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Abstract

We study the asymptotic behavior of the classical Dedekind sums s(sy/tx) for the
sequence of convergents sy /t; k > 0, of the transcendental number

(e e]

1
Zﬁ’ b> 3.

§=0
In particular, we show that there are infinitely many open intervals of constant length

such that the sequence s(sj/tx) has infinitely many transcendental cluster points in
each interval.

1 Introduction and result

Dedekind sums have quite a number of interesting applications in analytic number theory
(modular forms), algebraic number theory (class numbers), lattice point problems and alge-
braic geometry (for instance [1, 6, 7, 10]).

Let n be a positive integer and m € Z, (m,n) = 1. The classical Dedekind sum s(m/n)
is defined by

n

s(m/n) = _((k/n))((mk/n))

k=1
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where ((---)) is the usual sawtooth function (for example, [7, p. 1]). In the present setting
it is more natural to work with

S(m/n) =12s(m/n)

instead.

In the previous paper [3] we used the Barkan-Hickerson-Knuth-formula to study the
asymptotic behavior of S(sy/tx) for the convergents si/ty of transcendental numbers like e
or €. In this situation the limiting behavior of S(sy,/t;) was fairly simple. It is much more
complicated, however, for the transcendental number

z(b) :Zb% b>3. (1)

In fact, we have no full description of what happens in this case. Its complexity is illustrated
by the following theorem, which forms the main result of this paper.

Theorem 1. Let si/ty, k > 0, be the sequence of convergents of the number x(b) of (1).
Then the sequence S(si/ty), k > 0, has infinitely many transcendental cluster points in each
of the intervals

b—10 2'+1b 9—21+ ! >0
i A 7 b1 , 1> 0.

Note that each of the intervals of Theorem 1 has the length 1+ 1/(b(b— 1)), whereas the
distance between two neighboring intervals is 1 — 1/(b(b — 1)).

2 The integer part

We start with the continued fraction expansion [ag, a1, as, . . .| of an arbitrary irrational num-
ber . The numerators and denominators of its convergents

sk/tr = lag, a1, . . ., ag) (2)
are defined by the recursion formulas

$_o =0, s_1 =1, S =apSx_1+ SL—o and
t_g = 1, t_l = 0, tk = aktk_l + tk_g, for k Z 0. (3)

Henceforth we will assume 0 < x < 1, so ag = 0. Then the Barkan-Hickerson-Knuth formula
says that for £k >0

k ' (Sk + tk_l)/tk —3, if kis odd;
S(se/te) =Y (—1)'a; + (4)

j=1 (sk — tr—1)/tr, if k is even;
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see [2, 4, 5].
In the case of the number x = z(b), the continued fraction expansion has been given in
9]. It is defined recursively. To this end put

1) =C(1,b) =[0,0—1,b+ 2]

in the sense of (2) and (3). If C(j) = C(j,b) has been defined for j > 1 and C(j) =
0,a1,...,a,] (where n = 27), then

Ci+1)=C(j+1,b)=1[0,a1,...,0n, a4, —2,0p-1,0p_2,...,a02,a1 + 1].

Then = = lim;_,o C(j). In particular, x = [0,a;,as,...], where a; is the corresponding
partial denominator of each C'(j) with 27 > k.
In view of formula (4) for x = x(b), it is natural to investigate

S

L) = LE D) =S (=1 a;, k>0,

1

.
Il

first. For the sake of simplicity we call L(k) the integer part of the Dedekind sum S(sy/ty).
The following lemma comprises three easy observations.

Lemma 2. Let [0,ay,as,...] be the continued fraction expansion of v = xz(b) and n = 27,
Jj=0.
(a) If n > 4, then
An+k = Qn—k+1 fOT’ 2<k<n-1
(b) If n > 8, then
ag = ap_gy1 for 2 <k <n/2—1.
(c) If n > 8, then
ap = Qg for 2 <k <n/2—1.

Proof. Obviously, assertion (c) follows from (a) and (b). Assertion (a) is immediate from
the definition of the continued fraction expansion of z(b). In order to deduce (b) from (a),
we assume n > 4dandput l =n—k+1,2 <k <n-—1. Then a; = a,_g+1 = Gnyk, by
(a). Since k = n — [ + 1, this gives a; = anq(n—i41) = G2n—i+1- S0 we have, for n > 8 and
2<1<n/2—1: a;= ap_y4+1, which is (b). O

Lemma 3. Letn =2/, n>4. For1<k<n—1 we have
Lin+k)=—-24+L(n—k).
Proof. Since L(n+1) = L(n—1)+ (=1)""'a, + (=1)*(a, —2) = L(n — 1) — 2, the assertion
holds for k =1. Let 2 < k <n —1. Then
k
Lin+k)=Ln-1)=2+> (-1)"" a,.
i=2
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By assertion (a) of Lemma 2, the sum on the right hand side equals

k k k-1
Z(_l)n+i_1an—i+l = Z(_]-)i_lan—i—l—l = Z(_l)ian—i-
i=2 i=2 i=1

We observe

k—1 n—1
D (V= ), (-a
=1 i=n—k-+1

This gives

n—1 n—1
Lin+k)==2+> (-1)"a;+ >  (-1'a;=-2+L(n—k).
=1 i=n—k+1

O

Remark 4. By the construction of the sequence C(j), we have a,, = b for each n = 27,5 > 2.
From Lemma 3 we obtain L(2n) = L(2n—1)+(—1)*""tay, = L(n+(n—1))—b= L(1)—2—b =
b—1—-2—-b=—-3.

Lemma 5. Letn =2/ n>8. For2<k<n/2-1,
L(n+ k) = —4 + L(k).
In particular, L(n + k) = L(2n+ k) = L(4n + k) = - - -

Proof. We have L(n) = —3, by the remark. Hence L(n+1) = L(n)+(—1)"a,41 = —3+b—2 =
b — 5. From Lemma 2, (¢) we obtain

Ln4+k) =b—5+ (=1)"apo+ -+ (1" g, =

b—5+(—Dag+ -+ (=1)"ap =b—5+L(k) —a; = —4 + L(k).

O
Let n =2/, n > 8. We define a sequence k;, i > 0, in the following way:
ko=mn— 1. (5)
If k;_1 has been defined, ¢ > 1, then
ki =2'n — k;i_y. (6)
Induction based on (5) and (6) gives
2< ki <2n-1, (7)
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and

for all 7 > 0. We have
L(ky) =L(n—1)=L(n)+a,=—-3+b
from the remark. Further, Lemma 3 gives, by induction,
L(k;) =—-3—2i+b.

Indeed, if L(k’z_l) = -3 2(2 — 1) + b, L(k’z) = L(27’TL — ki—l) = L(Q"’ln + (217171 — ki—l)) =
—2+ L(k;—1) = —3 — 2i + b. Altogether, we know the numbers k; and the integer part of
S(sg, /ty;) explicitly, namely

Lemma 6. Let n =2/, n > 8. Fori >0 let k; be defined by (8). Then
L(k)=b—3—2i.

Lemma 6 says that the integer part L(k;) of S(s,/ty,) is independent of n if n > 8 is a
power of 2. Suppose, therefore, that n; = 2% [ =1,...,r. Fix i > 0 for the time being and

define , .
2z+1 + (_1)1

kii = 3

ny + (—1)i_1. (9)

By (7),
kig <2y —1<2n, —1=272_1

Suppose that 7 is a power of 2, 7 > 2¢7"+3. Then we have

~

2 <k <21
2

forall [ =1,...,r. Therefore, Lemma 5 and Lemma 6 give

Proposition 7. Leti > 0 and r > 1 be given and n; = 22%!, 1 = 1,...r. Suppose that the
numbers k;; are defined as in (9). If n is a power of 2, 1 > 2773 then

L(n+kyy)=—4+4 L(ki;) =b—7—2i.

3 The fractional part

Note that the numbers k;; of the foregoing section are all odd. Hence Lemma 9 and the
Barkan-Hickerson-Knuth formula give

Shi+ki, tﬁ-ﬁ-ki,l—l
+

S(Sﬁ+ki,l/tﬁ+ki7l> =b—-T7T—-2 + - 3. (].0)

tﬁ-l—ki,l tﬁ-HCi,z



If o tends to infinity sz x,,/tas,, tends to x = x(b). Accordingly, we have to investigate
the limiting behavior of 74, ,_, / t+k;, in order to understand the fractional part of formula
(10).

To this end we suppose that n is a power of 2, n > 8 and k is an integer, 2 < k < n/2—1.
From (3) we have t,, 1 = apixtnik_1 + tnik_o, hence

tntk bntk—2
= OQp4k + - [anJrka .
Lyk—1 bnyk—1 btk—2

tn—i—k—l]

When we repeat this procedure, we obtain the well-known fact

bntk Intk—2,
- [an—l—k; Aptk—1, ] - [an+ka Ap+k—1y - - - 7a’1]-
bnk—1 Intk—3
From Lemma 2, (c), we infer
An+k = A, Apyk—1 = Qg—1, - - -, Apy2 = Q2.

Moreover, a, 41 = a, —2 =0b— 2 and a,, = b. Finally, Lemma 2, (b) says

Ap—1 = A2,0p—2 = A3, ..., 0p/242 = Up/2-1-

Altogether,

m = [am Ag—15---,02,0 = 24,0,02,03,...0n/2-1,0n/2415 - - - 701]-

ke
The final terms a, /241, a2, ..., a1 are not of interest. It suffices to write

Itk _ b—2,b 11
t ht - [CLk,CLk,l,.--,CLQ, ) 70’27a37"'7an/2—170(n)] ( )
etk

for some ¢(n) € Q. From [9, Theorem 8] we know that all numbers ay, ag, ... are > 1 and

< b+ 2, hence we have
1 <e(n) <b+3.

Proposition 8. Suppose that k remains fizved, 2 < k <n/2—1, but n = 27 tends to infinity.
Then tpik/tnik—1 converges to

t(k) =t(k,b) = [ag, ag—1,...,a2,0 — 2, (x + 1) /x|,
where x = x(b) is defined by (1).

Proof. We have x = lim;_,o, C(1) = [0,b — 1,y] with y = [ag,as,...]. A short calculation
shows
b,y] = [b,as,as,...] = (x+1)/x.



Let p;/qi, i = 0,1,2,... be the convergents of t,,r/t, x_1 (where the numbers p;, ¢; are
defined in the same way as the numbers s;, ¢; in (3)). We have, by (11),

tose  pe(n) +pf

thrkfl qC(n) + q/

with p = Pk4n/2-1, p = Pk4n/2-2, 4 = Qk+n/2-1, q = Qktn/2—2- We write

t(l{}) = [CLk, ..., Ao, b— 2, b, as, . .. ,an/g_l, z(n)],
where z(n) satisfies 1 < z(n) < b+ 3 by the argument above. Accordingly,
/
k) = pz(n) +p'
qz(n) + ¢
This gives

/

H(k) — ek pz(n) +p"  pe(n) +p
thk-1 qz(n) +q" qe(n) +4q°
The expression on the right hand side of (12) simplifies to
(pg' —P'q)2(n) + (P'q — pq')e(n)
(qz(n) + ¢')(qc(n) + ¢')
However, it is well-known that pg’ — p'q = £1. Observing 1 < z(n),c(n) < b+ 3, we obtain

(12)

tn 2b+6
t(k) — | < .
lntk—1 (¢+q)
Since ¢ and ¢’ tend to infinity for n — oo, our proof is complete. O

We conclude this section with two observations.
Lemma 9. In the above setting, let 2 < k < k' be integers. Then t(k) # t(k').
Proof. Suppose t(k) = t(k'), so
[agr, ..., ag1, t(k)] = t(k).

An identity of this kind can only hold if #(k) is a quadratic irrationality. However, t(k) is a
transcendental number since x is transcendental (see [8, p. 35, Satz 8]). O

Lemma 10. Let k > 2 be an integer. Then x + 1/t(k) is a transcendental number.
Proof. Suppose a = x + t(k) is algebraic. Since we may write
L/t(k) = [0, t(k)] = plx+1)/x +p: _ plx+1) —|—p:x
gz +1)/x+q¢ qz+1)+qx
with integers p,p’,q,¢', ¢ > 0, ¢ > 0, we obtain
ple+1)+pv
gz + 1)+ ¢z

This, however, means that x satisfies a quadratic equation over the field Q(«). Accordingly,
x is algebraic, a contradiction. O]




4 Proof of Theorem 1

As in the setting of Proposition 7, let 4 > 0 and r > 1 be given and n; = 22, [ =1,...,7r.
Suppose that the numbers k;; are defined as in (9). Let 1 be a power of 2, n > 27773, By
Proposition 7,

Ln+kiy) =b—T7—2i.

If 7 tends to infinity, Proposition 8 says that t7,4,,/tak,,—1 tends to
t<ki,l) = [a'ki,la aki7l717 cee, Ao, b— 27 (.T + 1)/5[3’]

Therefore t5 4, ,1/tatk,, tends to 1/t(k;;). Altogether, we have

S(8ﬁ+ki,l/tﬁ+ki,l) — b - 10 - 2Z + T +

t(kit)

For | <" <r we obtain k;; < k;; from (9). By Lemma 9, t(k;;) # t(k;r). Accordingly, the
numbers 1/t(k;;) are pairwise different for 1 <[ < r. Further, z+1/t(k;;) is transcendental,
by Lemma 10. The inequalities

1/b<z<1/(b—1)and 0 < 1/t(k;;) <1
are obvious by (1) and z = [0, — 1,...], 1/t(ki;) = [0,as,,,...]. Therefore, the sequence

S(sj/t;), j > 1, has r distinct transcendental cluster points in the interval

1 , 1

Since r can be chosen arbitrarily large, this proves Theorem 1.
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