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Abstract

We study the asymptotic behavior of the classical Dedekind sums s(sk/tk) for the
sequence of convergents sk/tk k ≥ 0, of the transcendental number

∞∑

j=0

1

b2j
, b ≥ 3.

In particular, we show that there are infinitely many open intervals of constant length
such that the sequence s(sk/tk) has infinitely many transcendental cluster points in
each interval.

1 Introduction and result

Dedekind sums have quite a number of interesting applications in analytic number theory
(modular forms), algebraic number theory (class numbers), lattice point problems and alge-
braic geometry (for instance [1, 6, 7, 10]).

Let n be a positive integer and m ∈ Z, (m,n) = 1. The classical Dedekind sum s(m/n)
is defined by

s(m/n) =
n∑

k=1

((k/n))((mk/n))
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where ((· · · )) is the usual sawtooth function (for example, [7, p. 1]). In the present setting
it is more natural to work with

S(m/n) = 12s(m/n)

instead.
In the previous paper [3] we used the Barkan-Hickerson-Knuth-formula to study the

asymptotic behavior of S(sk/tk) for the convergents sk/tk of transcendental numbers like e
or e2. In this situation the limiting behavior of S(sk/tk) was fairly simple. It is much more
complicated, however, for the transcendental number

x(b) =
∞∑

j=0

1

b2j
, b ≥ 3. (1)

In fact, we have no full description of what happens in this case. Its complexity is illustrated
by the following theorem, which forms the main result of this paper.

Theorem 1. Let sk/tk, k ≥ 0, be the sequence of convergents of the number x(b) of (1).
Then the sequence S(sk/tk), k ≥ 0, has infinitely many transcendental cluster points in each

of the intervals (
b− 10− 2i+

1

b
, b− 9− 2i+

1

b− 1

)
, i ≥ 0.

Note that each of the intervals of Theorem 1 has the length 1+1/(b(b− 1)), whereas the
distance between two neighboring intervals is 1− 1/(b(b− 1)).

2 The integer part

We start with the continued fraction expansion [a0, a1, a2, . . .] of an arbitrary irrational num-
ber x. The numerators and denominators of its convergents

sk/tk = [a0, a1, . . . , ak] (2)

are defined by the recursion formulas

s−2 = 0, s−1 = 1, sk = aksk−1 + sk−2 and

t−2 = 1, t−1 = 0, tk = aktk−1 + tk−2, for k ≥ 0. (3)

Henceforth we will assume 0 < x < 1, so a0 = 0. Then the Barkan-Hickerson-Knuth formula
says that for k ≥ 0

S(sk/tk) =
k∑

j=1

(−1)j−1aj +





(sk + tk−1)/tk − 3, if k is odd;

(sk − tk−1)/tk, if k is even;

(4)
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see [2, 4, 5].
In the case of the number x = x(b), the continued fraction expansion has been given in

[9]. It is defined recursively. To this end put

C(1) = C(1, b) = [0, b− 1, b+ 2]

in the sense of (2) and (3). If C(j) = C(j, b) has been defined for j ≥ 1 and C(j) =
[0, a1, . . . , an] (where n = 2j), then

C(j + 1) = C(j + 1, b) = [0, a1, . . . , an, an − 2, an−1, an−2, . . . , a2, a1 + 1].

Then x = limj→∞C(j). In particular, x = [0, a1, a2, . . .], where ak is the corresponding
partial denominator of each C(j) with 2j ≥ k.

In view of formula (4) for x = x(b), it is natural to investigate

L(k) = L(k, b) =
k−1∑

j=1

(−1)j−1aj, k ≥ 0,

first. For the sake of simplicity we call L(k) the integer part of the Dedekind sum S(sk/tk).
The following lemma comprises three easy observations.

Lemma 2. Let [0, a1, a2, . . .] be the continued fraction expansion of x = x(b) and n = 2j,
j ≥ 0.

(a) If n ≥ 4, then
an+k = an−k+1 for 2 ≤ k ≤ n− 1.

(b) If n ≥ 8, then
ak = an−k+1 for 2 ≤ k ≤ n/2− 1.

(c) If n ≥ 8, then
ak = an+k for 2 ≤ k ≤ n/2− 1.

Proof. Obviously, assertion (c) follows from (a) and (b). Assertion (a) is immediate from
the definition of the continued fraction expansion of x(b). In order to deduce (b) from (a),
we assume n ≥ 4 and put l = n − k + 1, 2 ≤ k ≤ n − 1. Then al = an−k+1 = an+k, by
(a). Since k = n − l + 1, this gives al = an+(n−l+1) = a2n−l+1. So we have, for n ≥ 8 and
2 ≤ l ≤ n/2− 1: al = an−l+1, which is (b).

Lemma 3. Let n = 2j, n ≥ 4. For 1 ≤ k ≤ n− 1 we have

L(n+ k) = −2 + L(n− k).

Proof. Since L(n+1) = L(n− 1)+ (−1)n−1an + (−1)n(an − 2) = L(n− 1)− 2, the assertion
holds for k = 1. Let 2 ≤ k ≤ n− 1. Then

L(n+ k) = L(n− 1)− 2 +
k∑

i=2

(−1)n+i−1an+i.
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By assertion (a) of Lemma 2, the sum on the right hand side equals

k∑

i=2

(−1)n+i−1an−i+1 =
k∑

i=2

(−1)i−1an−i+1 =
k−1∑

i=1

(−1)ian−i.

We observe
k−1∑

i=1

(−1)ian−i =
n−1∑

i=n−k+1

(−1)iai.

This gives

L(n+ k) = −2 +
n−1∑

i=1

(−1)i−1ai +
n−1∑

i=n−k+1

(−1)iai = −2 + L(n− k).

Remark 4. By the construction of the sequence C(j), we have an = b for each n = 2j, j ≥ 2.
From Lemma 3 we obtain L(2n) = L(2n−1)+(−1)2n−1a2n = L(n+(n−1))−b = L(1)−2−b =
b− 1− 2− b = −3.

Lemma 5. Let n = 2j, n ≥ 8. For 2 ≤ k ≤ n/2− 1,

L(n+ k) = −4 + L(k).

In particular, L(n+ k) = L(2n+ k) = L(4n+ k) = · · ·

Proof. We have L(n) = −3, by the remark. Hence L(n+1) = L(n)+(−1)nan+1 = −3+b−2 =
b− 5. From Lemma 2, (c) we obtain

L(n+ k) = b− 5 + (−1)n+1an+2 + · · ·+ (−1)n+k−1an+k =

b− 5 + (−1)1a2 + · · ·+ (−1)k−1ak = b− 5 + L(k)− a1 = −4 + L(k).

Let n = 2j, n ≥ 8. We define a sequence ki, i ≥ 0, in the following way:

k0 = n− 1. (5)

If ki−1 has been defined, i ≥ 1, then

ki = 2in− ki−1. (6)

Induction based on (5) and (6) gives

2 ≤ ki ≤ 2in− 1, (7)
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and

ki =
2i+1 + (−1)i

3
n+ (−1)i−1 (8)

for all i ≥ 0. We have

L(k0) = L(n− 1) = L(n) + an = −3 + b

from the remark. Further, Lemma 3 gives, by induction,

L(ki) = −3− 2i+ b.

Indeed, if L(ki−1) = −3− 2(i− 1) + b, L(ki) = L(2in− ki−1) = L(2i−1n+ (2i−1n− ki−1)) =
−2 + L(ki−1) = −3 − 2i + b. Altogether, we know the numbers ki and the integer part of
S(ski/tki) explicitly, namely

Lemma 6. Let n = 2j, n ≥ 8. For i ≥ 0 let ki be defined by (8). Then

L(ki) = b− 3− 2i.

Lemma 6 says that the integer part L(ki) of S(ski/tki) is independent of n if n ≥ 8 is a
power of 2. Suppose, therefore, that nl = 22+l, l = 1, . . . , r. Fix i ≥ 0 for the time being and
define

ki,l =
2i+1 + (−1)i

3
nl + (−1)i−1. (9)

By (7),
ki,l ≤ 2inl − 1 ≤ 2inr − 1 = 2i+r+2 − 1.

Suppose that n̂ is a power of 2, n̂ ≥ 2i+r+3. Then we have

2 ≤ ki,l ≤
n̂

2
− 1

for all l = 1, . . . , r. Therefore, Lemma 5 and Lemma 6 give

Proposition 7. Let i ≥ 0 and r ≥ 1 be given and nl = 22+l, l = 1, . . . r. Suppose that the

numbers ki,l are defined as in (9). If n̂ is a power of 2, n̂ ≥ 2i+r+3, then

L(n̂+ ki,l) = −4 + L(ki,l) = b− 7− 2i.

3 The fractional part

Note that the numbers ki,l of the foregoing section are all odd. Hence Lemma 9 and the
Barkan-Hickerson-Knuth formula give

S(sn̂+ki,l/tn̂+ki,l) = b− 7− 2i+
sn̂+ki,l

tn̂+ki,l

+
tn̂+ki,l−1

tn̂+ki,l

− 3. (10)
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If n̂ tends to infinity sn̂+ki,l/tn̂+ki,l tends to x = x(b). Accordingly, we have to investigate
the limiting behavior of tn̂+ki,l−1

/tn̂+ki,l in order to understand the fractional part of formula
(10).

To this end we suppose that n is a power of 2, n ≥ 8, and k is an integer, 2 ≤ k ≤ n/2−1.
From (3) we have tn+k = an+ktn+k−1 + tn+k−2, hence

tn+k

tn+k−1

= an+k +
tn+k−2

tn+k−1

= [an+k,
tn+k−1

tn+k−2

].

When we repeat this procedure, we obtain the well-known fact

tn+k

tn+k−1

= [an+k, an+k−1,
tn+k−2

tn+k−3

] = [an+k, an+k−1, . . . , a1].

From Lemma 2, (c), we infer

an+k = ak, an+k−1 = ak−1, . . . , an+2 = a2.

Moreover, an+1 = an − 2 = b− 2 and an = b. Finally, Lemma 2, (b) says

an−1 = a2, an−2 = a3, . . . , an/2+2 = an/2−1.

Altogether,

tn+k

tn+k−1

= [ak, ak−1, . . . , a2, b− 2, b, a2, a3, . . . an/2−1, an/2+1, . . . , a1].

The final terms an/2+1, an/2, . . . , a1 are not of interest. It suffices to write

tn+k

tn+k−1

= [ak, ak−1, . . . , a2, b− 2, b, a2, a3, . . . , an/2−1, c(n)] (11)

for some c(n) ∈ Q. From [9, Theorem 8] we know that all numbers a1, a2, . . . are ≥ 1 and
≤ b+ 2, hence we have

1 ≤ c(n) ≤ b+ 3.

Proposition 8. Suppose that k remains fixed, 2 ≤ k ≤ n/2−1, but n = 2j tends to infinity.

Then tn+k/tn+k−1 converges to

t(k) = t(k, b) = [ak, ak−1, . . . , a2, b− 2, (x+ 1)/x],

where x = x(b) is defined by (1).

Proof. We have x = limi→∞ C(i) = [0, b − 1, y] with y = [a2, a3, . . .]. A short calculation
shows

[b, y] = [b, a2, a3, . . .] = (x+ 1)/x.
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Let pi/qi, i = 0, 1, 2, . . . be the convergents of tn+k/tn+k−1 (where the numbers pi, qi are
defined in the same way as the numbers si, ti in (3)). We have, by (11),

tn+k

tn+k−1

=
pc(n) + p′

qc(n) + q′

with p = pk+n/2−1, p
′ = pk+n/2−2, q = qk+n/2−1, q

′ = qk+n/2−2. We write

t(k) = [ak, . . . , a2, b− 2, b, a2, . . . , an/2−1, z(n)],

where z(n) satisfies 1 ≤ z(n) ≤ b+ 3 by the argument above. Accordingly,

t(k) =
pz(n) + p′

qz(n) + q′
.

This gives

t(k)−
tn+k

tn+k−1

=
pz(n) + p′

qz(n) + q′
−

pc(n) + p′

qc(n) + q′
. (12)

The expression on the right hand side of (12) simplifies to

(pq′ − p′q)z(n) + (p′q − pq′)c(n)

(qz(n) + q′)(qc(n) + q′)
.

However, it is well-known that pq′ − p′q = ±1. Observing 1 ≤ z(n), c(n) ≤ b+ 3, we obtain
∣∣∣∣t(k)−

tn+k

tn+k−1

∣∣∣∣ ≤
2b+ 6

(q + q′)2
.

Since q and q′ tend to infinity for n → ∞, our proof is complete.

We conclude this section with two observations.

Lemma 9. In the above setting, let 2 ≤ k < k′ be integers. Then t(k) 6= t(k′).

Proof. Suppose t(k) = t(k′), so

[ak′ , . . . , ak+1, t(k)] = t(k).

An identity of this kind can only hold if t(k) is a quadratic irrationality. However, t(k) is a
transcendental number since x is transcendental (see [8, p. 35, Satz 8]).

Lemma 10. Let k ≥ 2 be an integer. Then x+ 1/t(k) is a transcendental number.

Proof. Suppose α = x+ t(k) is algebraic. Since we may write

1/t(k) = [0, t(k)] =
p(x+ 1)/x+ p′

q(x+ 1)/x+ q′
=

p(x+ 1) + p′x

q(x+ 1) + q′x

with integers p, p′, q, q′, q > 0, q′ ≥ 0, we obtain

x+
p(x+ 1) + p′x

q(x+ 1) + q′x
= α.

This, however, means that x satisfies a quadratic equation over the field Q(α). Accordingly,
x is algebraic, a contradiction.
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4 Proof of Theorem 1

As in the setting of Proposition 7, let i ≥ 0 and r ≥ 1 be given and nl = 22+l, l = 1, . . . , r.
Suppose that the numbers ki,l are defined as in (9). Let n̂ be a power of 2, n̂ ≥ 2i+r+3. By
Proposition 7,

L(n̂+ ki,l) = b− 7− 2i.

If n̂ tends to infinity, Proposition 8 says that tn̂+ki,l/tn̂+ki,l−1 tends to

t(ki,l) = [aki,l , aki,l−1, . . . , a2, b− 2, (x+ 1)/x].

Therefore tn̂+ki,l−1/tn̂+ki,l tends to 1/t(ki,l). Altogether, we have

S(sn̂+ki,l/tn̂+ki,l) → b− 10− 2i+ x+
1

t(ki,l)
.

For l < l′ ≤ r we obtain ki,l < ki,l′ from (9). By Lemma 9, t(ki,l) 6= t(ki,l′). Accordingly, the
numbers 1/t(ki,l) are pairwise different for 1 ≤ l ≤ r. Further, x+1/t(ki,l) is transcendental,
by Lemma 10. The inequalities

1/b < x < 1/(b− 1) and 0 < 1/t(ki,l) < 1

are obvious by (1) and x = [0, b − 1, . . .], 1/t(ki,l) = [0, aki,l , . . .]. Therefore, the sequence
S(sj/tj), j ≥ 1, has r distinct transcendental cluster points in the interval

(
b− 10− 2i+

1

b
, b− 9− 2i+

1

b− 1

)
.

Since r can be chosen arbitrarily large, this proves Theorem 1.
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