

An Alternating Sum Involving the Reciprocal of Certain Multiplicative Functions

Olivier Bordellès 2, allée de la Combe 43000 Aiguilhe France

borde43@wanadoo.fr

Benoit Cloitre
19, rue Louise Michel
92300 Levallois-Perret
France
benoit7848c@yahoo.fr

To the memory of Patrick Sargos

Abstract

We establish an asymptotic formula for an alternating sum of the reciprocal of a class of multiplicative functions. The proof is straightforward and uses classical convolution techniques. Numerous examples are given.

1 Introduction and main results

In 1900, E. Landau [2] proved that

$$\sum_{n \le x} \frac{1}{\varphi(n)} = \frac{\zeta(2)\zeta(3)}{\zeta(6)} \left(\log x + \gamma - \sum_{p} \frac{\log p}{p^2 - p + 1} \right) + O\left(\frac{\log x}{x} \right)$$

where φ is the classic Euler totient function and γ is Euler's constant, but it seems that in the usual literature there is not any similar result for the alternating sum

$$\sum_{n \le x} \frac{(-1)^n}{\varphi(n)}.$$

It is fairly easy to show that there exists an absolute constant c > 0 such that this sum is $c > c \log x + O(1)$, and therefore the question of an asymptotic formula arises naturally. It should be mentioned that Landau's result could eventually provide such an asymptotic formula via the simple identity

$$\sum_{n \le x} \frac{(-1)^n}{\varphi(n)} = \sum_{n \le x} \frac{1}{\varphi(n)} - 2 \sum_{\substack{n \le x \\ (n,2) = 1}} \frac{1}{\varphi(n)}$$

and the use of known estimates as in [3, Theorem 1], but this method does not seem to be easily generalized to a larger class of multiplicative functions than that of [3]. In this article, we will follow a slightly different approach working with the set of non-zero complex-valued multiplicative functions f satisfying the following assumptions: there exist constants $\lambda_1 > 0$ and $0 \le \lambda_2 < 2$ such that, for each prime power p^{α} , we have

$$p^{2} \left| \frac{1}{f(p)} - \frac{1}{p} \right| \le \lambda_{1} \quad \text{and} \quad p^{2\alpha - 1} \left| \frac{1}{f(p^{\alpha})} - \frac{1}{pf(p^{\alpha - 1})} \right| \le \lambda_{1} \lambda_{2}^{\alpha - 1} \quad (\alpha \ge 2). \tag{1}$$

It will be convenient to set

$$\lambda := \frac{\lambda_1(2+\lambda_2)}{2-\lambda_2}.\tag{2}$$

For any prime number p, define

$$S_f(p) := \sum_{\alpha=1}^{\infty} \frac{1}{f(p^{\alpha})} \quad \text{and} \quad s_f(p) := \sum_{\alpha=1}^{\infty} \frac{\alpha}{f(p^{\alpha})}$$
 (3)

and set

$$\mathcal{P}_f := \prod_p \left(1 - \frac{1}{p} \right) \left(1 + \sum_{\alpha=1}^{\infty} \frac{1}{f(p^{\alpha})} \right) \tag{4}$$

where the product is absolutely convergent.

We are now in a position to state our main result.

Theorem 1. Let f be a non-zero multiplicative function satisfying (1). Then, for $x \ge e$, we have

$$\sum_{n \le x} \frac{(-1)^n}{f(n)} = \frac{S_f(2) - 1}{S_f(2) + 1} \mathcal{P}_f \log x + C_f + O\left(\frac{(\log x)^{\lambda + 1}}{x}\right)$$

where

$$C_f := \frac{S_f(2) - 1}{S_f(2) + 1} \mathcal{P}_f \left(\gamma + \sum_p \log p \left(\frac{1}{p - 1} - \frac{s_f(p)}{1 + S_f(p)} \right) - \frac{2s_f(2) \log 2}{S_f(2)^2 - 1} \right)$$

and $S_f(p)$, $s_f(p)$ and \mathcal{P}_f are given in (3) and (4).

Corollary 2. Let f be a non-zero multiplicative function satisfying (1) and assume that, for any prime p and any integer $\alpha \geq 1$, $f(p^{\alpha}) = p^{\alpha-1}f(p)$. Then, for $x \geq e$, we have

$$\sum_{n \le x} \frac{(-1)^n}{f(n)} = \frac{2 - f(2)}{2 + f(2)} \prod_p \left(1 - \frac{1}{p} + \frac{1}{f(p)} \right) \left(\log x + \gamma + \sum_p \frac{(f(p) - p) \log p}{(p - 1)f(p) + p} - \frac{8f(2) \log 2}{4 - f(2)^2} \right) + O\left(\frac{(\log x)^{\lambda_1 + 1}}{x} \right).$$

Remark 3. If $S_f(2) = 1$ in Theorem 1, i.e. f(2) = 2 in Corollary 2, then the constant C_f reduces to

$$C_f = -\mathcal{P}_f \, s_f(2) \, \log \sqrt{2}.$$

Corollary 4. For $x \geq e$, the following estimates hold.

(i)

$$\sum_{n \le x} \frac{(-1)^n}{\varphi(n)} = \frac{\zeta(2)\zeta(3)}{3\zeta(6)} \left(\log x + \gamma - \sum_{p} \frac{\log p}{p^2 - p + 1} - \frac{8\log 2}{3} \right) + O\left(\frac{(\log x)^3}{x} \right).$$

(ii) Let χ be a non-principal Dirichlet character modulo q > 2 and $\varphi(n, \chi)$ be the twisted Euler function attached to χ given in (6). Then

$$\sum_{n \le x} \frac{(-1)^n}{\varphi(n,\chi)} = \frac{\chi(2)L(1,\chi)}{4 - \chi(2)} \prod_p \left(1 - \frac{\chi(p)}{p} + \frac{\chi(p)}{p^2} \right) \left(\log x + \gamma - \sum_p \frac{\chi(p)\log p}{p^2 - p\chi(p) + \chi(p)} - \frac{8(2 - \chi(2))\log 2}{\chi(2)(4 - \chi(2))} \right) + O\left(\frac{(\log x)^3}{x}\right).$$

(iii) Let Ψ be the Dedekind arithmetic function defined in (5). Then

$$\sum_{n \le x} \frac{(-1)^n}{\Psi(n)} = -\frac{1}{5} \prod_p \left(1 - \frac{1}{p(p+1)} \right) \left(\log x + \gamma + \sum_p \frac{\log p}{p^2 + p - 1} + \frac{24 \log 2}{5} \right) + O\left(\frac{(\log x)^2}{x} \right).$$

(iv) Let $\gamma(n) := \prod_{p|n} p$ be squarefree kernel of n. Then

$$\sum_{n \le x} \frac{(-1)^n \gamma(n)}{\varphi(n)^2} = \frac{5}{11} \prod_p \left(1 + \frac{p^2 + p - 1}{p(p+1)(p-1)^2} \right) \left(\log x + \gamma - \sum_p \frac{(p^3 - 2p^2 - p + 1)\log p}{(p^2 - 1)(p^4 - p^3 + 2p - 1)} - \frac{64\log 2}{55} \right) + O\left(\frac{(\log x)^7}{x}\right).$$

(v) Let σ be the sum-of-divisors function. Then

$$\sum_{n \le x} \frac{(-1)^n}{\sigma(n)} = \frac{S_{\sigma}(2) - 1}{S_{\sigma}(2) + 1} \prod_{p} \left(1 - \frac{1}{p} + \frac{(p-1)^2}{p} \sum_{\alpha=2}^{\infty} \frac{1}{p^{\alpha} - 1} \right) \left(\log x + \gamma + \sum_{p} \log p \left(\frac{1}{p-1} - \frac{s_{\sigma}(p)}{1 + S_{\sigma}(p)} \right) + \kappa \log 2 \right) + O\left(\frac{(\log x)^4}{x} \right)$$

where $\kappa \doteq 3.6$. Note that the leading constant is $\doteq -0.16468$.

(vi) Let σ^* be the sum-of-unitary-divisors function. Then

$$\sum_{n \le x} \frac{(-1)^n}{\sigma^*(n)} = \frac{S_{\sigma^*}(2) - 1}{S_{\sigma^*}(2) + 1} \prod_p \left(1 - \frac{1}{p} + \frac{p - 1}{p} \sum_{\alpha = 1}^{\infty} \frac{1}{p^{\alpha} + 1} \right) \left(\log x + \gamma + \sum_p \log p \left(\frac{1}{p - 1} - \frac{s_{\sigma^*}(p)}{1 + S_{\sigma^*}(p)} \right) + \nu \log 2 \right) + O\left(\frac{(\log x)^4}{x} \right)$$

where $\nu \doteq 8.04$. Note that the leading constant is $\doteq -0.10259$.

2 Notation

The celebrated Möbius function is as always denoted by μ , $\mathrm{Id}(n) = n$, φ is the Euler totient function, Ψ is the Dedekind function defined by

$$\Psi(n) = n \prod_{\substack{n|n}} \left(1 + \frac{1}{p} \right) \tag{5}$$

and, for each fixed non-principal Dirichlet character χ modulo q > 2, the χ -twisted Euler function $\varphi(n,\chi)$ recently introduced in [1] is defined by

$$\varphi(n,\chi) = n \prod_{p|n} \left(1 - \frac{\chi(p)}{p} \right). \tag{6}$$

For any two arithmetic functions u and v, $u \star v$ is the usual Dirichlet convolution product of u and v defined by

$$(u \star v)(n) = \sum_{d|n} u(d)v(n/d).$$

The Eratosthenes transform of u is the arithmetic function $u \star \mu$. Finally, f is a non-zero multiplicative function satisfying (1) and g is the Eratosthenes transform of $\operatorname{Id} f^{-1}$. Note that the assumption (1) can be written as

$$p|g(p)| \le \lambda_1 \quad \text{and} \quad p^{\alpha-1}|g(p^{\alpha})| \le \lambda_1 \lambda_2^{\alpha-1} \quad (\alpha \ge 2).$$
 (7)

3 Tools

Lemma 5. Let $\delta > 0$. The Dirichlet series of the arithmetic function g(n) is absolutely convergent in the half-plane $\sigma > \delta$.

Proof. Let $s = \delta + it \in \mathbb{C}$ with $\delta > 0$. The function g is multiplicative and using (7) we get for all $z \geq e$

$$\sum_{p \le z} \sum_{\alpha=1}^{\infty} \left| \frac{g(p^{\alpha})}{p^{s\alpha}} \right| = \sum_{p \le z} \left(\frac{|g(p)|}{p^{\delta}} + \sum_{\alpha=2}^{\infty} \left| \frac{g(p^{\alpha})}{p^{s\alpha}} \right| \right)$$

$$\le \lambda_1 \left(\sum_{p \le z} \frac{1}{p^{\delta+1}} + \sum_{p \le z} \frac{1}{p^{\delta}} \sum_{\alpha=2}^{\infty} \left(\frac{\lambda_2}{p^{\delta+1}} \right)^{\alpha-1} \right)$$

$$= \lambda_1 \sum_{p \le z} \left(\frac{1}{p^{\delta+1}} + \frac{\lambda_2}{p^{\delta}(p^{\delta+1} - \lambda_2)} \right)$$

$$\le \lambda_1 \sum_{p \le z} \left(\frac{1}{p^{\delta+1}} + \frac{2\lambda_2}{p^{\delta}(2 - \lambda_2)} \frac{1}{p^{\delta+1}} \right)$$

$$\le \lambda \sum_{p \le z} \frac{1}{p^{\delta+1}}$$

where we used the inequality

$$\frac{1}{p^{\theta}-\lambda_2} \leq \frac{2}{2-\lambda_2}\,\frac{1}{p^{\theta}} \quad (\theta \geq 1)\,.$$

This implies the asserted result.

Lemma 6. For all real numbers $z \ge e$ and $a \in \{0, 1\}$

(i) :
$$\sum_{n \le z} |g(n)| \ll (\log z)^{\lambda}.$$

(ii) :
$$\sum_{n>z} \frac{|g(n)|(\log n)^a}{n} \ll z^{-1} (\log z)^{\lambda+a}$$
.

Proof.

(i) As in the proof of Lemma 5, we get for all $z \ge e$

$$\sum_{n \le z} |g(n)| \le \exp\left\{ \sum_{p \le z} |g(p)| + \sum_{p \le z} \sum_{\alpha = 2}^{\infty} |g(p^{\alpha})| \right\}$$

$$\le \exp\left\{ \lambda_1 \left(\sum_{p \le z} \frac{1}{p} + \sum_{p \le z} \sum_{\alpha = 2}^{\infty} \left(\frac{\lambda_2}{p} \right)^{\alpha - 1} \right) \right\}$$

$$\le \exp\left\{ \lambda_1 \left(\sum_{p \le z} \frac{1}{p} + \frac{2\lambda_2}{2 - \lambda_2} \sum_{p \le z} \frac{1}{p} \right) \right\}$$

$$= \exp\left(\lambda \sum_{p \le z} \frac{1}{p} \right) \ll (\log z)^{\lambda}$$

as asserted.

(ii) Follows from Lemma 5, (i) and partial summation. We leave the details to the reader.

The proof is complete.
$$\Box$$

Lemma 7. For any real number $x \ge 1$ and any integer $1 \le d \le 2x$, we have

$$\sum_{\substack{n \le x \\ d \ge n}} \frac{1}{n} = \frac{\rho(d)}{d} \left(\log \frac{\rho(d)x}{d} + \gamma \right) + O\left(\frac{1}{x}\right)$$

where

$$\rho(d) := \begin{cases} 2, & \text{if } d \text{ is even;} \\ 1, & \text{if } d \text{ is odd.} \end{cases}$$
 (8)

Proof. Let S(x,d) be the sum of the left-hand side. If $x < d \le 2x$, then

$$S(x,d) = \frac{2}{d} < \frac{2}{x}.$$

If $d \leq x$ is odd, then by Gauss's theorem we have

$$S(x,d) = \sum_{\substack{n \le x \\ d \mid n}} \frac{1}{n} = \frac{1}{d} \sum_{1 \le k \le x/d} \frac{1}{k} = \frac{1}{d} \left(\log \frac{x}{d} + \gamma + O\left(\frac{d}{x}\right) \right)$$

as required.

Now assume that d is even. If $\frac{2x}{3} < d \le x$, then $\frac{x}{d} - \frac{1}{2} < 1$ and therefore

$$S(x,d) = \sum_{\substack{n \le x \\ d \mid n}} \frac{1}{n} + \sum_{\substack{n \le x \\ n \equiv d/2 \pmod{d}}} \frac{1}{n}$$

$$= \frac{1}{d} \sum_{1 \le k \le x/d} \frac{1}{k} + \frac{1}{d} \sum_{0 \le k \le x/d - 1/2} \frac{1}{k + 1/2}$$

$$= \frac{1}{d} \left(\log \frac{x}{d} + \gamma + O\left(\frac{d}{x}\right) \right) + \frac{2}{d}$$

$$= \frac{1}{d} \left(\log \frac{x}{d} + \gamma \right) + O\left(\frac{1}{x}\right)$$

since the assumption $d > \frac{2x}{3}$ implies $\frac{2}{d} < \frac{3}{x}$. On the other hand, since $1 \le \frac{x}{d} < \frac{3}{2}$, we have

$$\left| \frac{2}{d} \log \frac{2x}{d} + \frac{\gamma}{d} - \frac{1}{d} \log \frac{x}{d} \right| \le \frac{1}{d} \left(\log \frac{4x}{d} + \gamma \right) < \frac{\log 6 + \gamma}{d} < \frac{3 \left(\log 6 + \gamma \right)}{2x}$$

and thus in this case we also get

$$S(x,d) = \frac{2}{d} \left(\log \frac{2x}{d} + \gamma \right) + O\left(\frac{1}{x}\right).$$

If $1 \le d \le \frac{2x}{3}$, since

$$\sum_{1 \le k \le x/d - 1/2} \frac{1}{k + 1/2} = \log \frac{x}{d} + \gamma - 2 + \log 4 + O\left(\frac{d}{x}\right)$$

where we used the fact that $d \leq \frac{2x}{3}$ implies $\frac{x}{d} - \frac{1}{2} \geq \frac{2x}{3d}$, then

$$S(x,d) = \frac{1}{d} \left(\log \frac{x}{d} + \gamma + O\left(\frac{d}{x}\right) \right) + \frac{2}{d}$$

$$+ \frac{1}{d} \left(\log \frac{x}{d} + \gamma - 2 + \log 4 + O\left(\frac{d}{x}\right) \right)$$

$$= \frac{2}{d} \left(\log \frac{2x}{d} + \gamma \right) + O\left(\frac{1}{x}\right)$$

completing the proof.

4 Sums of reciprocals

Lemma 8. Let f satisfying the conditions (1). Then

$$\sum_{n \le x} \frac{1}{f(n)} = \log x \sum_{d=1}^{\infty} \frac{g(d)}{d} + K_f + O\left(\frac{(\log x)^{\lambda+1}}{x}\right)$$

where

$$K_f := \sum_{d=1}^{\infty} \frac{g(d)}{d} \left(\gamma - \log d \right) \tag{9}$$

and

$$\sum_{\substack{n \le 2x \\ n \text{ even}}} \frac{1}{f(n)} = \frac{\log x}{2} \sum_{d=1}^{\infty} \frac{g(d)\rho(d)}{d} + L_f + O\left(\frac{(\log x)^{\lambda+1}}{x}\right)$$

where

$$L_f := \frac{1}{2} \sum_{d=1}^{\infty} \frac{g(d)\rho(d)}{d} \left(\gamma + \log \frac{\rho(d)}{d}\right). \tag{10}$$

and where $\rho(d)$ is given in (8) and λ is defined in (2).

Proof. The proof of the first estimate follows the classical lines. We have

$$\sum_{n \le x} \frac{1}{f(n)} = \sum_{n \le x} \frac{(g \star \mathbf{1})(n)}{n} = \sum_{n \le x} \frac{1}{n} \sum_{d \mid n} g(d)$$

$$= \sum_{d \le x} \frac{g(d)}{d} \sum_{k \le x/d} \frac{1}{k}$$

$$= \sum_{d \le x} \frac{g(d)}{d} \left(\log \frac{x}{d} + \gamma + O\left(\frac{d}{x}\right) \right)$$

$$= (\log x + \gamma) \sum_{d \le x} \frac{g(d)}{d} - \sum_{d \le x} \frac{g(d) \log d}{d} + O\left(\frac{1}{x} \sum_{d \le x} |g(d)|\right)$$

and by Lemma 6 we get

$$\sum_{n \le x} \frac{1}{f(n)} = (\log x + \gamma) \sum_{d=1}^{\infty} \frac{g(d)\rho(d)}{d} - \sum_{d=1}^{\infty} \frac{g(d)\log(d)}{d} + O\left(\frac{(\log x)^{\lambda+1}}{x}\right)$$

as asserted.

The second estimate is similar, with the additional use of Lemma 7 which gives

$$\sum_{\substack{n \le 2x \\ n \text{ even}}} \frac{1}{f(n)} = \sum_{n \le x} \frac{1}{f(2n)} = \sum_{n \le x} \frac{(g \star 1)(2n)}{2n}$$
$$= \frac{1}{2} \sum_{n \le x} \frac{1}{n} \sum_{d \mid 2n} g(d) = \frac{1}{2} \sum_{d \le 2x} g(d) \sum_{\substack{n \le x \\ d \mid 2n}} \frac{1}{n}$$

$$= \frac{1}{2} \sum_{d \le 2x} g(d) \left(\frac{\rho(d)}{d} \left(\log \frac{\rho(d)x}{d} + \gamma \right) + O\left(\frac{1}{x}\right) \right)$$

$$= \frac{1}{2} (\log x + \gamma) \sum_{d \le 2x} \frac{g(d)\rho(d)}{d} + \frac{1}{2} \sum_{d \le 2x} \frac{g(d)\rho(d)}{d} \log \frac{\rho(d)}{d}$$

$$+ O\left(\frac{1}{x} \sum_{d \le 2x} |g(d)|\right)$$

$$= \frac{1}{2} (\log x + \gamma) \sum_{d=1}^{\infty} \frac{g(d)\rho(d)}{d} - \frac{1}{2} (\log x + \gamma) \sum_{d > 2x}^{\infty} \frac{g(d)\rho(d)}{d}$$

$$+ \frac{1}{2} \sum_{d=1}^{\infty} \frac{g(d)\rho(d)}{d} \log \frac{\rho(d)}{d} - \frac{1}{2} \sum_{d > 2x} \frac{g(d)\rho(d)}{d} \log \frac{\rho(d)}{d}$$

$$+ O\left(\frac{1}{x} \sum_{d \le 2x} |g(d)|\right)$$

and by Lemma 6 we get

$$\sum_{\substack{n \le 2x \\ n \text{ even}}} \frac{1}{f(n)} = \frac{1}{2} (\log x + \gamma) \sum_{d=1}^{\infty} \frac{g(d)\rho(d)}{d} + \frac{1}{2} \sum_{d=1}^{\infty} \frac{g(d)\rho(d)}{d} \log \frac{\rho(d)}{d} + O\left(\frac{(\log x)^{\lambda+1}}{x}\right)$$

completing the proof.

5 Proof of Theorem 1

5.1 First step: Asymptotic formula

From Lemma 8 we get

$$\sum_{n \le x} \frac{(-1)^n}{f(n)} = 2\sum_{\substack{n \le x \\ n \text{ even}}} \frac{1}{f(n)} - \sum_{n \le x} \frac{1}{f(n)}$$

$$= \log \frac{x}{2} \sum_{d=1}^{\infty} \frac{g(d)\rho(d)}{d} - \log x \sum_{d=1}^{\infty} \frac{g(d)}{d} + 2L_f - K_f$$

$$+ O\left(\frac{(\log x)^{\lambda+1}}{x}\right)$$

where K_f et L_f are given in (9) et (10), so that setting

$$C_{f} := 2L_{f} - K_{f} - \log 2 \sum_{d=1}^{\infty} \frac{g(d)}{d}$$

$$= \sum_{d=1}^{\infty} \frac{g(d)}{d} \left((\rho(d) - 1) (\gamma - \log d) + \rho(d) \log \frac{\rho(d)}{2} \right)$$

$$= \sum_{d=1}^{\infty} \frac{g(d)}{d} (\gamma - \log d) + \sum_{d=1}^{\infty} \frac{g(d)\rho(d)}{d} \log \frac{\rho(d)}{2}$$

$$= \sum_{d=1}^{\infty} \frac{g(2d)}{2d} (\gamma - \log 2d) - \log 2 \sum_{d=1}^{\infty} \frac{g(d)}{d}$$

$$= \frac{1}{2} \sum_{d=1}^{\infty} \frac{g(2d)}{d} (\gamma - \log d) - \log 2 \sum_{d=1}^{\infty} \frac{g(d)}{d}$$

we obtain

$$\sum_{n \le x} \frac{(-1)^n}{f(n)} = \log x \sum_{d=1}^{\infty} \frac{g(d) (\rho(d) - 1)}{d} + C_f + O\left(\frac{(\log x)^{\lambda + 1}}{x}\right)$$
$$= \frac{\log x}{2} \sum_{d=1}^{\infty} \frac{g(2d)}{d} + C_f + O\left(\frac{(\log x)^{\lambda + 1}}{x}\right)$$

completing the proof.

5.2 Second step: Series expansions

The unique decomposition $d = 2^{\alpha} m$ with $\alpha \in \mathbb{Z}^+$ and $m \geq 1$ odd provides

$$\sum_{d=1}^{\infty} \frac{g(d)}{d} = \sum_{\alpha=0}^{\infty} \frac{g(2^{\alpha})}{2^{\alpha}} \sum_{\substack{m=1\\m \text{ odd}}}^{\infty} \frac{g(m)}{m}$$

$$= \left(1 + \sum_{\alpha=1}^{\infty} \frac{g(2^{\alpha})}{2^{\alpha}}\right) \prod_{p \ge 3} \left(1 + \sum_{\alpha=1}^{\infty} \frac{g(p^{\alpha})}{p^{\alpha}}\right)$$

$$= \frac{1}{2} \sum_{\alpha=0}^{\infty} \frac{1}{f(2^{\alpha})} \prod_{p \ge 3} \left(1 - \frac{1}{p}\right) \left(1 + \sum_{\alpha=1}^{\infty} \frac{1}{f(p^{\alpha})}\right)$$

$$= \mathcal{P}_f$$

and

$$\sum_{d=1}^{\infty} \frac{g(2d)}{d} = \sum_{\alpha=0}^{\infty} \frac{g(2^{\alpha+1})}{2^{\alpha}} \sum_{\substack{m=1 \\ m \text{ odd}}}^{\infty} \frac{g(m)}{m}$$

$$= \left(g(2) + 2 \sum_{\alpha=2}^{\infty} \frac{g(2^{\alpha})}{2^{\alpha}}\right) \prod_{p \ge 3} \left(1 + \sum_{\alpha=1}^{\infty} \frac{g(p^{\alpha})}{p^{\alpha}}\right)$$

$$= \left(\sum_{\alpha=1}^{\infty} \frac{1}{f(2^{\alpha})} - 1\right) \prod_{p \ge 3} \left(1 - \frac{1}{p}\right) \left(1 + \sum_{\alpha=1}^{\infty} \frac{1}{f(p^{\alpha})}\right)$$

$$= \frac{2(S_f(2) - 1)}{S_f(2) + 1} \mathcal{P}_f.$$

Similarly

$$\begin{split} \sum_{d=1}^{\infty} \frac{g(2d) \log d}{d} &= \sum_{\alpha=0}^{\infty} \frac{g\left(2^{\alpha+1}\right)}{2^{\alpha}} \sum_{\substack{m=1\\ m \, \text{odd}}}^{\infty} \frac{g(m) \log(2^{\alpha}m)}{m} \\ &= \sum_{\alpha=0}^{\infty} \frac{g\left(2^{\alpha+1}\right)}{2^{\alpha}} \left(\alpha \log 2 \sum_{\substack{m=1\\ m \, \text{odd}}}^{\infty} \frac{g(m)}{m} + \sum_{\substack{m=1\\ m \, \text{odd}}}^{\infty} \frac{g(m) \log m}{m}\right) \\ &= \log 2 \sum_{\alpha=0}^{\infty} \frac{\alpha g\left(2^{\alpha+1}\right)}{2^{\alpha}} \sum_{\substack{m=1\\ m \, \text{odd}}}^{\infty} \frac{g(m)}{m} + \sum_{\alpha=0}^{\infty} \frac{g\left(2^{\alpha+1}\right)}{2^{\alpha}} \sum_{\substack{m=1\\ m \, \text{odd}}}^{\infty} \frac{g(m) \log m}{m} \\ &= \log 2 \left(\sum_{\alpha=1}^{\infty} \frac{\alpha-2}{f\left(2^{\alpha}\right)}\right) \prod_{p \geq 3} \left(1 - \frac{1}{p}\right) \left(1 + \sum_{\alpha=1}^{\infty} \frac{1}{f\left(p^{\alpha}\right)}\right) \\ &+ \left(\sum_{\alpha=1}^{\infty} \frac{1}{f\left(2^{\alpha}\right)} - 1\right) \sum_{\substack{m=1\\ m \, \text{odd}}}^{\infty} \frac{g(m) \log m}{m} \\ &= \frac{2 \log 2 \left(s_f(2) - 2S_f(2)\right)}{S_f(2) + 1} \mathcal{P}_f + \left(S_f(2) - 1\right) \sum_{m=1}^{\infty} \frac{g(m) \log m}{m}. \end{split}$$

Now since for $s \in \mathbb{C}$ such that $\operatorname{Re} s > \delta > 0$, we have

$$\sum_{\substack{m=1\\m \text{ odd}}}^{\infty} \frac{g(m)}{m^s} = \prod_{p \geq 3} \left(1 - \frac{1}{p^s}\right) \left(1 + \sum_{\alpha = 1}^{\infty} \frac{1}{p^{\alpha(s-1)} f(p^{\alpha})}\right) := G(s)$$

we infer

$$\sum_{\substack{m=1\\m \text{ odd}}}^{\infty} \frac{g(m)\log m}{m} = -G'(1).$$

Using the logarithmic derivative, we get

$$\frac{G_f'(s)}{G(s)} = \sum_{p \ge 3} \log p \left(\frac{1}{p^s - 1} - \frac{\sum_{\alpha = 1}^{\infty} \frac{\alpha}{p^{\alpha(s-1)} f(p^{\alpha})}}{1 + \sum_{\alpha = 1}^{\infty} \frac{1}{p^{\alpha(s-1)} f(p^{\alpha})}} \right)$$

and therefore

$$\sum_{\substack{m=1 \\ m \text{ odd}}}^{\infty} \frac{g(m) \log m}{m} = -\frac{2\mathcal{P}_f}{S_f(2) + 1} \sum_{p \ge 3} \log p \left(\frac{1}{p - 1} - \frac{s_f(p)}{1 + S_f(p)} \right)$$

thus completing the proof of Theorem 1.

6 Acknowledgments

We express our gratitude to the referee for his careful reading of the manuscript and the many valuable suggestions and corrections he made.

References

- [1] J. Kaczorowski and K. Wiertelak, On the sum of the twisted Euler function, *Internat. J. Number Theory* 8 (2012), 1741–1761.
- [2] E. Landau, Über die Zahlentheoretische Function $\varphi(n)$ und ihre Beziehung zum Goldbachschen Satz, Nachrichten der Koniglichten Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1900, 177–186.
- [3] K. Wooldridge, Mean value theorems for arithmetic functions similar to Euler's phifunction, *Proc. Amer. Math. Soc.* **58** (1976), 73–78.

2010 Mathematics Subject Classification: Primary 11A25; Secondary 11N37. Keywords: alternating sum, average order over a polynomial sequence.

(Concerned with sequences A001615, A058026, A065463, A082695, A211117, and A211178.)

Received February 9 2013; revised versions received March 3 2013; June 12 2013. Published in *Journal of Integer Sequences*, June 16 2013.

Return to Journal of Integer Sequences home page.