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Abstract

Using geometric probability, we apply the formal definitions of Shannon entropy

and Rényi’s generalization to study the complexity of planar curves of finite length

within a convex set. The bounds for the Shannon and Rényi entropies depend on the

arc length of the curve and on that of the boundary of the convex set; they involve a

Gibbs distribution and a power law distribution, respectively. We also obtain explicit

formulae for the two entropies and determine convex sets that maximize the entropy

of curves.

1 Introduction

Planar curves range from a simple straight line segment or a circle to a complicated tangle.
Their complexity has been analysed using both the thermodynamic concept of Shannon
entropy [9, 10] and the geometrical concept of dimension [7, 8]. Examples can be found in
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Figure 1: A straight line D determined by polar coordinates (ω, ρ)

various other domains [1, 2, 3, 4, 5, 6, 11, 12]. A brief overview of the fundamental ideas
is given and the Shannon and the more general Shannon-Rényi entropies are defined. The
question of bounds for these entropies is considered; the analysis of the general Rényi entropy
turns out to be quite different from that of the Shannon entropy and involves a modified
Hurwitz zeta function. A more precise viewpoint which gives exact formulae for the entropies
is then developed.

2 Geometric probability

Given a plane curve Γ of finite length |Γ|, we recall the classical definition of the probability
that a straight line D intersects Γ in exactly n points [9, 15]. In the plane, a straight line D
that does not pass through the origin O is determined by the polar coordinates (ω, ρ), where
ω, 0 6 ω < 2π, is the angle the normal to D makes with the x-axis and ρ > 0 is the distance
from O. Straight lines that pass through the origin are not counted since, as we will see, the
family of such lines has measure 0.

In the (ω, ρ) plane, a point in the strip S := [0, 2π)× (0,∞) represents a straight line not
passing through the origin in the usual (x, y)-plane. The measure µ in the strip is defined
by

dµ := dρ dω,

i.e., the usual Lebesgue measure. Now let K be a bounded convex set in the (x, y)-plane
and let F (K) be the set of straight lines that intersect K. The µ-measure of F (K) is known
to be equal to the length |∂K| of the boundary ∂K of K, i.e.,

µ(F (K)) = |∂K|.

It follows that the measure given by

dp =
dµ

|∂K|
=

dρ dω

|∂K|
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is a probability measure defined on F (K).
Suppose K0 ⊆ K is a convex subset of K. Then |∂K0| 6 |∂K| and the probability that

a straight line meeting K also meets K0 is

|∂K0|

|∂K|
.

Consequently the probability that a straight line meeting K misses K0 is

1−
|∂K0|

|∂K|
. (1)

Consider a curve Γ0 of finite length lying in the convex set K. Denote by pn(Γ0, K) the
probability that a straight line D meeting K intersects Γ0 in exactly n points. Observe that
if K = K0 = con(Γ0), the convex hull of Γ0, then D must hit Γ0, so that p0(Γ0, K0) = 0.

By the definition of probability,

∞∑

n=0

pn(Γ0, K) = 1. (2)

A classical result of H. Steinhaus [17] states that the expected number λ say of intersection
points of Γ0 with random straight lines is

λ :=
∞∑

n=1

n pn(Γ0, K) =
2|Γ0|

|∂K|
. (3)

The next moment
∑

∞

n=1 n
2 pn(Γ0, K) corresponds to the “energy” of the curve but is much

less well-behaved and will not be considered.

3 Entropy

The celebrated Shannon entropy of thermodynamics and information theory has a gener-
alization due to Rényi [13, 14]. Their definitions are used in conjunction with geometric
probability to define formally notions of entropy for curves of finite length within a convex
set K. Note that unlike the thermodynamic setting, there is no underlying mechanism or
dynamic here that leads to the entropies increasing.

3.1 The Shannon entropy

The sequence (pn(Γ0, K) : n = 0, 1, 2, . . . ) of probabilities of the number of intersection points
can be substituted into the formula for Shannon entropy. To be precise, the Shannon entropy
h(Γ0, K) of the curve Γ0 relative to a convex set K containing Γ0 is defined by the formula

h(Γ0, K) =
∞∑

n=0

pn(Γ0, K) log
1

pn(Γ0, K)
=

∞∑

n=0

pn(K) log
1

pn(K)
, (4)
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where as usual we put p log(1/p) = 0 if p = 0 and where for simplicity here and elsewhere
whenever the argument is clear, we suppress Γ0 or K and write the probability

pn(Γ0, K) = pn(K) or pn.

Similarly we will write the Shannon entropy

h(Γ0, K) = h(K) = h.

3.2 The Rényi entropy

Rényi [13, 14] has defined a form of entropy h(s), where s > 0, by

h(s) :=
1

1− s
log

∞∑

n=0

psn, (5)

which tends to the Shannon entropy h as s → 1:

h(1) := lim
s→1

h(s) = lim
s→1

(
1

1− s
log

∞∑

n=0

psn

)
=

∞∑

n=0

pn log 1/pn = h . (6)

In addition it is readily verified that d h(s)/ds = 0 at s = 1 and that h(s) is minimal for s = 1.
The Rényi entropy can also be applied formally to curves. We will write

h(s)(Γ0, K) =
1

1− s
log

∞∑

n=0

psn(Γ0, K) (7)

for the Rényi entropy for a curve Γ0 relative to a convex setK ⊇ Γ0 and, as with the Shannon
entropy, we will write

h(s)(Γ0, K) = h(s)(K) = h(s)

when the meaning is clear.
The two series have finitely many terms for an algebraic curve, since pn = 0 for all n

larger than its degree, but they converge (absolutely) in general by the following results. A
separate argument is needed for the two entropies. The Shannon entropy (s = 1) has been
treated in this context [9, 10] and is now discussed for completeness.

3.3 A bound for the Shannon entropy of curves

Theorem 1. The Shannon entropy h(Γ0, K) of a curve Γ0 of finite length lying in the convex
set K satisfies

h(Γ0, K) 6 log

(
2|Γ0|

|∂K|
+ 1

)
+

2|Γ0|

|∂K|
log

(
1 +

|∂K|

2|Γ0|

)
6 log

(
2|Γ0|

|∂K|
+ 1

)
+ 1 (8)
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and more precisely in the case K = K0 = con(Γ0) (so that p0 = 0),

h(Γ0, K0) 6 log

(
2|Γ0|

|∂K0|

)
+

(
2|Γ0|

|∂K0|
− 1

)
log

(
2|Γ0|

2|Γ0| − |∂K0|

)

6 log

(
2|Γ0|

|∂K0|

)
+ 1. (9)

Proof. By (4), it suffices to bound the sum
∑

∞

n=k pn log 1/pn, where pn ∈ [0, 1] and k = 0
in (8) and k = 1 in (9), subject to the two constraints (2) and (3), i.e.,

∞∑

n=k

pn = 1

and
∞∑

n=k

n pn =
2|Γ0|

|∂K|
= λ,

where k = 0 or 1. This is done using Lagrange multipliers. Let α, β ∈ R and consider

U =
∞∑

n=k

p̂n log 1/p̂n − α

∞∑

n=k

p̂n − β

∞∑

n=k

np̂n.

Then for each n = k, k + 1, . . . , ∂U/∂p̂n = 0 implies

− log p̂n − 1− α− nβ = 0,

whence the ‘maximal’ probability distribution p̂n is a negative exponential with constant
factor. More precisely,

p̂n = e−1−α−nβ = Ce−βn, (10)

where C = e−1−α and p̂n is a Gibbs distribution [16]. Recall that Gibbs measure is a prob-
ability measure of importance in thermodynamics: it is the unique measure that maximizes
the entropy for a given expected energy. It underlies maximum entropy methods and related
algorithms and its appearance here is accordingly natural.

The constant C = e−1−α (or α) is determined from the power series

∞∑

n=k

p̂n = C

∞∑

n=k

e−βn = 1

which gives C = C(β) = eβk(1− e−β). In statistical mechanics, C(β) is the reciprocal of the
partition function and in physics β corresponds to the inverse temperature [16]. Moreover
C
∑

∞

n=k n e−βn = λ whence

λ =
1

1− e−β

(
k − (k − 1) e−β

)
=

1

eβ − 1

(
k eβ − k + 1

)
.
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Thus

eβ =
λ− k + 1

λ− k
and eβ − 1 =

1

λ− k
.

Hence the entropy h satisfies

h 6 C
∞∑

n=k

e−βn log
eβn

C
= H

say, so that

H =
β

1− e−β

(
k − (k − 1)e−β

)
+ log

e−kβ

1− e−β

=
β

eβ − 1

(
keβ − k + 1

)
− β k + log

eβ

eβ − 1

= log(λ− k + 1) + (λ− k) log
λ− k + 1

λ− k
6 log(λ− k + 1) + 1.

Case 1 k = 0, corresponds to the inequality (8).

Case 2 k = 1 corresponds to the inequality (9).

Remark 2. The first inequality (8) in the theorem shows that the entropy vanishes as |∂K|
increases to infinity, a fact we shall rediscover in §4.

Remark 3. In the above calculation,

λ =
∞∑

n=k

n p̂n > k
∞∑

n=k

p̂n = k.

Thus obviously if λ → k from above, then H = 0. Hence

Remark 4. In the case k = 1, if 2|Γ|/|∂K| → 1 from above, then h = 0; which is otherwise
obvious since 2|Γ| = |∂K| implies Γ is a segment of straight line.

3.4 Bounds for the Rényi entropy of curves

Recall from equation (7) that the Rényi entropy h(s)(Γ0, K) of Γ0 relative to the convex set
K ⊃ Γ0 is given by

h(s)(Γ0, K) :=
1

1− s
log

∞∑

n=0

psn(Γ0, K).

For simplicity, we let K = K0 = con(Γ0), so that p0(Γ0, K0) = 0, and denote the Rényi

entropy h(s)(Γ0, K0) of Γ0 relative to its convex hull K0 by h
(s)
0 . Two bounds for the Rényi
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entropy h
(s)
0 are obtained, one for the range 0 < s < 1 and the other for 1/2 < s < 1.

Although the Rényi entropy coincides with Shannon entropy at s = 1, the bounds for the
former may well be infinite at s = 1.

Two auxiliary functions are introduced. For each γ ∈ [0,∞) and s ∈ [1/2, 1], we write

Fs(γ) =
ζ1
(

s
1−s

; γ
)

ζ1
(

1
1−s

; γ
) ,

where ζ1(u, c), c > 0, is the modified Hurwitz zeta function given by

ζ1(u, c) :=
∞∑

k=1

1

(k + c)u
=

∞∑

k=0

1

(k + c)u
−

1

cu
= ζ(u, c)−

1

cu
.

Note that ζ1(u, 0) = ζ(u) and that Fs(0) > 1.
For convenience, the function Fs is simplified when 1/2 6 s < 1 by putting u = 1/(1−s) ∈

[2,∞), so that s/(1− s) = u− 1 and

Fs(γ) =
ζ1(u− 1; γ)

ζ1(u; γ)
:= Gu(γ) = G1/(1−s)(γ).

Then for u > 2 and γ > 0,

(γ + 1)ζ1(u; γ) =
∞∑

k=1

γ + 1

(k + γ)u
=

∞∑

k=1

(
k + γ

(k + γ)u
−

k − 1

(k + γ)u

)

<

∞∑

k=1

1

(k + γ)u−1
= ζ1(u− 1; γ),

and Gu(γ) := ζ1(u− 1; γ)/ζ1(u; γ) > 1 + γ.
A more precise estimate is possible using the familiar inequality

∫
∞

1

f(x)dx 6

∞∑

k=1

f(k) 6 f(1) +

∫
∞

1

f(x)dx (11)

for a positive increasing integrable function f : R → [0,∞). It follows from (11) that

(1 + γ)−u+1

u− 1
< ζ1(u, γ) :=

∞∑

k=1

1

(k + γ)u
<

1

(1 + γ)u
+

1

(u− 1)(1 + γ)u−1
. (12)

Hence for any fixed u > 2,

Gu(γ) =
ζ1(u− 1, γ)

ζ1(u, γ)
>

1

(u− 2)(1 + γ)u−2

(
1

(1 + γ)u
+

1

(u− 1)(1 + γ)u−1

)
−1

>
(u− 1)

(u− 2)

(1 + γ)2

(u+ γ)
.
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Thus given any u > 2, for all sufficiently large γ, there exists an εu > 0 such that

Gu(γ) > (1 + εu)(1 + γ).

It follows that given any real κ, εu(1 + γ) > κ for all sufficiently large γ. Hence for fixed u
the inequality

Gu(γ) > γ + κ (13)

holds for any κ and all sufficiently large γ. This lower bound for the function Fs = Gu is
used to show that the equation Fs(γ) = γ + λ, where λ = 2|Γ0|/|∂K0| ∈ (0,∞) (see (3)), is
soluble when λ > Fs(0) = Gu(0), i.e., when λ > ζ(u− 1)/ζ(u) > 1.

Lemma 5. Suppose λ > Gu(0). Then there exists a unique γ0 > 0 such that

Gu(γ0) = γ0 + λ.

Proof. Suppose without loss of generality that λ > Gu(0). By definition

Gu(0)− λ < 0.

But by equation (13), for fixed u and sufficiently large γ,

Gu(γ) > γ + λ

and by continuity, there exists a γ0 > 0 such that Gu(γ0) = γ0 + λ.
The uniqueness of the root γ0 follows from considering the derivative ∂Gu(γ)/∂γ for

γ > 0. The partial derivative ∂ζ1(u; γ)/∂γ = −u ζ1(u+ 1; γ). Thus

∂Gu(γ)

∂γ
=

∂

∂γ

ζ1(u− 1, γ)

ζ1(u; γ)
=

−(u− 1) ζ1(u; γ)ζ1(u; γ) + u ζ1(u− 1; γ)ζ1(u+ 1; γ)

ζ1(u; γ)2

= u

(
ζ1(u− 1; γ)ζ1(u+ 1; γ)

ζ1(u; γ)2
− 1

)
+ 1 > 1

if ζ1(u; γ)
2 < ζ1(u− 1; γ)ζ1(u+ 1; γ). Now by the Cauchy-Schwarz inequality,

ζ1(u; γ) =
∞∑

k=1

1

(k + γ)(u−1)/2

1

(k + γ)(u+1)/2

6

(
∞∑

k=1

1

(k + γ)u−1

)1/2 (
∞∑

k=1

1

(k + γ)u+1

)1/2

= (ζ1(u− 1; γ)ζ1(u+ 1; γ))1/2

and ζ1(u; γ)
2 < ζ1(u−1; γ)ζ1(u+1; γ), since the inequality is readily seen to be strict. Hence

∂Gu(γ)/∂γ > 1, so that the graph of Gu crosses that of γ 7→ γ + λ no more than once.
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Theorem 6. Let Γ0 be a curve of finite length with convex hull K0. Then for 0 < s < 1,

h
(s)
0 6

1

1− s
log

(
s

β(1− s)

)
+ log ζ1

(
1

1− s
; γ

)
, (14)

where β = β(s, 2|Γ0|/|∂K0|), γ = γ(s, 2|Γ0|/|∂K0|). Moreover, provided 1/2 < s < 1 and

2|Γ0|

|∂K0|
>

ζ(s/(1− s))

ζ(1/(1− s))
> 1, (15)

there exists a unique γ0 such that

h
(s)
0 6

1

1− s
log

(
2|Γ0|

|∂K0|
+ γ0

)
+ log ζ1

(
1

1− s
; γ0

)
. (16)

Proof. As with Shannon entropy, we use Lagrange multipliers under the same two con-
straints (2) and (3) to find a bound for h

(s)
0 . Consider

V =
1

1− s
log

∞∑

n=1

p̂ s
n − α

∞∑

n=1

p̂n − β
∞∑

n=1

np̂n.

Then for each n = 1, 2, . . . ,

∂V

∂ p̂n
=

sp̂ s−1
n

(1− s)
∑

∞

n=1 p̂
s
n

− α− βn.

Hence ∂V/∂p̂n = 0 implies

p̂ s−1
n = β

(
1− s

s

)( ∞∑

n=1

p̂ s
n

)
(γ + n),

where γ = α/β. Hence the ‘maximal’ distribution is given by

p̂n =

(
s

β(1− s)

)1/(1−s)
(

∞∑

n=1

p̂ s
n

)
−1/(1−s)(

1

γ + n

)1/(1−s)

. (17)

We compute
∑

∞

n=1 p̂
s
n in two ways. First using (2),

1 =
∞∑

n=1

p̂n =

(
s

β(1− s)

)1/(1−s)
(

∞∑

n=1

p̂ s
n

)
−1/(1−s)

∞∑

n=1

(
1

γ + n

)1/(1−s)

,

whence (
∞∑

n=1

p̂ s
n

)1/(1−s)

=

(
s

β(1− s)

)1/(1−s)

ζ1

(
1

1− s
; γ

)
.
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i.e.,
∞∑

n=1

p̂ s
n =

(
s

β(1− s)

)
ζ1

(
1

1− s
; γ

)1−s

, (18)

where the right hand side converges for s ∈ (0, 1) and (14) follows.

Secondly, substitute (18) in (17) to get

p̂n = ζ1

(
1

1− s
; γ

)
−1 (

1

γ + n

)1/(1−s)

,

so that, by contrast with the Shannon entropy case (10), the distribution p̂n obeys an inverse
power law, with factor the reciprocal of a modified Hurwitz zeta function. Hence

∞∑

n=1

p̂ s
n = ζ1

(
1

1− s
; γ

)
−s ∞∑

n=1

(
1

γ + n

)s/(1−s)

=
ζ1
(

s
1−s

; γ
)

ζ1
(

1
1−s

; γ
)s , (19)

which converges when 1/2 < s < 1 but diverges for s 6 1/2.

To determine γ, use the constraint 2|Γ0|/|∂K0| = λ given by (3):

2|Γ0|

|∂K0|
= λ =

∞∑

n=1

np̂n = ζ1

(
1

1− s
; γ

)
−1 ∞∑

n=1

n

(
1

γ + n

)1/(1−s)

= ζ1

(
1

1− s
; γ

)
−1 ∞∑

n=1

[
γ + n

(γ + n)1/(1−s)
−

γ

(γ + n)1/(1−s)

]

= ζ1

(
1

1− s
; γ

)
−1(

ζ1

(
s

1− s
; γ

)
− γζ1

(
1

1− s
; γ

))

=
ζ1
(

s
1−s

; γ
)

ζ1
(

1
1−s

; γ
) − γ. (20)

By (15) and Lemma 5 with u = 1/(1−s), 1/2 < s < 1, there is a γ0 = γ0(s, λ) satisfying (20),
i.e., such that

Gu(γ0) = Fs(γ0) =
ζ1
(

s
1−s

; γ0
)

ζ1
(

1
1−s

; γ0
) = λ+ γ0.

Now by (19),

h(s) =
1

1− s
log

(
∞∑

n=1

psn

)
6

1

1− s
log

(
∞∑

n=1

p̂ s
n

)
= ĥ (s)

and for u = 1/(1− s),

ĥ(s) =
1

1− s
log

[
ζ1
(

s
1−s

; γ0
)

ζ1
(

1
1−s

; γ0
)
]
+ log ζ1

(
1

1− s
; γ0

)

=
1

1− s
log(λ+ γ0) + log ζ1

(
1

1− s
; γ0

)
,
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giving (16).
The corresponding parameters β0 and α0 = β0 γ0, are fixed by the equation

s

β0(1− s)
=

ζ1
(

s
1−s

; γ0
)

ζ1
(

1
1−s

; γ0
) = Fs(γ0) = λ+ γ0 ,

obtained by dividing (18) by (19) and using (20). This equation implies that as s → 1 from
below, β0 → ∞ and therefore α0 → ∞, while Fs(γ0) → ∞ as s → 1/2 from above, which
implies that β0, α0 → 0.

Remark 7. The bound for the Rényi entropy h(s) is finite for 1/2 < s < 1. The equation
Fs(γ0) = γ0 + λ only holds if λ = 2|Γ0|/|∂K0| > Fs(0) = ζ(s/(s − 1))/ζ(1/(s − 1)) > 1.
This and the values α, β do not have an obvious interpretation. Nor does the bound for the
Shannon entropy appear to follow from the limit of the Rényi entropy case as s → 1.

4 Changing the viewpoint: the parameter t

In this section, we discuss the Shannon-Rényi entropy h(s) of the curve Γ0 relative to a
compact subset K containing K0; this involves a parameter t. Consider the curve Γ0, its
convex hull K0 and a bounded convex set K ⊇ K0. The set K can be thought of as a variable
set that “increases” and within which the curve can increase its entropy.

4.1 The parameter t

Let t > 1 be the ratio of the lengths of the boundaries of K and K0, i.e., let

t =
|∂K|

|∂K0|
∈ [1,∞).

In this construction, the length |∂K| of the boundary of the convex set K increases.

Lemma 8. The probability pn(Γ0, K) that a straight line D meeting K intersects Γ0 in
exactly n points is given by

pn(Γ0, K) = pn(K) =

{
1
t
pn(K0), if n > 1;

1− 1
t
, if n = 0.

(21)

Proof. If n > 1,

pn(Γ0, K) =
µ{D : card(D ∩ Γ0) = n}

µ{D : D ∩K 6= ∅}

=
µ{D : D ∩K0 6= ∅}

µ{D : D ∩K 6= ∅}

µ{D : card(D ∩ Γ0) = n}

µ{D : D ∩K0 6= ∅}

=
|∂K0|

|∂K|

µ{D : card(D ∩ Γ0) = n}

µ{D : D ∩K0 6= ∅}
=

1

t
pn(K0,Γ0).

11



Γ0

K0

K

Figure 2: The curve Γ0 inside a bounded convex set K.

If n = 0,

p0(Γ0, K) = 1−
|∂K0|

|∂K|
= 1−

1

t
,

as in (1) in §2.

Let h
(s)
0 := h(s)(Γ0, K0), 0 < s 6 1, be the Shannon-Rényi entropy of Γ0 with respect

to its convex hull K0. In the preceding section §3, h
(s)
0 is written by h or h(1) when s = 1

(Shannon entropy) and h(s) when 0 < s < 1. We begin with the case s = 1.

4.2 The Shannon entropy case

The Shannon entropy h(Γ0, K) = h of Γ0 relative to K is now determined in terms of the
Shannon entropy h(Γ0, K0) = h0 of Γ0 relative to the convex hull K0 of Γ0 (h0 is finite by
Theorem 1).

Theorem 9. Let h0 be the Shannon entropy of Γ0 with respect to K0. The entropy h(Γ0, K)
of Γ0 with respect to K is given by

h(Γ0, K) =
h0

t
+ log t−

t− 1

t
log(t− 1) =

h0

t
+ (−1 +

1

t
) log(1−

1

t
) +

log t

t
→ 0

as t → ∞. Moreover h(Γ0, K) is maximal when t = t1 = 1 + e−h0, with value h1 =
log(1 + eh0) > h0.

Proof. Let h = h(K) be the entropy of Γ0 relative to K and let h0 = h(K0) be the entropy

12



t0 1 t1 = 1 + e−h0

h0

h1

Figure 3: The graph of h with maximum at t1

of Γ0 relative to K0. Then by (4) and Lemma 8 (and writing pn(K) = pn(Γ0, K)),

h =
∞∑

n=0

pn(K) log
1

pn(K)

=

(
1−

1

t

)
log

(
1−

1

t

)
−1

+
∞∑

n=1

1

t
pn(K0) log

t

pn(K0)

=

(
1−

1

t

)
log

t

t− 1
+

1

t

∞∑

n=1

pn(K0) log t+
1

t

∞∑

n=1

pn(K0) log
1

pn(K0)

=
h0

t
+ log t−

t− 1

t
log(t− 1).

We wish to find the maximum value of h when t ∈ (1,∞). The derivative

dh

dt
= −

1

t2
(h0 + log(t− 1)) = 0

for t1 = |∂K1|/|∂K0| = 1 + e−h0 , with entropy h a maximum at t = t1 and corresponding
value

h1 := log(1 + eh0) > h0.

Here K1 is any convex set whose boundary has length t1|∂K0| and which contains K0.

4.3 The Rényi entropy case

For convenience h(s)(Γ0, K), the Rényi entropy with respect to the convex set K ⊃ Γ0 will
be written h(s), pn(Γ0, K) will be written pn(K) and h(s)(Γ0, K0), the Rényi entropy with

respect to the convex hull K0 of Γ0 will be written h
(s)
0 . The dependence of h(s) on the

parameter t will be indicated where helpful; thus when t = 1, h(s)(t) = h(s)(1) = h
(s)
0 . Note

that by Theorem 6, the quantity h
(s)
0 is finite for s ∈ (0, 1).
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Theorem 10. The Rényi entropy h(s)(Γ0, K), 0 < s < 1, of Γ0 with respect to K is given
by

h(s)(Γ0, K) =
1

1− s
log

((
1−

1

t

)s

+
∞∑

n=1

1

ts
psn(K0)

)

=
1

1− s
log
(
1 + (t− 1)−se(1−s)h

(s)
0

)
+

s

1− s
log

(
1−

1

t

)
,

so that h(s) → 0 as t → ∞. Moreover h(s)(Γ0, K) is maximal for

t1 = 1 +

(
∞∑

n=1

psn(K0)

)
−1/(1−s)

= 1 + e−h
(s)
0 ,

with value h(s)(t1) = log(1 + eh
(s)
0 ).

Proof. Write h(s)(Γ0, K) = h(s). It follows from (21) that

h(s) = h(s)(t) =
1

1− s
log

∞∑

n=0

psn(K) =
1

1− s
log

((
1−

1

t

)s

+
∞∑

n=1

1

ts
psn(K0)

)

=
s

1− s
log

(
1−

1

t

)
+

1

1− s
log

(
1 +

e(1−s)h
(s)
0

(t− 1)s

)
,

as claimed.

We now ask which t > 1 maximizes h(s) = h(s)(t). The derivative

dh(s)

dt
=

s

(1− s) (
∑

∞

n=0 p
s
n(K0))

(
(1−

1

t
)s−1 1

t2
−

1

ts+1

∞∑

n=1

psn(K0)

)
= 0

iff

(t− 1)s−1 =
∞∑

n=1

psn(K0) = e(1−s)h
(s)
0 ,

i.e., iff

t = 1 +

(
∞∑

n=1

psn(K0)

)
−1/(1−s)

= 1 + e−h
(s)
0 . (22)

The entropy h(s)(t) is maximal at the value t1 given by (22), i.e.,

h(s)(t1) =
1

1− s
log

∞∑

n=1

psn(K0) + log


1 +

(
∞∑

n=1

psn(K0)

)
−

1
(1−s)




= h
(s)
0 + log

(
1 + e−h

(s)
0

)
, (23)
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whence h(s)(t1) = log
(
1 + eh

(s)
0

)
. The first term on the right hand side of (23) is the s-

entropy h
(s)
0 = h(s)(1) of Γ0 relative to its convex hull K0, so that h(s)(t1) > h(s)(1).

Remark 11. For a certain ‘dilution’ corresponding to |∂K|/|∂K0| = t1, the Rényi s-entropy
attains a maximal value and then decreases to 0. Suppose now s → 1. Then it is easily seen
that t1 → 1 + e−h0 and h(s)(t1) → log(1 + eh0), which is consistent with the results above
in §4.2.

If we agree to identify entropy and complexity, we see that the complexity of a curve
depends on the point of observation. Seen from a certain distance, the curve increases its
complexity, while seen from infinity the curves reduces to a point with entropy 0.
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pp. 316–330. English translation, Poincaré and geometric probability, in E. Charpentier,
E. Ghys, and A. Lesne, eds., The Scientific Legacy of Poincaré, History of Mathematics,
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