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Abstract

We establish an asymptotic formula for an alternating sum of the reciprocal of
a class of multiplicative functions. The proof is straightforward and uses classical
convolution techniques. Numerous examples are given.
1 Introduction and main results
In 1900, E. Landau [2] proved that
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where ¢ is the classic Euler totient function and ~ is Euler’s constant, but it seems that in
the usual literature there is not any similar result for the alternating sum
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It is fairly easy to show that there exists an absolute constant ¢ > 0 such that this sum
is > c¢logz + O(1), and therefore the question of an asymptotic formula arises naturally.
It should be mentioned that Landau’s result could eventually provide such an asymptotic
formula via the simple identity
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and the use of known estimates as in [3, Theorem 1], but this method does not seem to be
easily generalized to a larger class of multiplicative functions than that of [3]. In this article,
we will follow a slightly different approach working with the set of non-zero complex-valued
multiplicative functions f satisfying the following assumptions: there exist constants A\; > 0
and 0 < Ay < 2 such that, for each prime power p®, we have
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For any prime number p, define
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and set

where the product is absolutely convergent.
We are now in a position to state our main result.

Theorem 1. Let f be a non-zero multiplicative function satisfying (1). Then, for x > e, we

have
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where
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and Sy(p), s¢(p) and Py are given in (3) and (4).

Corollary 2. Let f be a non-zero multiplicative function satisfying (1) and assume that, for
any prime p and any integer o > 1, f (p®) = p* 1 f(p). Then, for x > e, we have
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Remark 3. If S§(2) = 1 in Theorem 1, i.e. f(2) = 2 in Corollary 2, then the constant C;
reduces to
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Corollary 4. For x > e, the following estimates hold.
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(ii) Let x be a non-principal Dirichlet character modulo ¢ > 2 and p(n,x) be the twisted
Euler function attached to x given in (6). Then
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(iii) Let W be the Dedekind arithmetic function defined in (5). Then
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The celebrated Mébius function is as always denoted by u, Id(n) = n, ¢ is the Euler totient

Let v(n) :== Hp|np be squarefree kernel of n. Then
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Let o be the sum-of-divisors function. Then
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where k = 3.6. Note that the leading constant is = —0.16 468.

Let o* be the sum-of-unitary-divisors function. Then

o0

—1r Se(2) -1 1 p—1 1
o (n) SU*(2)+11;[(1_§+ D Zpo‘—i—l) <1°g5"+7

a=1

3 togp (A - o) +,,10g2) <o (o))

where v = 8.04. Note that the leading constant s = —0.10 259.

Notation

function, ¥ is the Dedekind function defined by

and, for each fixed non-principal Dirichlet character y modulo g > 2, the y-twisted Euler
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function ¢(n, x) recently introduced in [1] is defined by
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For any two arithmetic functions u and v, u v is the usual Dirichlet convolution product of

u and v defined by
(uxv) Z u(d)v(n/d).
dln
The Eratosthenes transform of w is the arithmetic function v x p. Finally, f is a non-zero
multiplicative function satisfying (1) and ¢ is the Eratosthenes transform of Id f~!. Note
that the assumption (1) can be written as
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3 Tools

Lemma 5. Let § > 0. The Dirichlet series of the arithmetic function g(n) is absolutely
convergent in the half-plane o > 9.

Proof. Let s = + it € C with 6 > 0. The function g is multiplicative and using (7) we get
for all z > e

e ()] )] | |9 (@)
> 3[e) - (s |et
p<z a=1 p<z a=2
1 LSS x \*
< (T T (7))
p<z p<z a=2
1 A2 >
= A +
1 ng; <p5+1 PPt — )
1 2o 1
< A
- ; <p5“ PR ) p‘”l)
1
< Ao
p<z p
where we used the inequality
1 2 1
— (6>1).
PP=X T 2= p’ ¢=1)
This implies the asserted result. [
Lemma 6. For all real numbers z > e and a € {0,1}
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Proof.

(i) As in the proof of Lemma 5, we get for all z > e
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as asserted.

(ii) Follows from Lemma 5, (i) and partial summation. We leave the details to the reader.

The proof is complete. O
Lemma 7. For any real number x > 1 and any integer 1 < d < 2z, we have
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Proof. Let S(x,d) be the sum of the left-hand side. If x < d < 2z, then

S(x,d) =
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If d < x is odd, then by Gauss’s theorem we have
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Now assume that d is even. If 2?93 <d < x, then 3 — % < 1 and therefore
1
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since the assumption d > <* implies % < % On the other hand, since 1 < % < %, we have
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and thus in this case we also get
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completing the proof.

4 Sums of reciprocals

Lemma 8. Let f satisfying the conditions (1). Then
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where
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and
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where
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and where p(d) is given in (8) and X is defined in (2).

Proof. The proof of the first estimate follows the classical lines. We have
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and by Lemma 6 we get
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The second estimate is similar, with the additional use of Lemma 7 which gives
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completing the proof.

5 Proof of Theorem 1

5.1 First step: Asymptotic formula

From Lemma 8 we get
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where Ky et Ly are given in (9) et (10), so that setting
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completing the proof.

5.2 Second step: Series expansions

The unique decomposition d = 2*m with « € Z* and m > 1 odd provides
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Using the logarithmic derivative, we get
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thus completing the proof of Theorem 1. m
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