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Abstract

Let Sn denote the symmetric group of all permutations π = a1 · · · an of {1, . . . , n}.
An index i is a peak of π if ai−1 < ai > ai+1 and we let P (π) be the set of peaks of π.
Given any set S of positive integers we define P(S;n) = {π ∈ Sn : P (π) = S}. Our
main result is that for all fixed subsets of positive integers S and all sufficiently large
n we have #P(S;n) = p(n)2n−#S−1 for some polynomial p(n) depending on S. We
explicitly compute p(n) for various S of probabilistic interest, including certain cases
where S depends on n. We also discuss two conjectures, one about positivity of the
coefficients of the expansion of p(n) in a binomial coefficient basis, and the other about
sets S maximizing #P(S;n) when #S is fixed.
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1 Introduction

Let N be the nonnegative integers and, for n ∈ N, let [n] = {1, . . . , n}. Consider the
symmetric group Sn of all permutations π = a1 · · · an of [n]. Call an index i a peak of π if
ai−1 < ai > ai+1 and define the peak set of π to be

P (π) = {i : i is a peak of π}.

By way of illustration, if π = a1 · · · a7 = 1453276 then P (π) = {3, 6} because of a3 = 5
and a6 = 7. We will also apply the definitions and notation just given to any π which is a
sequence of positive integers. Note that some authors call ai a peak rather than i, but our
convention is more consistent with what is used for other permutation statistics. Also note
that if π ∈ Sn then P (π) ⊆ {2, . . . , n − 1}. There has been a great deal of research into
peaks of permutations, see [1, 2, 4, 6, 9, 10, 11, 12, 13, 15, 16, 17].

The purpose of the present work is to investigate permutations with a given peak set. To
this end, define

P(S;n) = {π ∈ Sn : P (π) = S}.

We will often omit the curly brackets around S in this notation. So, for example,

P(2; 4) = {1324, 1423, 1432, 2314, 2413, 2431, 3412, 3421}.

Our main result will be about the cardinality #P(S;n) as n varies, where S is a set of
constants not depending on n. To state it, define a set S = {i1 < · · · < is} to be n-admissible
if #P(S;n) 6= 0. Note that we insist the elements be listed in increasing order. It is easy
to see that S is n-admissible if and only if i1 > 1, no two ij are consecutive integers, and
n > is. If we make a statement about an admissible set S, we mean that S is n-admissible
for some n and the statement holds for every n such that S is n-admissible. We can now
state our principal theorem.

Theorem 1. If S = {i1 < · · · < is} is admissible then

#P(S;n) = p(n)2n−#S−1

where p(n) = p(S;n) is a polynomial depending on S such that p(n) is an integer for all
integral n. In addition, deg p(n) = is − 1 (when S = ∅ we have deg p(n) = 0).

If S is not admissible, then #P(S;n) = 0 for all positive integers n, so we define the
corresponding polynomial p(S;n) = 0. Thus, for all sets S of constants not depending on
n, p(S;n) is a well defined polynomial which we will call the peak polynomial for S and
#P(S;n) = p(S;n)2n−#S−1 for all n > maxS if S 6= ∅ or for all n ≥ 1 if S = ∅.

Some of the motivation for our work comes from probability theory. A relationship
between permutations and random data has been noticed for quite some time. We refer the
reader to the 1937 paper of Kermack and McKendrick [9] and the references therein. Many
probabilistic models are concerned with i.i.d. (independent identically distributed) sequences
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of data, or their generalization, exchangeable sequences. By definition, any permutation of
an exchangeable sequence of data is as likely to be observed as the original sequence. One
way to test whether a given sequence of n data points is in fact exchangeable is to analyze
the order in which the data are arranged, starting from the highest value to the lowest
value. Under the assumption of exchangeability, the order should be a randomly (uniformly)
chosen permutation of [n]. Hence, probabilists are interested in probabilities of various events
related to uniformly chosen permutations. This is equivalent to evaluating cardinalities of
various subsets of Sn. This article is inspired by, and provides estimates for, a probabilistic
project concerned with mass redistribution, to be presented in a forthcoming article [3]. The
reader can consult that paper for details, including the specific i.i.d. sequence which will be
used in our model.

The rest of this paper is organized as follows. Section 2 is devoted to a proof of Theorem 1
and its enumerative consequences. Sections 3 and 4 are devoted to computing the polynomial
p(n) for various sets of interest for the probabilistic applications. Section 5 investigates a
conjecture about the expansion of p(S;n) in a binomial coefficient basis for the space of
polynomials. Section 6 states a conjecture about which S maximizes #P(S;n) among all S
with given cardinality. Section 7 shows how our methods can be applied to the enumeration
of permutations with a fixed set of peaks and valleys. Finally, in Section 8 we use our results
to prove a known formula for the number of permutations with a given number of peaks.

2 The main enumeration theorem

We need the following result as a base case for induction.

Proposition 2. For n ≥ 1 we have

#P(∅;n) = 2n−1.

Proof. If π ∈ P(∅;n) then write π = π11π2 where π1, π2 are the portions of π to the left and
right of 1, respectively. Now P (π) = ∅ if and only if π1 is decreasing and π2 is increasing. So
#P(∅;n) is the number of choices of a subset of elements from [2, n] to be in π1 since after
that choice is made the rest of π is determined. The result follows.

We now prove our principal theorem, restating it here for ease of reference.

Theorem 3. If S = {i1 < · · · < is} is admissible then

#P(S;n) = p(n)2n−#S−1

where p(n) = p(S;n) is a polynomial depending on S such that p(n) is an integer for all
integral n. In addition, deg p(n) = is − 1 (when S = ∅ we have deg p(n) = 0).

3



Proof. We induct on i = i1 + · · · + is. By Proposition 2 the result is true when i = 0.
Now suppose i 6= 0. For ease of notation, let k = is − 1 and S1 = S − {is}. For any fixed
n > is, consider the set Π of permutations π = a1 · · · an ∈ Sn such that P (a1 · · · ak) = S1

and P (ak+1 · · · an) = ∅. Since S is n-admissible, we know S1 is also n-admissible by the
characterization of n-admissibility after its definition. Thus, #Π 6= 0.

We can construct the elements π ∈ Π by first picking the set of elements to be used for
a1, . . . , ak and then arranging this set and its complement to have the prescribed peak sets.
Note that when we concatenate the two sequences, then the resulting permutation π either
has a peak at k, or a peak at k + 1, or neither. Thus, by induction, the total number of
choices is

#Π =

(

n

k

)

#P(S1; k)#P(∅;n− k) =

(

n

k

)

p1(k)2
k−s · 2n−k−1 = p1(k)

(

n

k

)

2n−s−1

for some polynomial p1(n) with deg p1(n) = is−1 − 1 < k. Also, p1(k) is an integer which
must also be nonzero since #Π 6= 0.

On the other hand, we can also count Π as follows. Let S2 = S1 ∪ {is − 1}. Note that
by the restrictions on P (a1 · · · ak) and P (ak+1 · · · an) we must have P (π) = S1, P (π) = S2,
or P (π) = S for all π ∈ Π. And by construction all such π appear, which shows that we
must have the decomposition Π = P(S1;n) ∪ P(S2;n) ∪ P(S;n). Taking cardinalities and
applying induction as well as the previous count for #Π yields

#P(S;n) = p1(k)

(

n

k

)

2n−s−1−p1(n)2
n−s−p2(n)2

n−s−1 =

[

p1(k)

(

n

k

)

− 2p1(n)− p2(n)

]

2n−s−1

(1)
where p2(n) is a polynomial in n of degree is − 2 < k which is integral at integers if S2 is
admissible, and 0 otherwise. To complete the proof, note that p1(k)

(

n

k

)

is a polynomial in n
of degree k while 2p1(n) and p2(n) have degree smaller than k. Thus the coefficient of 2n−s−1

above is a polynomial of degree k = is − 1. We also have that the functions
(

n

k

)

, 2p1(n), and
p2(n) all have integral values at integers, and we have previously established that p1(k) is an
integer. Thus the same is true of the difference in brackets above.

Examining the proof of Theorem 3, one sees that it goes through if n = is in the sense
that we will obtain p(S; is) = 0 using the fact that there are no permutations in P(S; is).
(On the other hand, we may have p(S; l) 6= 0 for l < is and so some bound is still needed.)

Equation (1) immediately yields the following recursive formula for this polynomial.

Corollary 4. If S 6= ∅ is admissible and m = maxS then

p(S;n) = p1(m− 1)

(

n

m− 1

)

− 2p1(n)− p2(n) (2)

where S1 = S − {m}, S2 = S1 ∪ {m− 1}, and pi(n) = p(Si;n) for i = 1, 2.
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It is well known that any sequence given by a polynomial of degree k can be completely
determined by any consecutive k + 1 values by the method of finite differences. See [7,
Sections 2.6 and 5.3] or [14, Proposition 1.9.2]. If f(n) is a polynomial function of n, then
define another polynomial function of n by ∆f(n) = f(n + 1) − f(n). Similarly, ∆kf is
a polynomial function of n obtained by applying ∆ successively k times. Given the d + 1
consecutive values f(m), f(m + 1), . . . , f(m + d), then one can express f(n) in the basis
(

n−m

k

)

by the formula

f(n) =
d

∑

k=0

∆kf(m) ·

(

n−m

k

)

where d is the degree of f(n). Thus, Theorem 3 gives a way to find an explicit formula for
#P(S;n) and p(S;n) for any admissible set S.

For example, if S = {2, 5} then p(S, n) has degree 4. Thus, we can find p(S, n) from
the sequence #P(S, n)/2n−3 for n = 6, 7, 8, 9, 10. Either by hand or computer we find
#P(S, 6)/23 = 10, #P(S, 7)/24 = 35, #P(S, 8)/25 = 84, #P(S, 9)/26 = 168, #P(S, 10)/27 =
300, etc. Taking successive consecutive differences 5 times gives the difference table

10 35 84 168 300 495 770 1144 1638
25 49 84 132 195 275 374 494
24 35 48 63 80 99 120
11 13 15 17 19 21
2 2 2 2 2
0 0 0 0

.

Therefore,

p(2, 5, n) = 10

(

n− 6

0

)

+ 25

(

n− 6

1

)

+ 24

(

n− 6

2

)

+ 11

(

n− 6

3

)

+ 2

(

n− 6

4

)

=
1

12
n (n− 5) (n− 2) (n− 1) . (3)

We used the shifted basis
(

n−6

k

)

here since the smallest value of n for which S is n-admissible
is n = 6 and we want the sequences aligned properly.

Corollary 5. If S is a nonempty admissible set and m = maxS, then #P(S;n) has a
rational generating function of the form

∑

n≥1

#P(S;n)xn =
r(x)

(1− 2x)m

where r(x) = r(S; x) is the polynomial

r(x) = (1− 2x)m
∑

n≥1

#P(S;n)xn =
2m−1
∑

k=m+1

xk

k−m−1
∑

j=0

(−2)j
(

m

j

)

#P(S; k − j).
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Furthermore, for n ≥ 2m the following linear recurrence relation holds

m
∑

j=0

(−2)j
(

m

j

)

#P(S;n− j) = 0.

Proof. These claims follow directly by applying the theory of rational generating functions
in [14, Theorem 4.1.1 and Corollary 4.2.1] to Theorem 3 and the discussion of the n = m
case directly following it.

Continuing with the example S = {2, 5}, we get the generating function

∑

n≥1

#P(S;n)xn =
80x6 − 240x7 + 288x8 − 128x9

(1− 2x)5
=

16x6(1− x)(5− 10x+ 8x2)

(1− 2x)5

and recurrence relation

#P(S;n) = 10#P(S;n−1)−40#P(S;n−2)+80#P(S;n−3)−80#P(S;n−4)+32#P(S;n−5)

which holds for n ≥ 10.

3 Specific peak sets with constant elements

We now derive formulas for #P(S;n) for various sets S of elements which do not vary with
n. These will be useful in proving the results needed for probabilistic applications. Peaks
represent sites with no mass in the mass redistribution model analyzed in [3]. In that paper,
we will use the results of this section to study the distance between “empty” sites.

Before stating the equations, we would like to indicate how they were originally derived
as the proofs below are ones given in hindsight. Note that Corollary 4 expresses p(S;n) in
terms of polynomials for peak sets having smaller maxima than S. So by iterating this recur-
sion, one can find an expression for p(S;n) whose main contribution is from an alternating
sum

∑

k(−1)kak
(

n

k

)

for certain coefficients ak ≥ 0. By next using the binomial recursion
iteratively, one achieves substantial cancellation. The simplified formula can then be proved
directly using Corollary 4 and these are the results and proofs given below.

Theorem 6. If S = {m} is admissible then

p(S;n) =

(

n− 1

m− 1

)

− 1.

Proof. We induct on m and use the notation of Corollary 4. If m = 2 then S1 = ∅ and
S2 = {1}. By Proposition 2 we have p1(n) = 1. Also, p2(n) = 0 since S2 is not admissible
for any n. Now applying Corollary 4 gives

p(2;n) = 1 ·

(

n

1

)

− 2 · 1 = n− 2 =

(

n− 1

1

)

− 1.
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The induction step is similar, except that now S2 = {m − 1} which is admissible, and
has a corresponding polynomial which is known by induction. In particular

p(m;n) =

(

n

m− 1

)

− 2−

[(

n− 1

m− 2

)

− 1

]

=

(

n− 1

m− 1

)

− 1

as desired.

Theorem 7. If S = {2,m} is admissible then

p(S;n) = (m− 3)

(

n− 2

m− 1

)

+ (m− 2)

(

n− 2

m− 2

)

−

(

n− 2

1

)

.

Proof. The proof is much like that of the previous proposition where S1 = {2} and S2 =
{2,m− 1}. The details are left to the reader.

From this theorem, we immediately get that

p(2, 5;n) = 2

(

n− 2

4

)

+ 3

(

n− 2

3

)

−

(

n− 2

1

)

=
1

12
n (n− 5) (n− 2) (n− 1) .

Note that this agrees with our computations in (3).
Using the same technique, one can prove the following result whose demonstration is

omitted.

Theorem 8. If S = {2,m,m+ 2} is admissible then

p(S;n) = m(m− 3)

(

n

m+ 1

)

− 2(m− 3)

(

n− 2

m− 1

)

− 2(m− 2)

(

n− 2

m− 2

)

+ 2

(

n− 2

1

)

.

4 Peak sets depending on a parameter

Consider sets of the form

S = {i1 < i2 < · · · < is < n− jt < · · · < n− j2 < n− j1}

where i1, . . . , is, j1 . . . , jt are constants. Using exactly the same definition of admissibility
as with sets of constants, one can show that Theorem 3 continues to hold for such S. The
specific statement is as follows.

Theorem 9. Let S = {i1 < i2 < · · · < is < n − jt < · · · < n − j2 < n − j1} be admissible.
Then

#P(S;n) = p(n)2n−#S−1
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where p(n) = p(S;n) is a polynomial depending on S such that p(n) is an integer for all
integral n. In addition,

deg p(n) =



















0, if s = t = 0;

is − 1, if s > 0 and t = 0;

jt, if s = 0 and t > 0;

is + jt − 1, otherwise.

The demonstration is an induction on i1 + · · ·+ is + j1 + · · ·+ jt which is similar to the
one given previously and so is omitted.

Next, we will use the results of the previous section to obtain formulas for peak sets S
with 2, n− 1 ∈ S which are useful probabilistically. Of all peak sets that a probabilist might
consider, two peaks at the (almost) extreme points of a sequence, namely at 2 and n − 1,
are of the greatest interest because they represent the distribution of the distance between
adjacent empty sites in the mass redistribution model in [3]. So a peak set which contains 2
and n − 1 (with possibly other numbers as well) represents the joint distribution of several
consecutive maximal sequences of consecutive empty sites.

For sets containing 2 and n− 1, there is an alternative way to compute p(S;n) which is
simpler because it avoids alternating sums. If π = a1 · · · an ∈ P(S;n) where 2, n − 1 ∈ S
then n = aij for some ij ∈ S. (One can also use similar reasoning for more general sets
S which do not satisfy the given hypothesis, but one needs to worry about the possibility
that a1 = n or an = n.) Note also that if we consider the reversal πr = an · · · a1 then
P (πr) = {n + 1 − is, . . . , n + 1 − i1} where S = {i1, . . . , is}. So if we write π = πLnπR

we have πL ∈ P(SL; ij − 1) and πr
R ∈ P(Sr

R;n − ij) where SL = {i1, . . . , ij−1} and Sr
R =

{n+ 1− is, . . . , n+ 1− ij+1}. These observations yield the recursion

#P(S;n) =
s

∑

j=1

#P(SL; ij − 1)#P(Sr
R;n− ij)

(

n− 1

ij − 1

)

.

Using Theorem 3 and canceling powers of 2 gives

2p(S;n) =
s

∑

j=1

p(SL; ij − 1)p(Sr
R;n− ij)

(

n− 1

ij − 1

)

. (4)

Because of the complexity of the formulas, we will often keep the 2 above on the left-hand
side of the equation.

Theorem 10. If S = {2, n− 1} is admissible then

p(S;n) = (n− 1)(n− 4).
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Remark 11. Andrew Crites pointed out that we get the same result if we substitutem = n−1
into the formula in Theorem 7.

Proof. In this case, equation (4) has two terms. In the first SL = ∅ and Sr
R = {2}, while in

the second SL = {2} and Sr
R = ∅. Applying Proposition 2 and Theorem 6, we obtain

2p(S;n) = 1 · (n− 4) ·

(

n− 1

1

)

+ (n− 4) · 1 ·

(

n− 1

1

)

from which the desired equation follows.

Theorem 12. If S = {2,m, n− 1} is admissible then

2p(S;n) = (m− 3)(n−m− 2)

(

n− 1

m− 1

)

+ (n− 1)

[

(m− 3)

(

n− 4

m− 1

)

+ (m− 2)

(

n− 4

m− 2

)

+(n−m− 1)

(

n− 4

m− 3

)

+ (n−m− 2)

(

n− 4

m− 4

)

− 2

(

n− 4

1

)]

.

For fixed n, the sequence p(S;n) is symmetric and unimodal as m varies and only attains
its maximum at m =

⌊

n+1
2

⌋

and at m =
⌈

n+1
2

⌉

.

Proof. The formula for 2p(S;n) follows from equation (4) and the results of the previous
section similarly to the proof of Theorem 10. So we leave the details to the reader.

For fixed n, let us write f(m) = 2p(2,m, n − 1;n) where 4 ≤ m ≤ n − 3. The fact
that this sequence is symmetric as a function of m follows directly from the form of S. To
prove the rest of the theorem, it suffices to show that the first half of the sequence is strictly
increasing. So consider the difference f(m+1)− f(m) where m ≤ (n− 1)/2. The first term
of f(m) contributes

(m− 2)(n−m− 3)

(

n− 1

m

)

− (m− 3)(n−m− 2)

(

n− 1

m− 1

)

> 0

since, for the given range of m, we have (m − 2)(n −m − 3) ≥ (m − 3)(n −m − 2) by log
concavity of the integers, and

(

n−1

m

)

>
(

n−1

m−1

)

by unimodality of the binomial coefficients. Now
consider the the terms with a factor of n− 1. Combining terms corresponding to the same
binomial coefficient and then using binomial coefficient unimodality gives a contribution to
the difference of

(m− 2)

(

n− 4

m

)

+ 2

(

n− 4

m− 1

)

+ (n− 2m)

(

n− 4

m− 2

)

− 2

(

n− 4

m− 3

)

− (n−m− 2)

(

n− 4

m− 4

)

> [(m− 2) + (n− 2m)− (n−m− 2)]

(

m− 4

m− 4

)

+ 2

[(

n− 4

m− 1

)

−

(

n− 4

m− 3

)]

= 2

[(

n− 4

m− 1

)

−

(

n− 4

m− 3

)]

> 0

9



which is what we wished to show.

The proof of the next theorem contains no new ideas and so is omitted.

Theorem 13. If S = {2,m,m+ 2, n− 1} is admissible then

2p(S;n) = (m− 3)(n−m− 4)

[

m

(

n− 1

m+ 1

)

+ (n−m− 1)

(

n− 1

m− 1

)]

+(n− 1)

[

m(m− 3)

(

n− 2

m+ 1

)

+ (n−m− 1)(n−m− 4)

(

n− 2

m− 2

)

−2(n− 6)

(

n− 4

m− 1

)

− 2(n− 6)

(

n− 4

m− 2

)

+ 4

(

n− 4

1

)]

.

5 A positivity conjecture

Given any integerm we have the following basis for Q[n], the ring of polynomials in a variable
n with coefficients which are rational numbers,

Bm =

{(

n−m

k

)

: k ≥ 0

}

.

Consider a polynomial p(n) ∈ Q[n]. It follows from Stanley’s text [14, Corollary 1.9.3] that
p(n) is an integer for all integral n if and only if the coefficients in the expansion of p(n)
using B0 are all integral. In particular, this is true for p(n) = p(S;n) by our main theorem.

One might wonder if the coefficients in the B0-expansion of p(S;n) were also nonnegative.
Unfortunately, it is easy to see from Theorem 6 that this is not always the case. However, we
conjecture that p(S;n) can be written as a nonnegative linear combination of the elements
in another basis.

Throughout this section, let S be a nonempty admissible set of constants andm = maxS.
Let cSk be the coefficient of

(

n−m

k

)

in the expansion of p(S;n), so

p(S;n) =
m−1
∑

k=0

cSk

(

n−m

k

)

,

where we know from Theorem 3 that cSm−1 is a positive integer and cSk = 0 for k ≥ m.

Conjecture 14. Each coefficient cSk is a positive integer for all 0 < k < m and all admissible
sets S.

We have confirmed this conjecture for all admissible subsets S with maxS ≤ 20. As
further evidence for this conjecture, we investigate some special cases. We will first concern
ourselves with cS0 . In the following results, we use the usual convention that

(

a

b

)

= 0 unless
0 ≤ b ≤ a.
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Lemma 15. For any nonempty set S with constant elements, we have cS0 = 0.

Proof. If S is not admissible then cSk = 0 for all k. Now suppose S is admissible and m =
maxS. From our discussion following the proof of Theorem 3 about the case n = iS = m,
we see that p(S;m) = 0. Since our basis is

(

n−m

k

)

for k ≥ 0, we must therefore have
cS0 = p(S;m) = 0.

Next we consider what happens for peak sets with one element.

Proposition 16. If S = {m} is admissible then

cSk =

{

(

m−1

k

)

, if k ≥ 1;

0, if k = 0.

Proof. Using Theorem 6 and Vandermonde’s convolution give

p(S;n) = −1 +

(

n− 1

m− 1

)

= −1 +
∑

k≥0

(

m− 1

m− k − 1

)(

n−m

k

)

=
∑

k≥1

(

m− 1

k

)(

n−m

k

)

which is what we wished to prove.

To deal with peak sets having two elements, we will need the characteristic function χ
which evaluates to 1 on a true statement and 0 on a false one.

Proposition 17. If S = {2,m} is admissible then

cSk = (m− 3)

(

m− 2

k − 1

)

+ (m− 2)

(

m− 2

k

)

−

(

m− 2

k +m− 3

)

. (5)

Furthermore, cSk ≥ 0 for all k.

Proof. To prove the formula for cSk , one first shows that

cSk = −2

(

m− 2

k +m− 3

)

χ(m is even) +
m−4
∑

j=0

(−1)j
[(

m− j − 2

1

)

− 1

](

m

k + j + 1

)

. (6)

Since this equality will be generalized in the next proposition, we will provide the details of
the proof there.
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To simplify this expression, consider the summation part which we will denote by Σ. Use
the binomial recursion twice on

(

m

k+j+1

)

, each time reindexing the summation to combine
terms, to get

Σ = (m− 3)

(

m− 1

k

)

+
m−4
∑

j=0

(−1)j
(

m− 1

k + j + 1

)

= (m− 3)

(

m− 2

k − 1

)

+ (m− 2)

(

m− 2

k

)

+ (−1)m−4

(

m− 2

k +m− 3

)

.

Adding in the term of equation (6) containing χ yields the desired formula.
We now prove positivity. If k ≥ 2 then the last binomial coefficient in equation (5) is zero

and the result is obvious. It is also easy to check the case k = 1, and k = 0 is Lemma 15.

We now consider the case of an arbitrary 2-element set. While we are able to obtain a
general summation formula in this case, it does not seem to simplify readily and so we are
only able to prove positivity for roughly half the coefficients.

Theorem 18. If S = {l,m} is admissible then cS0 = 0, and for k ≥ 1

cSk = −2

(

m− 1

k +m− l

)

χ(m− l is even) +
m−l−2
∑

j=0

(−1)j
[(

m− j − 2

l − 1

)

− 1

](

m

k + j + 1

)

.

Furthermore, cSk ≥ 0 for k ≥ (m− 2)/2.

Proof. We first prove the formula for cSk . The case k = 0 is taken care of by Lemma 15. Let
p(n) = p(S;n). For k ≥ 1 we will prove the formula for cSk by fixing l and inducting on m.

First consider the base case m = l + 2. Then S1 = {l} and S2 = {l, l + 1} which is not
admissible. Thus, using Theorem 6, Vandermonde’s convolution, and the fact that cS0 = 0,
we see that equation (2) becomes

p(n) = p1(m− 1)

(

n

m− 1

)

− 2p1(n)

=

[(

m− 2

l − 1

)

− 1

](

n

m− 1

)

− 2

[(

n− 1

l − 1

)

− 1

]

=
∑

k≥1

[(

m− 2

l − 1

)

− 1

](

m

m− 1− k

)(

n−m

k

)

− 2

(

m− 1

l − k − 1

)(

n−m

k

)

=
∑

k≥1

{[(

m− 2

l − 1

)

− 1

](

m

k + 1

)

− 2

(

m− 1

k +m− l

)}(

n−m

k

)

.

The coefficient of
(

n−m

k

)

in this expression agrees with the one given in the theorem when
m = l + 2 and so we are done with the base case.
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Now consider m > l + 2. There are two subcases depending on whether m− l is even or
odd. Since they are similar, we will just do the latter. The computations in the base case
remain valid except for the fact that S2 = {l,m − 1} is now admissible and so we need to
subtract off the p2(n) term in equation (2). For simplicity, let ak denote the coefficient of
p2(n) expanded in the basis Bm−1. Since m− l − 1 is even we have, by induction,

ak = −2

(

m− 2

k +m− l − 1

)

+
m−l−3
∑

j=0

(−1)j
[(

m− j − 3

l − 1

)

− 1

](

m− 1

k + j + 1

)

when k ≥ 1 and, as always, a0 = 0. To convert to the basis Bm, we compute

p2(n) =
∑

k≥0

ak

(

n−m+ 1

k

)

=
∑

k≥0

ak

[(

n−m

k − 1

)

+

(

n−m

k

)]

=
∑

k≥0

(ak + ak+1)

(

n−m

k

)

.

It follows from the previous two displayed equations that the coefficient of
(

n−m

k

)

in −p2(n)
is

2

(

m− 1

k −m− l

)

−
m−l−3
∑

j=0

(−1)j
[(

m− j − 3

l − 1

)

− 1

](

m

k + j + 2

)

.

Shifting indices in this last sum and adding in the contribution from the computation for
p(n) in the base case completes the induction step.

The proof of positivity breaks down into two cases depending on the parity of m − l.
Since they are similar, we will only present the details when m − l is odd. It suffices to
show that the absolute values of the terms in the sum for cSk are weakly decreasing since
then each negative term can be canceled into the preceding positive one. Clearly the term
in square brackets is decreasing with j. And because k + 1 ≥ m/2 we have that

(

m

k+j+1

)

is
also decreasing by unimodality of the binomial coefficients. This completes the proof.

6 Equidistribution

Suppose one considers the distribution of #P(S;n) over all possible peak sets S = {i1, . . . , is}
with s elements. We conjecture that a maximum will occur when the elements of S are as
evenly spaced as possible.

There are two natural probabilistic conjectures which one could make about the peak
distribution, assuming a small number of peaks in a long sequence. First, one could guess
that the places where peaks occur is an approximation to Poisson process arrivals, and hence
locations of the peaks are distributed approximately uniformly over the whole sequence and
are approximately independent. Available evidence points to an alternative conjecture that
the peaks have a tendency to repel each other. This phenomenon is found in some random
models, for example, under certain assumptions, eigenvalues of random matrices have a
tendency to repel each other. We do not see a direct connection with that model at the
technical level, but the repelling nature of peaks invites further exploration.
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It will be useful to pass from the set S to the corresponding composition. A composition
of n into k parts is a sequence of positive integers κ = (κ1, . . . , κk) where

∑

j κj = n. We
also write κ = (ama , bmb , . . .) for the composition that starts with ma copies of the part
a, then mb copies of the part b, and so forth. Given any set S = {i1, . . . , is} of [n] there
is a corresponding composition κ(S) of n + 1 into s + 1 parts given by κj = ij − ij−1 for
1 ≤ j ≤ s + 1 where we let i0 = 0 and is+1 = n + 1. This construction is bijective. Given
any composition κ = (κ1, . . . , κs+1) of n + 1 we can recover S = {i1, . . . , is} ⊆ [n] where
ij = κ1 + · · ·+ κj for 1 ≤ j ≤ s.

A composition is Turán if |κa − κb| ≤ 1 for all a, b. This terminology is in reference to
Turán’s famous theorem in graph theory (about maximizing the number of edges in a graph
with no complete subgraph of a given order) where these compositions play an important
role. There is another description of Turán compositions which will be useful. Suppose we
wish to form a Turán composition of n with k parts. Apply the Division Algorithm to write
n = qk + r where 0 ≤ r < k. Then the desired compositions are exactly those gotten by
permuting k−r copies of the part q and r copies of the part q+1. We will call q the quotient
corresponding to the Turán composition.

Conjecture 19 (Equidistribution Conjecture). If n and s are fixed positive integers, then
we conjecture the following two statements.

(a) If S ⊆ [n] maximizes #P(S;n) among all subsets with #S = s, then κ(S) is Turán.

(b) The maximizing Turán compositions in (a) are precisely those of the form

((q + 1)m1 , qm2 , (q + 1)m3)

where q is the quotient of κ(S) and as many of the multiplicities m1 and m3 are positive
as possible. (If there is only one copy of q + 1, then one of these two multiplicities is
zero and the other equals one, and if there are no copies then both multiplicities are
zero.)

If n is fixed and s = #S is allowed to vary, then we conjecture that the peak sets maximizing
#P(S;n) over all S ⊆ [n] are the Turán compositions satisfying (b) with the maximum
number of 3’s.

Note that for s = 1 this conjecture is true because of Theorem 6. It has also been verified
by computer for n ≤ 13. The part of the conjecture about maximization over all S ⊆ [n] is
consistent with a result of Kermack and McKendrick [9] stating that the mean size of a part
in all κ(S) with S admissible is 3.

7 Peaks and valleys

For some applications, it will be useful to know the number of permutations with peaks at 2
and n−1 and a valley at a given positionm. In the mass redistribution model analyzed in [3],
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valleys represent the oldest sites, where age is measured since the last mass redistribution.
It is a natural question to investigate the relationship between the oldest sites (valleys) and
the sites most recently affected by the mass redistribution process (peaks).

In this section we derive the desired formula. To set up notation, let

PV (π) = set of peaks and valleys of permutation π,

PV(i1, . . . , is;n) = {π ∈ Sn : PV (π) = {i1, . . . , is} and i1 is a peak}.

As usual, we require i1 < · · · < is. Of course, peaks and valleys must alternate. So
PV(i1, . . . , is;n) also counts permutations π with PV (π) = {i1, . . . , is} and i1 being a valley,
a fact which will be useful in the sequel. The definition of admissible is as before.

It is easy to adapt the proof of Theorem 3 to this setting, so the proof of the next result
is omitted.

Theorem 20. If S = {i1 < · · · < is} is admissible then

#PV(S;n) = q(n)

where q(n) is a polynomial depending on S such that q(n) is an integer for all integral n. In
addition, if S is a set of constants not depending on n then deg q(n) = is − 1 (when S = ∅
we have deg q(n) = 0).

We now derived a formula for #PV(2,m, n − 1;n) via a sequence of results. Since the
techniques are much like those we have used before, the proofs will only be sketched.

Proposition 21. If {m} is admissible then

#PV(m;n) =

(

n− 1

m− 1

)

.

Proof. We have π ∈ PV(m;n) if and only if π = πLnπR where πL is increasing, #πL = m−1,
πR is decreasing, and #πR = n−m.

Proposition 22. If {2,m} is admissible then

#PV(2,m;n) =

(

n− 2

m− 2

)

+ (m− 2)

(

n− 1

m− 1

)

.

Proof. If a1 . . . an ∈ PV(2,m;n) then either a1 = 1 or am = 1. In the first case, the number
of π is given by

(

n−2

m−2

)

by the previous proposition. In the second case, there are
(

n−1

m−1

)

ways
to pick the elements to the left of 1 and then m− 2 ways to pick a1.

Proposition 23. If {2,m, n− 1} is admissible then

#PV(2,m, n− 1;n) = 2(n− 1)

[(

n− 4

m− 2

)

+ (m− 2)

(

n− 3

m− 1

)]

.

Proof. By symmetry, it suffices to double the number of a1 . . . an ∈ PV(2,m, n− 1;n) where
an−1 = n. There are n − 1 ways to choose an. Using the previous proposition, we see that
the number of ways to pick the remaining elements is given by the expression in the square
brackets.
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8 Fixing the number of peaks

We now use our theorems to prove a result already in the literature. In general, there does
not seem to be a simple explicit formula for the number f(s, n) of permutations in Sn with
s peaks. For more information about these numbers, see sequence A008303 in the Online
Encyclopedia of Integer Sequences (OEIS). However, David and Barton [5, p. 163] give the
recurrence

f(s, n) = (2s+ 2)f(s, n− 1) + (n− 2s)f(s− 1, n− 1)

with the initial conditions that f(0, n) = 2n−1 and f(s, n) = 0 whenever s ≥ n
2
. In addition,

for small s, one can write down an explicit expression for f(s, n). In fact, the sequence
f(1, n) appears as sequence A000431 in the OEIS where the following result is attributed to
Mitchell Harris.

Proposition 24. For n ≥ 1
f(1, n) = 22n−3 − n2n−2.

Proof. Using Theorems 3 and 6 we have

f(1, n) =
n−1
∑

m=2

[(

n− 1

m− 1

)

− 1

]

2n−2 = 2n−2

n
∑

m=1

[(

n− 1

m− 1

)

− 1

]

= 2n−2(2n−1 − n)

which multiplies out to the formula we want.
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