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Abstract

Rumor sequences are generated recursively as follows: fix nonnegative integers b, c,
and let z0 = 0. For n ≥ 1, define zn = (bzn−1+ c) mod n, where the least nonnegative
residue modulo n is taken. There have been a few papers dealing with the behavior
of rumor sequences, but they all concern that behavior when the value of c is fixed.
It turns out that if, for a given value of b, the rumor sequences for c = 0, 1, 2, . . . are
written down, one below the other, some interesting and unexpected patterns appear
in the columns of that array. These patterns are investigated, proving some, and, based
on computer generated data, we make two conjectures.

1 Introduction

Rumor sequences are generated recursively as follows: fix nonnegative integers b, c, and let
z0 = 0. For n ≥ 1, define zn = (bzn−1 + c) mod n, where the least nonnegative residue
modulo n is taken. The construction of such sequences is very natural and such sequences
exhibit some unexpected behavior, so it is not surprising that the notion of a rumor sequence
has been independently rediscovered and mentioned in the literature several times. The
earliest reference we can find is Borwein and Loring [1, p. 379], where they investigate a
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question raised by Erdős [5] in 1975 and again by Erdős and Graham [6, p. 62] in 1980.
It seems next to have appeared in Vantieghem [8] in 1996, and, most recently, in 2010,
where Dearden and Metzger [2] coined the term rumor (for running modulus recursion). In
that note, the general notion of a rumor sequence is considered: a sequence constructed
recursively, with each new term computed using a modulus 1 more than that used for the
previous term. Almost surely there are other papers that mention this idea, but, because
there has been no common (catchy) name for such sequences, locating them has proved
difficult.

The papers we are aware of consider various aspects of the behavior of rumor sequences,
but they all concern the behavior when the value of c is fixed. It turns out that if, for a
given value of b, the rumor sequences for c = 0, 1, 2, . . . are written down, one below the
other, some interesting and unexpected patterns appear in the columns of that rumor array.
In this paper we will investigate these patterns, proving some, and, based on computer
experimentation, we make two conjectures.

Using RAb to denote the rumor array generated with parameter b, two such arrays, RA2

and RA6, are shown in the tables included here.
The entry in row c and column n of RAb will be denoted by zb,c,n. So zb,c,0 = 0 for all

b, c. For n ≥ 1, compute
zb,c,n ≡ bzb,c,n−1 + c (mod n),

taking the least nonnegative residue modulo n, so that

bzb,c,n−1 + c = nqn + zb,c,n,

where
qn = ⌊(bzb,c,n + c)/n⌋.

The rows of RAb are rumor (running modulus recursion) sequences as described in Dearden
and Metzger [2].

Rumor sequences appear to be related, at least tangentially, to a number of familiar
mathematical topics. For example, as pointed out by Borwein and Loring [1], conjectures
concerning rumor sequences are reminiscent of the Collatz 3x+1 Conjecture. In Dearden and
Metzger [2], certain rumor sequences are shown to be related to a variation of the Josephus
problem as presented in Graham, Knuth, and Patashnik [7, p. 8]. Finally, Dearden, Iiams,
and Metzger [3] contrast the behavior of certain functions related to rumor sequences with
properties of the Takagi function.

Studying extended versions of tables RA2 and RA6, and similar tables for other values
b immediately suggests a number of simple sounding conjectures. First, the columns are
periodic, though the minimal period is not completely obvious, and second, within each
period of column n, the values 0, 1, 2, . . . , n−1 appear to follow no recognizable pattern, but
are nevertheless equidistibuted. Empirical evidence supports these conjectures, but complete
proofs have turned out to be elusive.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 3 1 3 7 6 3 7 3 7 1 3 7 15 13 8 17 14 7 15 7 15 5 11 23 18 7 15 31 30 27 20 5
2 0 0 2 2 1 4 3 0 2 6 3 8 5 12 11 8 1 4 10 2 6 14 7 16 9 20 15 4 10 22 15 0 2 6 14 30
3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
4 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
5 0 1 1 3 1 1 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
6 0 0 0 2 0 0 6 2 1 8 0 6 5 2 10 10 9 6 18 2 10 4 14 10 1 8 22 22 21 18 11 28 29 30 31 32
7 0 1 0 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
8 0 0 2 0 3 2 5 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
9 0 1 2 1 1 5 5 3 6 1 0 9 1 11 1 11 14 1 11 11 10 7 0 9 2 13 8 25 1 11 0 9 27 29 32 1
10 0 0 1 0 0 4 4 2 5 0 10 6 9 0 10 14 4 0 10 10 9 6 22 6 22 2 14 10 1 12 3 16 9 28 31 0
11 0 1 1 1 3 5 0 3 8 7 3 5 8 13 7 9 12 17 7 5 0 11 10 7 0 11 6 23 28 7 25 29 3 17 10 31
12 0 0 0 0 2 4 6 0 3 8 6 0 12 8 13 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
13 0 1 0 1 0 1 1 7 0 3 8 5 10 5 8 13 5 5 4 1 15 21 9 7 2 17 20 25 5 23 28 5 23 25 28 33
14 0 0 2 2 3 2 4 6 8 0 3 8 4 8 0 14 8 12 0 14 0 14 19 4 22 6 26 10 5 24 0 14 9 32 8 30
15 0 1 2 3 1 5 4 7 2 9 0 3 8 3 6 11 3 3 2 19 11 15 22 11 12 13 14 15 16 17 18 19 20 21 22 23
16 0 0 1 2 0 4 3 6 1 8 10 0 3 8 2 4 7 12 2 0 16 4 1 18 2 20 2 20 27 10 5 26 2 20 21 22
17 0 1 1 3 3 5 6 5 0 7 9 11 0 3 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
18 0 0 0 2 2 4 5 4 8 4 4 2 9 8 4 10 4 8 15 8 13 0 18 6 5 2 22 6 1 20 27 8 1 20 23 28
19 0 1 0 3 0 1 0 3 7 3 3 1 8 7 3 9 3 7 14 7 12 21 15 1 21 9 10 11 12 13 14 15 16 17 18 19
20 0 0 2 0 0 2 3 2 6 2 2 0 7 6 2 8 2 6 13 6 11 20 14 0 20 8 9 10 11 12 13 14 15 16 17 18
21 0 1 2 1 3 3 6 1 5 1 1 11 4 1 8 5 14 13 9 19 17 11 20 13 22 13 20 5 2 25 9 7 2 25 1 23
22 0 0 1 0 2 2 5 0 4 0 0 10 3 0 7 4 13 12 8 18 16 10 19 12 21 12 19 4 1 24 8 6 1 24 0 22
23 0 1 1 1 0 5 5 1 7 7 4 7 11 3 14 3 12 11 7 17 15 9 18 11 20 11 18 3 0 23 7 5 0 23 34 19
24 0 0 0 0 4 2 0 0 6 6 3 6 10 2 13 2 11 10 6 16 14 8 17 10 19 10 17 2 28 20 2 28 14 18 25 2
25 0 1 0 1 2 5 0 1 0 5 2 5 9 1 12 1 10 9 5 15 13 7 16 9 18 9 16 1 27 19 1 27 13 17 24 1

RA2: zn = 2zn−1 + c mod n, c = 0, 1, . . . 25. Leftmost column gives c.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 3 4 1 0 1 7 3 8 1 7 1 7 11 16 7 5 11 4 3 19 19 15 13 25 11 9 25 27 3 19 13 9 19
2 0 0 2 2 4 2 0 2 5 2 3 8 11 12 14 6 4 8 12 14 2 14 17 8 0 2 14 2 14 26 3 20 23 4 26 14
3 0 1 0 3 1 3 0 3 3 1 9 9 5 5 3 5 16 9 0 3 0 3 21 9 7 19 9 1 9 27 10 31 24 11 34 27
4 0 0 1 2 1 4 0 4 1 0 4 4 2 2 1 10 13 10 7 6 19 8 6 16 0 4 1 10 6 10 2 16 1 10 29 34
5 0 1 2 1 1 5 0 5 8 3 1 11 6 13 8 5 1 11 14 9 17 19 4 5 10 13 2 17 20 5 4 29 14 21 26 17
6 0 0 0 2 3 0 6 2 0 6 9 0 6 0 6 10 15 6 4 10 3 2 18 18 14 12 24 10 8 24 26 2 18 12 8 18
7 0 1 1 1 3 1 6 3 7 9 6 7 10 11 13 5 3 7 11 13 1 13 16 7 24 21 25 17 22 19 28 15 31 23 5 1
8 0 0 2 0 3 2 6 4 5 8 1 2 7 8 11 10 0 8 18 16 20 18 1 14 17 6 17 26 19 2 20 0 8 22 0 8
9 0 1 0 1 0 3 6 5 3 7 7 3 1 1 0 9 12 9 6 5 18 7 5 15 24 23 12 25 14 3 27 11 9 29 8 21
10 0 0 1 0 0 4 6 6 1 6 2 10 5 12 7 4 0 10 13 8 16 18 3 4 9 12 1 16 19 4 3 28 13 20 25 16
11 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
12 0 0 0 0 2 0 5 2 6 8 5 6 9 10 12 4 2 6 10 12 0 12 15 6 23 20 24 16 21 18 27 14 30 22 4 0
13 0 1 1 3 1 1 5 3 4 7 0 1 6 7 10 9 16 1 0 13 7 11 10 1 19 23 16 25 18 1 19 31 1 19 22 1
14 0 0 2 2 1 2 5 4 2 6 6 2 0 0 14 2 9 14 3 12 2 4 15 8 12 8 8 6 21 20 10 10 8 28 7 20
15 0 1 0 3 3 3 5 5 0 5 1 9 4 11 6 3 16 3 14 19 3 11 12 15 5 19 21 1 21 21 17 21 9 1 21 33
16 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
17 0 1 2 1 3 5 5 7 5 7 4 5 8 9 11 3 1 5 9 11 20 5 1 23 5 21 8 9 13 5 16 17 20 1 23 11
18 0 0 0 2 0 0 4 2 3 6 10 6 2 2 0 2 13 6 16 14 18 16 22 6 4 16 6 26 0 18 2 30 0 18 21 0
19 0 1 1 1 0 1 4 3 1 5 5 1 12 7 1 9 5 13 2 11 1 3 14 7 11 7 7 5 20 19 9 9 7 27 6 19
20 0 0 2 0 0 2 4 4 8 8 2 8 3 10 5 2 15 2 13 18 2 10 11 14 4 18 20 0 20 20 16 20 8 0 20 32
21 0 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
22 0 0 1 0 2 4 4 6 4 6 3 4 7 8 10 2 0 4 8 10 19 4 0 22 4 20 7 8 12 4 15 16 19 0 22 10
23 0 1 2 3 1 5 4 7 2 5 9 5 1 1 14 11 4 11 13 1 8 5 7 17 0 23 26 11 2 5 22 27 20 7 30 23
24 0 0 0 0 4 0 3 2 0 4 4 0 11 6 0 8 4 12 1 10 0 2 13 6 10 6 6 4 19 18 8 8 6 26 5 18
25 0 1 1 3 3 1 3 3 7 7 1 7 2 9 4 1 14 1 12 17 1 9 10 13 3 17 19 27 13 13 10 21 19 3 8 1

RA6: zn = 6zn−1 + c mod n, c = 0, 1, . . . 25. Leftmost column gives c.
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In this paper we prove several theorems related to these two conjectures. In particular,
in the next section we show that columns of RAb are periodic, and in a few simple cases, we
will determine the minimal period of some columns.

A Mathematica .cdf (Computable Document Format) application, RumorArray.cdf [4],
is available for experimentation. With the free CDF Player available from Wolfram’s Math-
ematica site at (http://www.wolfram.com/cdf-player), RumorArray.cdf can be used to
quickly generate rumor arrays with parameter values 1 ≤ b, c, n ≤ 100.

2 Columns are periodic

For integers k, 1 ≤ k ≤ n, the value of lcm(k, k + 1, . . . , n), the least common multiple of
the integers k, k + 1, . . . , , n, will occur frequently. The shorthand symbol kLn will be used
to denote that value.

In this section we give the easy proof that that columns of RAb are periodic. Empirical
evidence suggests that the full truth about the columns is given in the following conjecture.

Conjecture 1. The minimal period of the nth column in RAb is kLn, where k is the largest
divisor of b not exceeding n.

For any b and large enough n, clearly the period kLn of the periodicity conjecture will
equal 1Ln, so, if the conjecture is true, then the period given in the next theorem will be the
minimal period of the nth column for all sufficiently large n. It is not hard to show that for
a given k ≥ 3, the least value of n ≥ k such that kLn = 1Ln is two times the largest prime
power less than k, or, in other words, two times the values of the sequence A031218 of OEIS.

Theorem 2. For each integer b ≥ 2 the nth column of RAb is periodic with period 1Ln.

Proof. The column for n = 1 is identically 0, and so it is 1-periodic. Suppose the (n− 1)st
column is 1Ln−1 periodic. Since 1Ln−1 divides 1Ln, the (n− 1)st column is t = 1Ln periodic.
So, for any integer c ≥ 0,

zb,c+t,n ≡ bzb,c+t,n−1 + (c+ t) ≡ bzb,c,n−1 + c ≡ zb,c,n (mod n).

Consequently zb,c+t,n = zb,c,n.

Such a simple inductive proof of Conjecture 1 does not seem likely since the minimal
periods of the columns do not always increase as we move across the array. For example,
with b = 6, column n = 5 has minimal period 60 while column 6 has period 6.

In the next two theorems, a few special cases are considered where the column entries
follow a particularly simple pattern and the minimal period of the column can be easily
determined.

Theorem 3. If n divides b, then the nth column of RAb has minimal period n. One complete

period has the form 0, 1, 2, . . . n− 1.
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Proof. If n divides b, then the recursive formula reduces to zb,n,c ≡ bzb,c,n−1+ c ≡ c (mod n).
As c takes on the values 0, 1, 2, . . . in order, the residues modulo n repeat the pattern
0, 1, 2, . . . , n− 1.

Theorem 4. If b = (n− 1)(mn+1) for integers m ≥ 1 and n ≥ 2, then nth column of RAb

has minimal period n(n− 1). One complete period has the form

0, 0, . . . , 0, n− 1, n− 1, . . . , n− 1, n− 2, n− 2, . . . , n− 2, . . . , 1, 1, . . . , 1]

where each value occurs n− 1 times.

Proof. Suppose b has the form (n − 1)(mn + 1) for some integers m ≥ 1 and n ≥ 2. Since
n − 1 divides b, the (n − 1)st column of RAb is 0, 1, 2, . . . , n − 2, 0, 1, . . . , n − 2, . . .. For
0 ≤ c < n(n− 1), write c = r+ q(n− 1) with 0 ≤ r < n− 1 so that zb,c,n−1 = r. As c ranges
from 0 to n(n− 1)− 1, the quotients, q, will form the sequence

0, 0, . . . 0, 1, 1, . . . , 1, 2, 2, . . . , 2, . . . , n− 1, n− 1, . . . , n− 1.

So

zb,c,n ≡ bzb,c,n−1 + c (mod n)

≡ (n− 1)(mn+ 1)r + c (mod n)

≡ (n− 1)(mn+ 1)(c− q(n− 1)) + c (mod n)

≡ −(c+ q) + c (mod n)

≡ −q (mod n)

That shows zb,c,n = 0 if q = 0, and zb,c,n = n− q otherwise, giving the promised period.

For example, b = 8855 has the form (n− 1)(mn+ 1) for six values of n:

8855 = (2− 1)(4427× 2 + 1)

8855 = (6− 1)(295× 6 + 1)

8855 = (8− 1)(158× 8 + 1)

8855 = (12− 1)(67× 12 + 1)

8855 = (24− 1)(16× 24 + 1)

8855 = (36− 1)(7× 36 + 1).

So the theorem above completely describes columns 2, 6, 8, 12, 24, and 36 of RA8855.
For a given b, the number of columns of RAb described by this theorem is the number of

factorizations of b as de with d < e and d+ 1 dividing e− 1.
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3 Equidistribution of columns

Extensive empirical evidence, using tables such as RA2 and RA6 included here, suggests that
for any b ≥ 1, within one period of column n, the values 0, 1, . . . , n− 1 each occur the same
number of times. This observation can be rendered as follows.

Consider the groupG = Z1×Z2×· · ·×Zn, where Zm denotes the additive group of integers
modulo m. Fix an integer b ≥ 1. Define a bijection sb : G → G by sb(a0, a1, . . . , an) =
(z0, z1, . . . , zn) where z0 = a0, and, assuming z0, z1, . . . , zj−1 have been computed, zj ≡
bzj−1 + aj (mod j). The function sb is a generalized version of the rule for generating a
rumor sequence. For each integer k, let e(k) = (k mod 1, k mod 2, . . . , k mod n) ∈ G,
and let K be the subgroup {e(k) | 0 ≤ k < 1Ln} of G.

The observation that the columns of any rumor array are equidistributed within a period
is equivalent to the following conjecture.

Conjecture 5. For each k = 1, 2, . . . , n, the entries, 0, 1, . . . , k − 1, in the kth coordinate of
the n-tuples in sb[K] are equidistributed.

4 Calculating column entries

The nth column of RAb is periodic with (not necessarily minimal) period m = 1Ln. That
means the nth column satisfies the order m recurrence zb,c,n = zb,c+m,n for c ≥ 0. The
characteristic polynomial of this recurrence formula is χ(x) = xm − 1. The polynomial
χ(x) has m distinct roots, namely the mth roots of unity, {ξj|j = 0, 1, 2, . . . ,m− 1}, where
ξ = e2πi/m. It follows that, for some coefficients a0, a1, . . . , am−1 (which will depend on b in
general),

zb,c,n =
m−1
∑

j=0

aj(ξ
j)c.

While there does not seem to be general formulas giving the coefficient a0, a1, . . . , am−1, it
is easy to determine the coefficients for any particular column. Write A = [a0, a1, . . . , am−1]
for the row vector of unknown coefficients, and Z = [zb,0,n, zb,1,n, . . . , zb,m−1,n] for the initial
m entries in column n. Let M denote the m × m matrix with j, kth entry ξ(j−1)(k−1), for
j, k = 1, 2, . . . ,m. To compute the A vector, the matrix equation to solve is AM = Z. Using
the familiar fact that M−1 = 1

m
M , where M denotes the complex conjugate of M , it follows

that A = 1
m
ZM .

As might be expected, carrying out this procedure for a number of specific values of b
and n suggests that the list of coefficients a0, a1, . . . , am−1 shows a lot of internal structure.
Consider, for example, the case b = 2 and n = 4. Column 4 has period 12 = 1L4, which
happens to be the minimal period for this column. Computing the coefficients a0, a1, . . . , a11
as described above gives
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a0 =
3
2

a1 = −1
6
(1 + i)(1 +

√
3) a2 = 0

a3 = −1
6
(1− i) a4 = 0 a5 = −1

6
(1 + i)(1−

√
3)

a6 = −1
2

a7 = −1
6
(1− i)(1−

√
3) a8 = 0

a9 = −1
6
(1 + i) a10 = 0 a11 = −1

6
(1− i)(1 +

√
3).

For some values of b, the coefficients a0, a1, . . . , am−1 are easy to calculate. For example,
for any b column 2 is 2-periodic: (0, 1, 0, 1, . . .). So zb,c,2 can be written as zb,c,2 = 1

2
(1)c −

1
2
(−1)c for c ≥ 0.
We will now calculate the coefficients a0, a1, . . . , am−1 for the particularly simple columns

determined in theorems 3 and 4.
When n divides b, the nth column is n periodic with initial terms 0, 1, 2, . . . , n−1. In this

case zb,c,n = zb,c+n,n for all c ≥ 0. The characteristic polynomial for the recursive relation is
therefore χ(x) = xn − 1. Consequently, in this case, for all c ≥ 0, the expression for zb,c,n
has the form

zb,c,n =
n−1
∑

j=0

aj(ξ
j)c =

n−1
∑

j=0

ajξ
jc

where ξ = e2πi/n.
In the following proof, we will use the familiar identity: for x 6= 1,

n−1
∑

k=0

kxk =
(x− 1)nxn − x(xn − 1)

(x− 1)2
.

Theorem 6. If n divides b and ξ = e
2πi

n , then

zb,c,n =
n− 1

2
+

n−1
∑

j=1

(

1

ξ
j − 1

)

ξjc =
n− 1

2
+

n−1
∑

j=1

(

ξj

1− ξj

)

ξjc.

Proof. Since n divides b, the nth column of RAb is 0, 1, . . . , n− 1. Let ξ = e
2πi

n , a primitive
nth root of unity. To determine the coefficients a0, a1, . . . , an−1 so that

zb,c,n =
m−1
∑

j=0

aj(ξ
j)c

we need to solve
[a0, a1, . . . , an−1]M = [0, 1, 2, . . . , n− 1],

where M is the n × n matrix with i, j entry ξ(i−1)(j−1). Since M−1 = 1
n
M , where M is the

complex conjugate of M , we see

[a0, a1, . . . , an−1] =
1

n
[0, 1, 2, . . . , n− 1]M.
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So a0 =
1

n
(0 + 1 + · · ·+ (n− 1)) =

n− 1

2
, and for j = 1, . . . , n− 1,

aj =
1

n

n−1
∑

k=0

k(ξ
j
)k =

(ξ
j − 1)nξ

jn − ξ
j
(ξ

jn − 1)

n(ξ
j − 1)2

=
1

ξ
j − 1

.

Theorem 7. If b = (n − 1)(mn + 1) for integers m ≥ 1 and n ≥ 2, and ξ = e
2πi

n(n−1) is a

primitive n(n− 1)th root of unity, then

zb,c,n =
n− 1

2
+

n(n−1)−1
∑

j=1

aj(ξ
j)c,

where aj = 0 if n divides j, and aj =
ξj

(n− 1)ξj(n−1)(ξj − 1)
otherwise.

Proof. Suppose b = (n − 1)(mn + 1) for some integers m ≥ 1 and n ≥ 2, and let ξ be the

primitive n(n − 1)th root of unity e
2πi

n(n−1) . Following the pattern of proof of the previous
theorem, we see

[a0, a1, . . . , an(n−1)−1] =
1

n(n− 1)
[0, 0, . . . , 0, n− 1, n− 1, . . . , n− 1, . . . . . . , 1, 1, . . . , 1]M

where M is the n(n− 1)× n(n− 1) matrix with i, jth entry ξ(i−1)(j−1).
For 0 ≤ j < n(n− 1) we see

aj =
1

n(n− 1)

n−1
∑

k=1

(n−k)

(

n−2
∑

m=0

(ξ
j
)k(n−1)+m

)

=
1

n(n− 1)

(

n−1
∑

k=1

(n− k)ξ
jk(n−1)

)(

n−2
∑

m=0

ξ
jm

)

.

So a0 =
1

n(n− 1)
((n− 1)(n− 1) + (n− 1)(n− 2) + · · ·+ (n− 1)1) =

n− 1

2
.

If j > 0 and ξj(n−1) = 1, in other words, if n divides j, then
n−2
∑

m=0

ξ
jm

=
ξ
j(n−1) − 1

ξ
j − 1

= 0,

so aj = 0 in these cases.
For all other values of j, 0 < j < n(n− 1), the expression for aj simplifies to

aj =
ξ
j(n−1)

(n− 1)(1− ξ
j
)
=

ξj

(n− 1)ξj(n−1)(ξj − 1)
.

Since the aj of the last theorem are 0 when n divides j > 0, the n(n − 1)th col-
umn actually satisfies a linear recurrence relation with characteristic polynomial χ(x) =
(x− 1)(xn(n−1) − 1)

xn−1 − 1
.
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