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Abstract

A formula for the number of toroidal m× n binary arrays, allowing rotation of the
rows and/or the columns but not reflection, is known. Here we find a formula for the
number of toroidal m×n binary arrays, allowing rotation and/or reflection of the rows
and/or the columns.

1 Introduction

The number of necklaces with n beads of two colors when turning over is not allowed is

1

n

∑

d |n

ϕ(d) 2n/d, (1)

where ϕ is Euler’s phi function. When turning over is allowed, the number becomes

1

2n

∑

d |n

ϕ(d) 2n/d +

{

2(n−1)/2, if n is odd;

3 · 2n/2−2, if n is even.
(2)

These are the core sequences A000031 and A000029, respectively, in The On-Line Encyclo-

pedia of Integer Sequences [3].
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Our concern here is with two-dimensional versions of these formulas. We consider an
m × n binary array. When opposite edges are identified, it becomes what we will call a
toroidal binary array. Just as we can rotate a necklace without effect, we can rotate the
rows and/or the columns of such an array without effect. The number of (distinct) toroidal
m× n binary arrays is

1

mn

∑

c |m

∑

d |n

ϕ(c)ϕ(d) 2mn/ lcm(c,d), (3)

where lcm stands for least common multiple. This is A184271 in the OEIS [3]. The diagonal
is A179043. Rows (or columns) 2–8 are A184264–A184270. Row (or column) 1 is of course
A000031.

Our aim here is to find the formula that is related to (3) in the same way that (2) is related
to (1). More precisely, we wish to count the number of toroidal m×n binary arrays allowing
rotation and/or reflection of the rows and/or the columns. This is A222188 in the OEIS [3].
The diagonal is A209251. Rows (or columns) 2–5 are A222187 and A222189–A222191. Row
(or column) 1 is of course A000029.

For an alternative description, we could define a group action on the set of m×n binary
arrays, which has 2mn elements. If the group is Cm×Cn, where Cm denotes the cyclic group
of order m, then the number of orbits is given by (3) (see Theorem 1 below). If the group is
Dm ×Dn, where Dm denotes the dihedral group of order 2m, then the number of orbits is
given in Theorem 2 below.

Both theorems are proved using Pólya’s enumeration theorem (actually, the simplified
unweighted version; see, e.g., van Lint and Wilson [4, Theorem 37.1, p. 524]). Gilbert and
Riordan [1] gave other applications of Pólya’s theorem in which the group was, as it is here,
a direct product.

To help clarify the distinction between the two group actions, we provide an example.
There is no distinction in the 2× 2 case, so we consider the 3× 3 case. When the group is
C3 × C3 (allowing rotation of the rows and/or the columns but not reflection), there are 64
orbits, as shown in Table 1. When the group is D3×D3 (allowing rotation and/or reflection
of the rows and/or the columns), there are 36 orbits, as shown in Table 2. Both tables were
generated by Mathematica programs.

Our interest in the number of toroidal m × n binary arrays allowing rotation and/or
reflection of the rows and/or the columns derives from the fact that this is the size of the
state space of the projection of the Markov chain of Mihailović and Rajković [2] under the
mapping that takes a state to the orbit containing it. This reduction of the state space,
from 512 states to 36 states in the 3 × 3 case for example, makes it easier to evaluate the
stationary distribution.

2 Rotations of rows and columns

Let Xm,n := {0, 1}{0,1,...,m−1}×{0,1,...,n−1} be the set of m × n arrays of 0s and 1s, which has
2mn elements. Let a(m,n) denote the number of orbits of the group action on Xm,n by the
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Table 1: A list of the 64 orbits of the group action in which the group C3 × C3 acts on the
set of 3 × 3 binary arrays. (Rows and/or columns can be rotated but not reflected.) Each
orbit is represented by its minimal element in 9-bit binary form . Subscripts indicate orbit
size. Bars separate different numbers of 1s.
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Table 2: A list of the 36 orbits of the group action in which the group D3 ×D3 acts on the
set of 3 × 3 binary arrays. (Rows and/or columns can be rotated and/or reflected.) Each
orbit is represented by its minimal element in 9-bit binary form. Subscripts indicate orbit
size. Bars separate different numbers of 1s.
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group Cm × Cn. In other words, a(m,n) is the number of (distinct) toroidal m × n binary
arrays, allowing rotation of the rows and/or the columns but not reflection.

Theorem 1.

a(m,n) =
1

mn

∑

c |m

∑

d |n

ϕ(c)ϕ(d) 2mn/ lcm(c,d). (4)

Proof. By Pólya’s enumeration theorem,

a(m,n) =
1

mn

m−1
∑

i=0

n−1
∑

j=0

2Aij , (5)

where Aij is the number of cycles in the permutation σiτ j; here σ rotates the rows (row 0
becomes row 1, row 1 becomes row 2, . . . , row m − 1 becomes row 0) and τ rotates the

4



columns. For example, A00 = mn because the identity permutation has mn fixed points,
each of which is a cycle of length 1.

It is well known that, if d divides n, then the number of elements of Cn that are of
order d is ϕ(d). So if c divides m and d divides n, then the number of pairs (i, j) ∈
{0, 1, . . . ,m−1}×{0, 1, . . . , n−1} such that σi is of order c and τ j is of order d is ϕ(c)ϕ(d).
For such (i, j), σiτ j is of order lcm(c, d) because σi and τ j commute, hence each cycle of σiτ j

has length lcm(c, d) and Aij = mn/ lcm(c, d). We are using the fact that each permutation
in Cm ×Cn has the property that all of its cycles are of equal length. Therefore, (4) follows
from (5).

Clearly, a(1, n) reduces to (1); also, a(m,n) = a(n,m) for all m,n ≥ 1. Table 3 provides
numerical values of a(m,n) for small m and n.

Table 3: The number a(m,n) of toroidal m× n binary arrays, allowing rotation of the rows
and/or the columns but not reflection, for m,n = 1, 2, . . . , 8.

2 3 4 6 8 14 20 36

3 7 14 40 108 362 1182 4150

4 14 64 352 2192 14624 99880 699252

6 40 352 4156 52488 699600 9587580 134223976

8 108 2192 52488 1342208 35792568 981706832 27487816992

14 362 14624 699600 35792568 1908897152 104715443852 5864063066500

20 1182 99880 9587580 981706832 104715443852 11488774559744 1286742755471400

36 4150 699252 134223976 27487816992 5864063066500 1286742755471400 288230376353050816

3 Rotations and reflections of rows and columns

Let b(m,n) denote the number of orbits of the group action on Xm,n by the group Dm×Dn.
In other words, b(m,n) is the number of (distinct) toroidal m × n binary arrays, allowing
rotation and/or reflection of the rows and/or the columns.

Theorem 2.

b(m,n) = b1(m,n) + b2(m,n) + b3(m,n) + b4(m,n),

where

b1(m,n) =
1

4mn

∑

c |m

∑

d |n

ϕ(c)ϕ(d) 2mn/ lcm(c,d),

b2(m,n)

=

{

(4n)−12(m+1)n/2, if m is odd;

(8n)−1[2mn/2 + 2(m+2)n/2], if m is even,
+

1

4n

∑

d≥2: d |n

ϕ(d) 2mn/d

+

{

(4n)−1
∑′[2(m+1) gcd(j,n)/2 − 2m gcd(j,n)], if m is odd;

(8n)−1
∑′[2m gcd(j,n)/2 + 2(m+2) gcd(j,n)/2 − 2m gcd(j,n)+1], if m is even,
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with
∑′ :=

∑

1≤j≤n−1:n/ gcd(j,n) is odd,

b3(m,n) = b2(n,m),

and

b4(m,n) =











2(mn−3)/2, if m and n are odd;

3 · 2mn/2−3, if m and n have opposite parity;

7 · 2mn/2−4, if m and n are even.

Proof. Again by Pólya’s enumeration theorem,

b(m,n) =
1

4mn

m−1
∑

i=0

n−1
∑

j=0

[2Aij + 2Bij + 2Cij + 2Dij ],

where Aij (resp., Bij , Cij, Dij) is the number of cycles in the permutation σiτ j (resp., σiτ jρ,
σiτ jθ, σiτ jρθ); here σ rotates the rows (row 0 becomes row 1, row 1 becomes row 2, . . . ,
row m− 1 becomes row 0), τ rotates the columns, ρ reflects the rows (rows 0 and m− 1 are
interchanged, rows 1 and m − 2 are interchanged, . . . , rows ⌊m/2⌋ − 1 and m − ⌊m/2⌋ are
interchanged), and θ reflects the columns.

By the proof of Theorem 1, we know the form of Aij , and this gives the formula for
b1(m,n).

Next we find (Bi0), the entries in the 0th column of matrix B. For i = 0, 1, . . . ,m−1, the
permutation σiρ can be described by its effect on the rows of {0, 1, . . . ,m−1}×{0, 1, . . . , n−
1}. It reverses the first m − i rows and reverses the last i rows. Since the reversal of k
consecutive integers has k/2 transpositions if k is even and (k− 1)/2 transpositions and one
fixed point if k is odd, the permutation of {0, 1, . . . ,m − 1} induced by σiρ has (m − 1)/2
transpositions and one fixed point if m is odd, and m/2 transpositions if i is even and m is
even, and (m − 2)/2 transpositions and two fixed points if i is odd and m is even. These
numbers must be multiplied by n for the permutation σiρ of {0, 1, . . . ,m−1}×{0, 1, . . . , n−
1}. The results are that Bi0 = (m + 1)n/2 if m is odd, Bi0 = mn/2 if i is even and m is
even, and Bi0 = (m + 2)n/2 if i is odd and m is even. Therefore, (4mn)−1

∑m−1
i=0 2Bi0 =

(4n)−12(m+1)n/2 if m is odd, whereas (4mn)−1
∑m−1

i=0 2Bi0 = (8n)−1[2mn/2 + 2(m+2)n/2] if m is
even, and this gives the first term in the formula for b2(m,n).

We turn to Bij for i = 0, 1, . . . ,m − 1 and j = 1, 2, . . . , n − 1. First, by a property of
cyclic groups, τ j has order d := n/ gcd(j, n). If d is even, then, since σiρ has order 2 (see
the preceding paragraph), σiτ jρ has order d and all of its cycles have length d. In this case,
Bij = mn/d = m gcd(j, n). Suppose then that d is odd. There are three cases: (i) m odd,
(ii) i even and m even, and (iii) i odd and m even. Recall that σiρ reverses the first m− i
rows and reverses the last i rows. In case (i), one row is fixed by σiρ, so cycles of σiτ jρ in this
row have length d and all others have length 2d. We find that Bij = n/d+ (m− 1)n/(2d) =
(m + 1)n/(2d) = (m + 1) gcd(j, n)/2. In case (ii), no rows are fixed by σiρ, so all cycles of
σiτ jρ have length 2d. It follows that Bij = mn/(2d) = m gcd(j, n)/2. In case (iii), two rows
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are fixed by σiρ, so cycles of σiτ jρ in these rows have length d and all others have length
2d. We conclude that Bij = 2n/d+ (m− 2)n/(2d) = (m+ 2) gcd(j, n)/2. If the formula for
Bij that holds when d is even were valid generally, we would have the second term in the
formula for b2(m,n). The third term in the formula for b2(m,n) is a correction to the second
term to treat the cases (i)–(iii) in which d is odd.

Next, the formula for b3(m,n) follows by symmetry. More explicitly,

b3(m,n) =
1

4mn

m−1
∑

i=0

n−1
∑

j=0

2Cij =
1

4nm

n−1
∑

j=0

m−1
∑

i=0

2Bji = b2(n,m)

because the number of cycles Cij of σ
iτ jθ acting on m× n arrays is equal to the number of

cycles Bji of σ
jτ iρ acting on n×m arrays.

Finally, we consider b4(m,n). For i = 0, 1, . . . ,m− 1 and j = 0, 1, . . . , n− 1, σiτ jρθ has
the effect of reversing the first m− i rows, reversing the last i rows, reversing the first n− j
columns, and reversing the last j columns. If m and n are odd, then there is one fixed point
and (mn−1)/2 transpositions, soDij = (mn+1)/2 for all i and j, hence b4(m,n) = 2(mn−3)/2.
If m is odd and n is even, then Dij = mn/2 for all i and even j and Dij = mn/2 + 1 for
all i and odd j. This leads to b4(m,n) = (1/8)[2mn/2 + 2mn/2+1] = 3 · 2mn/2−3. If m is
even and n is odd, then Dij = mn/2 for even i and all j and Dij = mn/2 + 1 for odd i
and all j. This leads to the same formula for b4(m,n). Finally, if m and n are even, then
Dij = mn/2 unless i and j are both odd, in which case Dij = mn/2 + 2. This implies that
b4(m,n) = (1/4)[(3/4)2mn/2 + (1/4)2mn/2+2] = 7 · 2mn/2−4.

This completes the proof.

It is easy to check that b(1, n) reduces to (2) and that b(m,n) = b(n,m) for all m,n ≥ 1.
Table 4 provides numerical values of b(m,n) for small m and n.

Table 4: The number b(m,n) of toroidal m × n binary arrays, allowing rotation and/or
reflection of the rows and/or the columns, for m,n = 1, 2, . . . , 8.

2 3 4 6 8 13 18 30

3 7 13 34 78 237 687 2299

4 13 36 158 708 4236 26412 180070

6 34 158 1459 14676 184854 2445918 33888844

8 78 708 14676 340880 8999762 245619576 6873769668

13 237 4236 184854 8999762 478070832 26185264801 1466114420489

18 687 26412 2445918 245619576 26185264801 2872221202512 321686550498774

30 2299 180070 33888844 6873769668 1466114420489 321686550498774 72057630729710704
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