=4 b=5 b=6 b=7
n=2 1
n=3 1 1
n=4 2 3 1
n=5 6 11 6 1
n=6 24 50 35 10 1
n=7 120 274 225 85 15 1

Table 1: The Stirling numbers c(n− 1, b− 1) = fn(1, b)

3.2 The tallest building is on the left

We are now equipped to calculate fn(1, b). The tallest building must be on the left, and the
rest could be arranged so that, in addition to the tallest building, b − 1 more buildings are
seen from the right. That is, fn(1, b) = c(n− 1, b− 1).

The non-zero values of fn(1, b) for n and b not greater than 7 are collected in Table 1.

3.3 Skyscraper numbers

Now we have everything we need to consider the general case. In any permutation of length
n, the left-to-right maxima consist of n and all left-to-right maxima that lie to its left;
similarly, the right-to-left maxima consist of n and all the right-to-left maxima to its right.
Thus, we can take any permutation counted by fn(a, b) and split it into two parts by the
location of n. Given a permutation π with a left-to-right and b right-to-left maxima, let k
be the value 0 ≤ k ≤ n − 1 such that n is in position k + 1. Then the first k entries of π
form a permutation with a − 1 left-to-right maxima, the last n − k − 1 entries of π form
a permutation with b − 1 right-to-left maxima, and there are no other restrictions on the
arrangement of the entries of π. Thus,

fn(a, b) =
n−1
∑

k=0

(

n− 1

k

)

c(k, a− 1) · c(n− k − 1, b− 1).

Table 2 shows f7(a, b), of which we already calculated the first row.

4 The Skyscraper Sequence

We see that the first two rows of the puzzle above (see Figure 1) have the same pair of
numbers, namely 2 and 3, outside. If we ignore all other constraints there are 675 ways to
fill in each of the first two rows. The number 675 is the largest number in the Table 2. We
can say that these two rows of the puzzle are the most difficult to fill in: the pair of numbers
2 and 3 is the least restrictive. Given n, we call such a pair the maximizing pair.
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b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7
a = 1 0 120 274 225 85 15 1
a = 2 120 548 675 340 75 6 0
a = 3 274 675 510 150 15 0 0
a = 4 225 340 150 20 0 0 0
a = 5 85 75 15 0 0 0 0
a = 6 15 6 0 0 0 0 0
a = 7 1 0 0 0 0 0 0

Table 2: The skyscraper numbers f7(a, b)

The sequence of the number of ways to fill in the most difficult row for n from 1 to 20 is
as follows:

1, 1, 2, 6, 22, 105, 675, 4872, 40614, 403704, 4342080, 50457000, 31548456, 8484089328,

121882518576, 1865935562400, 30341974222944, 522466493255424,

9499883854364928, 181927524046316544.

We call this sequence the skyscraper sequence and it is now sequence A218531 in the OEIS
[1].

For n = 1 to 30, the maximizing pairs (a, b) are (1, 1), (1, 2), (2, 2), (2, 2), (2, 2), (2, 3),
(2, 3), (2, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3,
3), (3, 4), (3, 4), (3, 4), (3, 4), (3, 4), (3, 4), (4, 4), (4, 4), (4, 4), (4, 4). One may notice that
the numbers in these pairs do not differ by more than 1. We will prove that in Theorem 2.

The actual skyscraper puzzles are designed so that they have a unique solution. It is the
interplay between rows and columns that allows to reduce the number of overall solutions
to one.

5 Properties

If we look at the antidiagonal in Table 2 we can notice that the numbers there are exactly
a row of the Pascal triangle. Moreover, if we rescale other lines that are parallel to the
antidiagonal by their gcd we get exactly the Pascal triangle! We combine these observations
in the following lemma.

Lemma 1. fn(a, b) = fn(a+ b− 1, 1) ·
(

a+b−2

a−1

)

.

Proof. The number fn(a+b−1, 1) counts the number of ways to arrange skyscrapers so that
the tallest building is on the right and the permutation has a + b − 1 left-to-right maxima.
For every skyscraper that is a left-to-right maximum but is not the tallest building, consider
the group of buildings that are immediately after it to the right and that are located before
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the next left-to-right maximum. Choose b− 1 of these left-to-right maxima and move them
together with their groups to the right end of the permutation. Put these maxima and their
groups in the reverse order. The resulting permutation will have a left-to-right maxima and
b right-to-left maxima. Moreover this operation is clearly reversible and so is a bijection.

We also give a second proof of this lemma using the definition of Stirling numbers in
terms of cycles.

Proof. We want to show that fn(a, b) =
∑

n−1

k=0

(

n−1

k

)

· c(k, a− 1) · c(n− k − 1, b− 1) is equal

to
(

a+b−2

a−1

)

· c(n, a + b − 2). We can do this using the fact that c(n, a + b − 2) counts also
permutations of length n − 1 with a + b − 2 cycles. Let us count permutations of length
n − 1 with a + b − 2 cycles, of which a − 1 are colored red and b − 1 are colored blue, in
two different ways: on one hand, we may first choose a permutation of length n − 1 with
a + b − 2 cycles, then choose a − 1 of these cycles to be red, in

(

a+b−2

a−1

)

· c(n − 1, a + b − 2)
ways. On the other hand, for any k between 0 and n− 1 we may first choose k elements to
be in red cycles, then make a permutation on these k entries with exactly a− 1 cycles, and
make a permutation with exactly b− 1 cycles on the remaining n− k − 1 entries. Thus we
have in total

∑

n−1

k=0

(

n−1

k

)

· c(k, a− 1) · c(n− k− 1, b− 1) ways in this case. So the two things
are equal, as claimed.

Now we are ready to prove the promised theorem about maximizing pairs for the skyscraper
sequence.

Theorem 2. The numbers in the maximizing pairs do not differ by more than 1.

Proof. The maximum number in a table corresponding to the given n is the maximum
number in its line parallel to antidiagonal. As each diagonal is proportionate to a row in the
Pascal’s triangle, the maximum can be found in its middle.

Now let us sum all numbers in each row of Table 2. We get the following sums: 720,
1764, 1624, 735, 175, 21, 1. These numbers bring us back to the sequence A132393 in the
OEIS [1]. These numbers are a row in the triangle of unsigned Stirling numbers of the first
kind. This brings us to the next lemma:

Proposition 3.
∑

b
fn(a, b) = fn+1(a+ 1, 1).

Proof. Consider a row of length n + 1 with a + 1 left-to-right maxima and 1 right-to-left
maximum. In this configuration the tallest building is on the right. If we remove the tallest
building, then we get a row of length n with a left-to-right maxima and an unknown number
of right-to-left maxima.

Skyscraper numbers are fun to play with. We are sure that they are hiding many more
secrets.
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