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Abstract

We study the properties of a parameterized family of generalized Pascal matrices,

defined by Riordan arrays. In particular, we characterize the central elements of these

lower triangular matrices, which are analogues of the central binomial coefficients. We

then specialize to the value 2 of the parameter, and study the inverse of the matrix

in question, and in particular we study the sequences given by the first column and

row sums of the inverse matrix. Links to moments and orthogonal polynomials are

examined, and Hankel transforms are calculated. We study the effect of the powers of

the binomial matrix on the family. Finally we posit a conjecture concerning determi-

nants related to the Christoffel-Darboux bivariate quotients defined by the polynomials

whose coefficient arrays are given by the generalized Pascal matrices.

1 Introduction

Pascal’s triangle [19] holds a special place in mathematics. It has been generalized in many
directions [7, 8, 11, 13, 36, 37]. One approach to generalizing Pascal’s matrix is to use
Riordan arrays [2]. This is very apt, as Pascal’s triangle, as a mathematical object, is a
Riordan array. In this note, we investigate some properties of the two-parameter generalized
Pascal triangle M (m)(a, b) given by the Riordan array

M (m)(a, b) =

(

1

1− ax
,
x(1 + bx)

(1− ax)m

)

.
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The binomial matrix B =
(

1
1−x

, x
1−x

)

whose elements coincide with Pascal’s triangle, is the

case a = 1, b = 0 and m = 1 or M (1)(1, 0). It is also given by M (2)(1,−1). The matrix
M (2)(1, 1) A114188 begins























1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 4 1 0 0 0 · · ·
1 9 7 1 0 0 · · ·
1 16 26 10 1 0 · · ·
1 25 70 52 13 1 · · ·
...

...
...

...
...

...
. . .























,

and factorizes as

B ·
((

k

n− k

)

2n−k

)

0≤n,k≤∞
.

M (2)(−1,−2) is A110522. Our investigations lie in four principal directions. Firstly, we give
characterizations of the central elements of the array M (m)(a, b). These elements generalize
the central binomial coefficients

(

2n
n

)

A000984 of Pascal’s triangle. Secondly, we look at the
specialized matrix withm = 2, and in particular we establish properties of the inverse matrix.
These investigations cover such things as the Hankel transform of associated sequences, and
links with moments and orthogonal polynomials. We then look at the images of M (m)(a, b)
under the powers Bk of the binomial matrix. Finally we study matrices and determinants
related to Christoffel-Darboux-type bivariate generating functions related to the matrices
M (m)(a, b).

2 Preliminaries on integer sequences, Riordan arrays

and Hankel transforms

In this section we define terms used later to discuss integer sequences, Riordan arrays,
production matrices, orthogonal polynomials and Hankel transforms. Readers familiar with
these areas and the links between them may skip this section.

For an integer sequence an, that is, an element of ZN, the power series f(x) =
∑∞

n=0 anx
n

is called the ordinary generating function or g.f. of the sequence; an is thus the coefficient of
xn in this series. We denote this relationship by an = [xn]f(x). For instance, Fn = [xn] x

1−x−x2

is the n-th Fibonacci number A000045, while Cn = [xn]1−
√
1−4x
2x

is the n-th Catalan number
A000108. We use the notation 0n = [xn]1 for the sequence 1, 0, 0, 0, . . . , A000007. Thus
0n = [n = 0] = δn,0 =

(

0
n

)

. Here, we have used the Iverson bracket notation [21], defined by
[P ] = 1 if the proposition P is true, and [P ] = 0 if P is false.

For a power series f(x) =
∑∞

n=0 anx
n with f(0) = 0 we define the reversion or composi-

tional inverse of f to be the power series f̄(x) such that f(f̄(x)) = x.
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For a lower triangular matrix (an,k)n,k≥0 the row sums give the sequence with general
term

∑n

k=0 an,k.
The Riordan group [28, 31], is a set of infinite lower-triangular integer matrices, where

each matrix is defined by a pair of generating functions g(x) = 1 + g1x + g2x
2 + · · · and

f(x) = f1x + f2x
2 + · · · where f1 6= 0 [31]. We often require in addition that f1 = 1.

The associated matrix is the matrix whose i-th column is generated by g(x)f(x)i (the first
column being indexed by 0). The matrix corresponding to the pair g, f is denoted by (g, f)
or R(g, f). The group law is then given by

(g, f) · (h, l) = (g, f)(h, l) = (g(h ◦ f), l ◦ f).

The identity for this law is I = (1, x) and the inverse of (g, f) is (g, f)−1 = (1/(g ◦ f̄), f̄)
where f̄ is the compositional inverse of f .

If M is the matrix (g, f), and a = (a0, a1, . . .)
T is an integer sequence (expressed as an

infinite column vector) with ordinary generating function A (x), then the sequence Ma has
ordinary generating function g(x)A(f(x)). The (infinite) matrix (g, f) can thus be considered
to act on the ring of integer sequences Z

N by multiplication, where a sequence is regarded
as a (infinite) column vector. We can extend this action to the ring of power series Z[[x]] by

(g, f) : A(x) 7→ (g, f) · A(x) = g(x)A(f(x)).

Example 1. The so-called binomial matrix B is the element ( 1
1−x

, x
1−x

) of the Riordan

group. It has general element
(

n

k

)

, and hence as an array coincides with Pascal’s triangle.
More generally, Bm is the element ( 1

1−mx
, x
1−mx

) of the Riordan group, with general term
(

n

k

)

mn−k. It is easy to show that the inverse B−m of Bm is given by ( 1
1+mx

, x
1+mx

).

The row sums of the matrix (g, f) have generating function

(g, f) · 1

1− x
=

g(x)

1− f(x)
.

The production matrix of a matrix L is the matrix P = L−1L̄, where L̄ is the matrix
L with its top line removed. A Riordan array L whose inverse has a suitable tri-diagonal
production matrix is the coefficient array of a family of orthogonal polynomials [4, 5]. Or-
thogonal polynomials [15, 20] are often associated with the three-term recurrences that can
be used to define them.

An important feature of Riordan arrays is that they have a number of sequence charac-
terizations [14, 22]. The simplest of these is as follows.

Proposition 2. ; [22, Theorem 2.1, Theorem 2.2]. Let D = [dn,k] be an infinite triangular
matrix. Then D is a Riordan array if and only if there exist two sequences A = [α0, α1, α2, . . .]
and Z = [z0, z1, z2, . . .] with α0 6= 0, z0 6= 0 such that

• dn+1,k+1 =
∑∞

j=0 αjdn,k+j, (k, n = 0, 1, . . .)
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• dn+1,0 =
∑∞

j=0 zjdn,j, (n = 0, 1, . . .).

The coefficients α0, α1, α2, . . . and z0, z1, z2, . . . are called the A-sequence and the Z-
sequence of the Riordan arrayM = (g(x), f(x)), respectively. Letting A(x) be the generating
function of the A-sequence and Z(x) be the generating function of the Z-sequence, we have

A(x) =
x

f̄(x)
, Z(x) =

1

f̄(x)

(

1− d0,0
g(f̄(x))

)

. (1)

Example 3. We can deduce from the last result that the A-sequence and the Z-sequence
of the inverse Riordan array

(g(x), f(x))−1

have generating functions x
f(x)

and 1
f(x)

(1− g(x)), respectively.
Thus in the case of the inverse matrix

M (m)(a, b)−1 =

(

1

1− ax
,
x(1 + bx)

(1− ax)m

)−1

,

we see that the corresponding generating functions are given by

A(x) =
(1− ax)m

1 + bx
, Z(x) =

−a(1− ax)m−1

1 + bx
.

Many interesting examples of sequences and Riordan arrays can be found in Neil Sloane’s
On-Line Encyclopedia of Integer Sequences (OEIS), [29, 30]. Sequences are frequently re-
ferred to by their OEIS number. For instance, the binomial matrix B (“Pascal’s triangle”)
is A007318.

Given a sequence an, we denote by hn the general term of the sequence with hn =
|ai+j|0≤i,j≤n. The sequence hn is called the Hankel transform of an [24, 25]. A well known
example of Hankel transform is that of the Catalan numbers, Cn = 1

n+1

(

2n
n

)

, where we find
that hn = 1 for all n. Hankel determinants occur naturally in many branches of mathematics,
from combinatorics [10] to number theory [26] and to mathematical physics [33].

There are a number of known ways of calculating Hankel transforms of sequences [12,
16, 23, 24, 27, 33]. One involves the theory of orthogonal polynomials, whereby we seek to
represent the sequence under study as moments of a density function. Standard techniques
of orthogonal polynomials then allow us to compute the desired Hankel transforms [6, 17].
These techniques are based on the following results (the first is the well-known “Favard’s
Theorem”), which we essentially reproduce from [24].

Theorem 4. [24] (cf. [34, Théorème 9, p. I-4]; [35, Theorem 50.1]). Let (pn(x))n≥0 be a
sequence of monic polynomials, the polynomial pn(x) having degree n = 0, 1, . . .. Then the
sequence (pn(x)) is (formally) orthogonal if and only if there exist sequences (αn)n≥0 and
(βn)n≥1 with βn 6= 0 for all n ≥ 1, such that the three-term recurrence

pn+1 = (x− αn)pn(x)− βnpn−1(x), for n ≥ 1,

holds, with initial conditions p0(x) = 1 and p1(x) = x− α0.
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Theorem 5. [24] (cf. [34, Proposition 1, (7), p. V-5]; [35, Theorem 51.1]). Let (pn(x))n≥0

be a sequence of monic polynomials, which is orthogonal with respect to some functional L.
Let

pn+1 = (x− αn)pn(x)− βnpn−1(x), for n ≥ 1,

be the corresponding three-term recurrence which is guaranteed by Favard’s theorem. Then
the generating function

g(x) =
∞
∑

k=0

µkx
k

for the moments µk = L(xk) satisfies

g(x) =
µ0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·

.

The Hankel transform of µn, which is the sequence with general term hn = |µi+j|0≤i,j≤n,
is then given by

hn = µn+1
0 βn

1 β
n−1
2 · · · β2

n−1βn.

Other methods of proving Hankel transform evaluations include lattice path methods
(the Lindström-Gessel-Viennot theorem) [1, 32] and Dodgson condensation (Desnanot-Jacobi
adjoint matrix theorem) [1, 9, 18].

3 Central elements

We have studied the matrices M (1)(a, b) previously [2]. These are Pascal-like matrices (i.e.,
they are lower-triangular and have Tn,k = Tn,n−k where Tn,k is the n, k-th term, along with
Tn,0 = Tn,n = 1 for all n) and their central coefficients (the (2n, n)-elements) are of particular
interest. In this section we propose to study the central elements of the general M (m)(a, b)
matrices. A first task is to find an expression for the general (n, k)-th element of M (m)(a, b).

The general term T
(m)
n,k of the Riordan array M (m)(a, b) =

(

1
1−ax

, x(1+bx)
(1−ax)m

)

can be calcu-

lated as follows.

T
(m)
n,k (a, b) = [xn](1 + bx)kxk(1− ax)−(mk+1)

= [xn−k]
k
∑

j=0

(

k

j

)

bjxj

∞
∑

i=0

(−(mk + 1)

i

)

(−1)iaixi

= [xn−k]
∑

j

(

k

j

)

bjxj
∑

i

(

mk + i

i

)

aixi
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=
k
∑

j=0

(

k

j

)(

mk + n− k − j

n− k − j

)

bjan−k−j

=
k
∑

j=0

(

k

j

)(

n+ (m− 1)k − j

n− k − j

)

bjan−k−j.

Note that by interchanging k − j and j in the last summation we get

T
(m)
n,k (a, b) =

k
∑

j=0

(

k

j

)(

n+ (m− 2)k + j

n− 2k + j

)

bk−jan−2k+j.

Alternatively, we have

T
(m)
n,k (a, b) =

k
∑

j=0

(

k

j

)(

n+ (m− 2)k + j

mk

)

bk−jan−2k+j.

We restate these results as a proposition.

Proposition 6. The general term T
(m)
n,k (a, b) of the generalized Pascal matrix

M (m)(a, b) =

(

1

1− ax
,
x(1 + bx)

(1− ax)m

)

is given by

T
(m)
n,k (a, b) =

k
∑

j=0

(

k

j

)(

n+ (m− 1)k − j

n− k − j

)

bjan−k−j =
k
∑

j=0

(

k

j

)(

n+ (m− 2)k + j

n− 2k + j

)

bk−jan−2k+j

=
k
∑

j=0

(

k

j

)(

n+ (m− 2)k + j

mk

)

bk−jan−2k+j.

Example 7. We have M (2)(1,−1) = B. This implies that

(

n

k

)

=
k
∑

j=0

(

k

j

)(

n+ j

2k

)

(−1)k−j

from which we can deduce that
(

2n

n

)

=
n
∑

j=0

(

n

j

)(

2n+ j

j

)

(−1)n−j.
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We are now in a position to calculate an expression for the central terms T
(m)
2n,n(a, b). We

have

T
(m)
2n,n(a, b) =

n
∑

j=0

(

n

j

)(

2n+ (m− 1)n− j

2n− n− j

)

bja2n−n−j

=
n
∑

j=0

(

n

j

)(

(m+ 1)n− j

n− j

)

bjan−j.

Exchanging n− j for j in the above summation we also get

T
(m)
2n,n(a, b) =

n
∑

j=0

(

n

j

)(

nm+ j

j

)

ajbn−j.

Note that when b = 0, only the term with n = j survives in the above sum. Thus in the
case b = 0, we find that the central terms of

(

1
1−ax

, x
1−ax

)

are given by

T
(m)
2n,n(a, 0) =

(

(m+ 1)n

n

)

an.

We gather these results in the following proposition.

Proposition 8. The central terms of the Riordan array
(

1
1−ax

, x(1+bx)
(1−ax)m

)

are given by

T
(m)
2n,n(a, b) =

n
∑

j=0

(

n

j

)(

(m+ 1)n− j

n− j

)

bjan−j =
n
∑

j=0

(

n

j

)(

nm+ j

j

)

ajbn−j.

For the case b = 0, the central terms of
(

1
1−ax

, x
1−ax

)

are given by

T
(m)
2n,n(a, 0) =

(

(m+ 1)n

n

)

an.

Example 9. We take the case of b = −a. Then we have

M (m) =

(

1

1− ax
,
x(1− ax)

(1− ax)m

)

=

(

1

1− ax
,

x

(1− ax)m−1

)

.

The proposition then implies that

(

mn

n

)

an =
n
∑

j=0

(

n

j

)(

mn+ j

j

)

aj(−a)n−j.

We conclude that
(

mn

n

)

=
n
∑

j=0

(

n

j

)(

mn+ j

j

)

(−1)n−j. (2)
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We have the following alternative characterization of T
(m)
2n,n(a, b).

Proposition 10.

T
(m)
2n,n(a, b) = [xn]((1 + ax)m+1 + bx(1 + ax)m)n = [xn](1 + ax)mn(1 + (a+ b)x)n.

Proof. Let
Sn = [xn]((1 + ax)m+1 + bx(1 + ax)m)n.

Then

Sn = [xn]
n
∑

j=0

(

n

j

)

(1 + ax)(m+1)j(bx)n−j(1 + ax)m(n−j)

= [xn]
n
∑

j=0

(

n

j

)

(1 + ax)mn+j(bx)n−j

= [xn]
n
∑

j=0

(

n

j

)

∑

i

(

mn+ j

i

)

aixibn−jxj

=
n
∑

j=0

(

n

j

)(

mn+ j

j

)

ajbn−j

= T
(m)
2n,n(a, b).

We next define a polynomial Pn(x; a, b) of degree n as follows.

Pn(x; a, b) = (1 + ax)n + bx(1 + ax)n−1.

Proposition 11. Let

Pn(x; a, b) =
∑

k=0

pn,kx
n−k.

Then the coefficient array (pn,k)0≤n,k≤∞ coincides with the Riordan array

(

1 + bx

1− ax
,

x

1− ax

)

.
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Proof. We let p̃n,k denote the (n, k)-th element of
(

1+bx
1−ax

, x
1−ax

)

. Then

p̃n,k = [xn](1 + bx)xk(1− ax)−(k+1)

= [xn−k](1 + bx)
∞
∑

j=0

(−(k + 1)

j

)

(−1)jajxj

= [xn−k](1 + bx)
∑

j=0

(

k + j

j

)

ajxj

= [xn−k]
∑

j

(

k + j

j

)

ajxj + b[xn−k−1]
∑

j

(

k + j

j

)

ajxj

=

(

k + n− k

n− k

)

an−k + b

(

k + n− k − 1

n− k − 1

)

an−k−1

=

(

n

k

)

an−k + b

(

n− 1

n− k − 1

)

an−k−1.

We thus have
n
∑

k=0

p̃n,kx
n−k = (1 + ax)n + bx(1 + ax)n−1.

We note that the decomposition

(

1 + bx

1− ax
,

x

1− ax

)

=

(

1

1− ax
,

x

1− ax

)

+ b

(

x

1− ax
,

x

1− ax

)

shows again that

p̃n,k =

(

n

k

)

an−k + b

(

n− 1

n− k − 1

)

an−k−1.

Corollary 12. Let T
(m)
2n,n(a, b) be the central elements of the Riordan array

(

1
1−ax

, x(1+bx)
(1−ax)m

)

and let Pn(x; a, b) be the family of polynomials with coefficient array
(

1+bx
1−ax

, x
1−ax

)

. Then

T
(m)
2n,n(a, b) = [xn](Pm+1(x; a, b))

n.

Thus the central terms T
(m)
2n,n(a, b) are defined by the elements of the (m + 1)-th row of

the Riordan array
(

1+bx
1−ax

, x
1−ax

)

.
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Example 13. The (2, 1)-Pascal triangle
(

1+x
1−x

, x
1−x

)

A029653 begins























1 0 0 0 0 0 · · ·
2 1 0 0 0 0 · · ·
2 3 1 0 0 0 · · ·
2 5 4 1 0 0 · · ·
2 7 9 5 1 0 · · ·
2 9 16 14 6 1 · · ·
...

...
...

...
...

...
. . .























.

We then have, since a = b = 1 in this case,

T
(2)
2n,n(1, 1) =

n
∑

k=0

(

n

k

)(

2n+ k

k

)

= [xn](1 + 4x+ 5x2 + 2x3)n,

T
(3)
2n,n(1, 1) =

n
∑

k=0

(

n

k

)(

3n+ k

k

)

= [xn](1 + 5x+ 9x2 + 7x3 + 2x4)n,

T
(4)
2n,n(1, 1) =

n
∑

k=0

(

n

k

)(

4n+ k

k

)

= [xn](1 + 6x+ 14x2 + 16x3 + 9x4 + 2x5)n,

for instance (A114496, A156886, and A156887, respectively).

Example 14. We have

T
(2)
2n,n(−1, 1) = [xn](1− x)2n = (−1)n

(

2n

n

)

.

In general, we have

T
(m)
2n,n(a,−a) = [xn](1 + ax)mn =

(

mn

n

)

an.

4 The matrices M (2)(a, b), moments and orthogonal poly-

nomials

In this section, we look at some properties of M (2)(a, b) and of the inverse Riordan array

M (2)(a, b)−1 =

(

1

1− ax
,
x(1 + bx)

(1− ax)2

)−1

.

The presence of the term (1−ax)2 in the denominator is an indicator that links to orthogonal
polynomials may be possible [4], and indeed, we show that this is the case. We will in
particular study the first column elements and the row sum elements of the inverse matrix,
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and show that they constitute moments for appropriate families of orthogonal polynomials.
We indicate the form of the defining densities on the real number line that define these
families. We take advantage of these links to orthogonal polynomials (and the corresponding
continued faction expressions for the generating functions) to calculate the Hankel transforms
of these moment sequences.

To begin this study, we have
(

1

1− ax
,
x(1 + bx)

(1− ax)2

)−1

=

(

a
√

1 + 4x(a+ b)− a− 2b

2(a2x− b)
,
1 + 2ax−

√

1 + 4x(a+ b)

2(a2x− b)

)

.

If we write this inverse matrix as M (2)(a, b)−1 = (g(x), f(x)), then

g(x) =
∞
∑

k=0

gnx
n =

a
√

1 + 4x(a+ b)− a− 2b

2(a2x− b)

is the g.f. of the first column sequence gn.

Proposition 15. The Hankel transform of the first column elements of the inverse array is
given by

hn = an(a+ b)n
2

.

Proof. We consider the continued fraction [35]

g̃(x) =
1

1 + ax−
a(a+ b)x2

1 + 2(a+ b)x−
(a+ b)2x2

1 + 2(a+ b)x−
(a+ b)2x2

1− · · ·

. (3)

We then have

g̃(x) =
1

1 + ax− a(a+ b)x2u

where u satisfies the equation

u =
1

1 + 2(a+ b)x− (a+ b)2x2u
.

Solving for u and substituting into g̃(x), we find that

g̃(x) =
a
√

1 + 4x(a+ b)− a− 2b

2(a2x− b)
= g(x),

the g.f. of the first column elements. It follows that

hn =
an

(a+ b)n
(a+ b)2(

n+1

2 ) = an(a+ b)n
2

.
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Proposition 16. We have the following expression for g(x), the g.f. of the first column
elements of M (2)(a, b)−1.

g(x) =
1

1 + axc(−(a+ b)x)
=

1

1 +
ax

1 +
(a+ b)x

1 +
(a+ b)x

1 + · · ·

,

where

c(x) =
1−

√
1− 4x

2x

is the g.f for the Catalan numbers Cn = 1
n+1

(

2n
n

)

.

Proof. The continued fraction is an equivalent form of (3). Substituting the expression for
c(x) into 1

1+axc(−(a+b)x)
and simplifying shows that this is indeed g(x). We can recover the

continued fraction expression again by noting that

c(x) =
1

1−
x

1−
x

1− · · ·

.

Corollary 17. We have

M (2)(a, b)−1 =

(

1

1 + axc(−(a+ b)x)
,

xc(−(a+ b)x)

1 + axc(−(a+ b)x)

)

.

We can express the first column elements gn as moments in the following way:

gn =
1

2π

∫ 0

−4(a+b)

xna
√

−x(x+ 4(a+ b))

x(bx− a2)
dx,

where we have taken the case a+ b > 0.

Example 18. We let a = 2, b = 3. Then the sequence gn has g.f.
√
1+20x−4
4x−3

and begins

1,−2, 14,−148, 1886,−26652, . . . .

In this case we have

gn =
1

π

∫ 0

−20

xn

√

−x(x+ 20)

x(3x− 4)
dx.

12



The first column elements gn of the inverse array can be expressed as follows.

gn =
n
∑

k=0

(−1)n−k

(

2n

n− k

)

2k + 1

n+ k + 1
(a+ b)n−kbk.

An alternative expression is

gn =
n
∑

k=0

n
∑

j=0

(

2n

j

)(

j

k

)

(−1)j
n− 2j + 1

2n− j + 1
akbn−k.

The first column elements begin

1,−a, a(2a+ b),−a(5a2 + 6ab+ 2b2), a(14a3 + 28a2b+ 20ab2 + 5b3), . . . .

We can represent this as























1 0 0 0 0 0 · · ·
0 −1 0 0 0 0 · · ·
0 b 2 0 0 0 · · ·
0 −2b2 −6b −5 0 0 · · ·
0 5b3 20b2 28b 14 0 · · ·
0 −14b4 −70b3 −135b2 −120b −42 · · ·
...

...
...

...
...

...
. . .













































1
a
a2

a3

a4

a5

...























.

Here, the infinite matrix has bivariate generating function

1

1 +
xy

1 +
bx+ xy

1 +
bx+ xy

1 + · · ·

,

or in other words, the matrix is given by the Deleham construct [3]

[0,−b,−b,−b, . . .] ∆ [−1,−1,−1, . . .].

See A094385 and A157491.

Proposition 19. The Hankel transform h∗
n of the shifted sequence gn+1 is given by

h∗
n = (−a)n+1(a+ b)n(n+1).

13
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Proof. The generating function of gn+1 is given by

g(x)− 1

x
=

−ac(−(a+ b)x)

1 + axc(−(a+ b)x)
.

By the theory of Hankel transforms, gn+1 then has the same Hankel transform as

[xn](−ac(−(a+ b)x))

(this is an example of invariance under the INVERT transform [25]). The result follows from
this.

We now turn our attention to the row sum elements sn of the inverse array.

Proposition 20. The Hankel transform of the row sums sequence of the inverse Riordan

array
(

1
1−ax

, x(1+bx)
(1−ax)2

)−1

is given by

hn = (a− 1)n(a+ b)n
2

.

Proof. The generating function of the row sum sequence of the inverse array is given by
g(x)

1−f(x)
, where the inverse array is expressed as (g(x), f(x)). We find that this g.f. is given by

s(x) =
1 + a+ 2b− (a− 1)

√

1 + 4x(a+ b)

2(1 + b− (a− 1)2x)
.

But this can be expressed as the following continued fraction.

s(x) =
1

1 + (a− 1)x−
(a− 1)(a+ b)x2

1 + 2(a+ b)x−
(a+ b)2x2

1 + 2(a+ b)x−
(a+ b)2x2

1− · · ·

. (4)

Thus we obtain
hn = (a− 1)n(a+ b)n

2

.

We note that the generating function s(x) of the row sum sequence can be written as

s(x) =
1

1 + (a− 1)xc(−(a+ b)x)
= (1, xc(−(a+ b)x)) · 1

1− (1− a)x
.

We now recall that the general element of the Riordan array (1, xc(λx)) is given by
(

2n− k − 1

n− k

)

k + 0n+k

n+ 0nk
λn−k.

14



Thus we obtain the following expression for the row sum elements.

sn =
n
∑

k=0

(

2n− k − 1

n− k

)

k + 0n+k

n+ 0nk
(−a− b)n−k(1− a)k.

We can express the row sum elements sn as moments as follows

sn =
1

2π

∫ 0

−4(a+b)

xn (a− 1)
√

−x(x+ 4(a+ b))

x(x(1 + b)− (a− 1)2)
dx,

where we take the case a+ b > 0.

Example 21. We let a = b = −1. Then sn = 2nCn and we obtain

sn =
1

π

∫ 8

0

xn

√

x(8− x)

4x
dx.

As with the first column elements, we have the following alternative continued fraction
form of the generating function s(x).

Proposition 22. We have the following expression for s(x), the g.f. of the row sum elements
of M (2)(a, b)−1.

s(x) =
1

1 + (a− 1)xc(−(a+ b)x)
=

1

1 +
(a− 1)x

1 +
(a+ b)x

1 +
(a+ b)x

1 + · · ·

,

where

c(x) =
1−

√
1− 4x

2x

is the g.f for the Catalan numbers Cn = 1
n+1

(

2n
n

)

.

Proposition 23. The Hankel transform h∗
n of the shifted sequence sn+1 is given by

h∗
n = (1− a)n+1(a+ b)n(n+1).

Proof. The generating function of sn+1 is given by

s(x)− 1

x
=

−(a− 1)c(−(a+ b)x)

1 + (a− 1)xc(−(a+ b)x)
.

By the theory of Hankel transforms, sn+1 then has the same Hankel transform as

[xn](−(a− 1)c(−(a+ b)x)) = [xn](1− a)c(−(a+ b)x)

(this is an example of invariance under the INVERT transform [25]). The result follows from
this.
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When b = 0, the production array of the inverse matrix is given by






















−a 1 0 0 0 0 · · ·
a2 −2a 1 0 0 0 · · ·
0 a2 −2a 1 0 0 · · ·
0 0 a2 −2a 1 0 · · ·
0 0 0 a2 −2a 1 · · ·
· · · · · · · · · · · · · · · · · · · · ·
...

...
...

...
...

...
. . .























.

This corresponds to the original matrix,
(

1
1−ax

, x
(1−ax)2

)

, being the coefficient array of the

family of orthogonal polynomials Qn(x) defined by

Qn(x) = (x+ 2a)Qn−1(x)− a2Qn−2(x), Q0(x) = 1, Q1(x) = x+ a.

The equation (3) tells us that the first column elements of the inverse matrix M (2)(a, b)−1 are
the moments for a family of orthogonal polynomials. The production matrix of the inverse
of the coefficient array of those polynomials is then given by























−a 1 0 0 0 0 · · ·
a(a+ b) −2(a+ b) 1 0 0 0 · · ·

0 (a+ b)2 −2(a+ b) 1 0 0 · · ·
0 0 (a+ b)2 −2(a+ b) 1 0 · · ·
0 0 0 (a+ b)2 −2(a+ b) 1 · · ·
· · · · · · · · · · · · · · · · · · · · ·
...

...
...

...
...

...
. . .























.

The form of this production matrix implies that the matrix of coefficients of the sought-for
orthogonal polynomials is given by

(

1− bx

1− (a+ b)x
,

x

(1− (a+ b)x)2

)

.

This gives us

Proposition 24. The first column elements of the inverse Riordan array

(

1

1− ax
,
x(1 + bx)

(1− ax)2

)−1

are the moments of the family of orthogonal polynomials whose coefficient array is given by
the Riordan array

(

1− bx

1− (a+ b)x
,

x

(1− (a+ b)x)2

)

.
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Corollary 25. The family of orthogonal polynomials Rn(x) for which the first column ele-

ments gn of
(

1
1−ax

, x(1+bx)
(1−ax)2

)−1

are the moments is defined by

Rn(x) = (x+ 2(a+ b))Rn−1(x)− (a+ b)2Rn−2(x), R0(x) = 1, R1(x) = x+ a,

with coefficient array
(

1−bx
1−(a+b)x

, x
(1−(a+b)x)2

)

.

Using equation (4) in a similar way, we have the following result.

Proposition 26. The row sum elements of the inverse Riordan array
(

1

1− ax
,
x(1 + bx)

(1− ax)2

)−1

are the moments of the family of orthogonal polynomials whose coefficient array is given by
the Riordan array

(

1− (b+ 1)x

1− (a+ b)x
,

x

(1− (a+ b)x)2

)

.

Corollary 27. The family of orthogonal polynomials Sn(x) for which the row sum elements

sn of
(

1
1−ax

, x(1+bx)
(1−ax)2

)−1

are the moments is defined by

Sn(x) = (x+ 2(a+ b))Sn−1(x)− (a+ b)2Sn−2(x), S0(x) = 1, S1(x) = x+ a− 1,

with coefficient array
(

1−(b+1)x
1−(a+b)x

, x
(1−(a+b)x)2

)

.

We close this section with the following observation. The Hankel transform of the first
column elements of the matrix product

M (2)(a, b)−1 ·M (1)(ã, b̃)

is given by
hn = (a− ã)n(a+ b)n

2

.

The generating function of the first column elements of the matrix product is then given by

1

1 + (a− ã)x−
(a− ã)(a+ b)x2

1 + 2(a+ b)x−
(a+ b)2x2

1 + 2(a+ b)x−
(a+ b)2x2

1− · · ·

.

An equivalent and simpler form is

1

1 +
(a− ã)x

1 +
(a+ b)x

1 +
(a+ b)x

1 + · · ·

.
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5 Images of M (2)(a, b)

In this section we look at the image of M (2)(a, b) under the c-fold binomial transformation.
Thus we let

Bc =

(

1

1− cx
,

x

1− cx

)

.

Then
Bc = Bc

where B =
(

1
1−x

, x
1−x

)

is the standard binomial array. In particular B1 = B.

Proposition 28. The image of M (2)(a, b) under the c-fold binomial transformation Bc is
M (2)(a+ c, b− c):

Bc ·M (2)(a, b) = M (2)(a+ c, b− c). (5)

Proof. We have

(

1

1− cx
,

x

1− cx

)

·
(

1

1− ax
,
x(1 + bx)

(1− ax)2

)

=

(

1

1− cx

1

1− ax
1−cx

,
x

1−cx
(1 + b x

1−cx
)

(1− a x
1−cx

)2

)

=

(

1

1− (a+ c)x
,
x(1 + (b− c)x)

(1− (a+ c)x)2

)

.

Example 29. The image of the Riordan array
(

1
1−x

, x(1+(b−1)x)
1−x

)

under the inverse binomial

transformation is the Riordan array (1, x(1+bx)). This latter matrix has inverse (1, xc(−bx)).
Thus we have

(1, xc(−bx)) ·B−1 =

(

1

1− x
,
x(1 + (b− 1)x)

1− x

)−1

,

that is,
(1, xc(−bx)) · B−1 = M (2)(−1, b− 1)−1.

Example 30. We have

B−1 ·M (2)(a,−1) = M (2)(a− 1, 0) =

(

1

1− (a− 1)x
,

x

(1− (a− 1)x)2

)

.

Thus the image of M (2)(a,−1) under B−1 is the coefficient array of the family of orthogonal
polynomials Pn(x; a) defined by

Pn(x; a) = (x− 2(1− a))Pn−1(x; a)− (a− 1)2Pn−2(x; a), P0(x; a) = 1, P1(x; a) = x+ a− 1.

More generally, we see that

Bb ·M (2)(a, b) = M (2)(a+ b, 0),
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where M (2)(a + b, 0) is the coefficient array of the family of orthogonal polynomials Pn(x)
defined by

Pn(x; a) = (x+ 2(a+ b))Pn−1(x; a)− (a+ b)2Pn−2(x; a), P0(x; a) = 1, P1(x; a) = x+ a+ b.

Equivalently
M (2)(a, b) = B−1

b M (2)(a+ b, 0) = B−bM (2)(a+ b, 0).

We finish this section by remarking that the property (5) can be generalized. For instance,
we define

M̃ (3)(a, b, c) =

(

1

1− ax
,
x(1 + bx+ cx2)

(1− ax)3

)

.

We can then show that

BdM̃
(3)(a, b, c) = M̃ (3)(a+ d, b− 2d, c− bd+ d2).

Similarly, we get

BeM̃
(4)(a, b, c, d) = M̃ (4)(a+ e, b− 3e,−c+ 2be− 3e2, d− ce+ be2 − e3).

6 A Christoffel-Darboux conjecture

We can regard the matrix M (m)(a, b) as the coefficient array of a family of polynomials
Pn(x;m, a, b). We have

Pn(x;m, a, b) =
n
∑

k=0

T
(m)
n,k (a, b)xk.

For each n, the Christoffel-Darboux quotient

Pn+1(x;m, a, b)Pn(y;m, a, b)− Pn(x;m, a, b)Pn+1(y;m, a, b)

x− y

is the bi-variate generator of a (n + 1) × (n + 1) matrix Dn(m, a, b). We then have the
following conjecture.

Conjecture 31. We have

|Dn(2, a, b)| = a(
n+1

2 )(a+ b)n(a+ 2b)(
n

2).

It is interesting to compare the matrices defined by the quotient above with those defined
by

n
∑

j=0

Pj(x;m, a, b)Pj(y;m, a, b).

In the case of monic orthogonal polynomials, such expressions lead to the same matrices.
However, M (m)(a, b) is not in general the coefficient array of a family of monic orthogonal
polynomials, and hence the two family of matrices will in general differ. In the case m = 2,
a = b = 1, we can conjecture the following.
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Conjecture 32. The matrix D̃n(2, 1, 1) with generating function

n
∑

k=0

Pj(x; 2, 1, 1)Pj(y; 2, 1, 1)

is given by
M (2)

n (a, b)tM (2)
n (a, b).

We then have
|D̃n(2, 1, 1)| = 1 for n ≥ 0.

In the above the notation Mn denotes the matrix formed from the first (n+ 1) rows and
columns of M .
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