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Abstract

Let V(n) denote the number of positive regular integers (mod n) that are < n, and
let Vi(n) be a multidimensional generalization of the arithmetic function V(n). We
find the Dirichlet series of Vi, (n) and give the extremal orders of some totients involving
arithmetic functions which generalize the sum-of-divisors function and the Dedekind
function. We also give the extremal orders of other totients regarding arithmetic func-
tions which generalize the sum of the unitary divisors of n and the unitary function
corresponding to ¢(n), the Euler function. Finally, we study extremal orders of some
compositions, involving the functions mentioned previously.
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1 Introduction

Let n > 1 be an integer. An integer a is called regular (mod n) if there exists an integer = such
that a’r = a (mod n) (sequence A143869 in Sloane’s Encyclopedia of Integer Sequences).
Several authors investigated properties of regular integers (mod n). Alkam and Osba [1],
using ring-theoretic considerations, rediscovered some of the statements proved by Morgado
6, 7], who showed that a > 1 is regular (mod n) if and only if ged(a, n) is a unitary divisor of
n. Téth [15] gave direct proofs of some properties, because the proofs of [6, 7] were lengthy
and those of [1] were ring-theoretical.

Let Reg,, = {a:1 < a <n and a is regular (mod n)}, and V(n) = #Reg,. The function
V' is multiplicative and V(p%) = ¢(p®) +1 = p® — p®~! + 1, where ¢ is the Euler function.
Consequently, V(n) = Zd”n ¢(d), for every n > 1, where d || n means that d is a unitary
divisor of n, that is, d | n and ged(d, ) = 1. Also ¢(n) < V(n) < n, for every n > 1, and
V(n) = nif and only if n is a squarefree; see [7, 15, 1]. Thus, the function V' (n) is an analogue
of the Euler function ¢(n). The function ¢(n) is the sequence A000010 in Sloane’s On-Line
Encyclopedia of Integer Sequences. Also, the function V(n) is the sequence A055653; see
[12].

Apostol and Téth [4] considered the multidimensional generalization of the function
V(n), Vk(n), where k > 1 is a fixed integer. The function Vj(n) is multiplicative and
Vi(p®) = or(p®) + 1 = p** — ple=Vk 1 1 where ¢ is the Jordan function of order k.
Consequently, Vi(n) = >y, &x(d), for every n > 1. Also ¢p(n) < Vi(n) < n*, for every
n > 1 and Vi(n) = n* if and only if n is squarefree; see [4].

Téth [15] proved results concerning the minimal and maximal orders of the functions V' (n)
and V(n)/¢(n). Alkam and Osba [1] investigated the minimal order of V' (n). Sandor and
Téth [10] and Apostol [2] studied the extremal orders of compositions of certain functions.

In Section 2 we present some notation and results involving arithmetical functions. Sec-
tion 3 is devoted to the study of the Dirichlet series of Vi (n). Extremal orders of the function
Vi(n) in connection with oy (n) and 1(n) are given in Section 4.

In Section 5 we prove some results regarding Vj(n) and unitary analogues of the functions
ou(n) and éy(n).

In Section 6 we give the extremal orders of some compositions of functions from above.

Section 7 provides other limits of compositions of arithmetical functions. We also present
some open problems regarding extremal orders of these compositions.

2 Preliminaries

In what follows let n = pi*---p% > 1 be a positive integer and let & > 1 be an integer.
Throughout the paper we will use the following notation:

® pi,po,... — the sequence of the primes;

pgai+1)k—1

pi-1

e 0;(n) — the generalization of o(n), defined by oy (n) = [],_,
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e 1(n) — the generalization of ¥(n), defined by ¥ (n) = n* [L.(1+ I%) ;

-1
e ((s) — the Riemann zeta function, ((s) =[], (1 - pi) ,s=o0+iteCando > 1;

e ¢(n) — the Euler function, ¢(n) = an|n (1 _ ]13);

—

_),

p

Eol

e ¢r(n) — the Jordan function of order k, ¢r(n) =n Hp|n( -
e 7 — the Euler constant, v = limn (14§ + ...+ = —logn);

e ¢*(n) — the unitary analogue of ¢(n), ¢*(n) = [Tr_, (p* — 1);
e o*(n) — the unitary analogue of o(n), o*(n) = []5_,(p® + 1).
For other arithmetic functions defined by regular integers modulo n we refer to the papers
. 1ngt f(n) be a nonnegative real-valued multiplicative arithmetic function. Let
L=L(f) = hglj}jp %

and

p(p) = p(p, f) = sup f(p")

a>0

for primes p, and consider the product R = R(f) :=[],(1 — Z—lj)p(p).
In order to prove the properties below we apply the following results:

Lemma 1. (T6th and Wirsing [16, Corollary 1]). If f is a nonnegative real-valued multi-
plicative arithmetic function such that for each prime p,

(i) p(p) = sup,>o(f(p*)) < (1 — i) _1, and

(ii) there is an exponent e, = p°V € N satisfying f(p®) > 1+ %,

then imsup,,_, . = loglogn =e'1], (1 - ‘> p(p).-

Lemma 2. (Téth and Wirsing [16, Theorem 1]). Suppose that p(p) < oo for all primes p
and the product R converges unconditionally (i.e., irrespectively of order), improper limits
being allowed, then L < e"R.

Lemma 3. (Téth and Wirsing [16, Theorem 3]) Suppose that p(p) < oo for all primes p,
that for each prime p there is an exponent e, = p°Y) € N such that [, f(p)p(p)~ 1'> 0 and
that the product R converges, improper hmzts being allowed. Then L 2 e"R.



3 Dirichlet series of Vi (n)

Apostol and Petrescu [3] studied the Dirichlet series of Vi(n) := V(n). In what follows we
give the Dirichlet series of Vj(n) for £ > 2 and some results involving the M&bius function.

Proposition 4. For every s =0 + 1t € C with o > k + 1,

Z Vk(n) _ C(S o l{})((S) H(]- o p2s* +ps _p87 )

ns 3s—k
n>1 D p

Proof. Let f(n) = % We have

Sl <Y < oo,
n>1

n>1

so the series ) -, V’; (n) converges absolutely for o > k + 1. Since V} is multiplicative,

Vi 1 1 25—k s sk
Z ];”L(Sn)znl— 1 'Hl_i'H(l_p —;:fkp )7
k

n>1 P P D D P

and the claim follows. O

Corollary 5. Let s=o0+1t € C, 0 > k+1. Then

szn(rpik) = g(sl—k‘)'

n>1 p

Also,

() [Vi(n) _ L _ ds—k)
=TI ) < e

n>1 p

Proof. Forf(n) = M the series ) [ f(n)| converges absolutely, so

p(n)Vi(n) 1y 1
I

n>1 D

For the second assertion take f(n) = LrlVety), O

ns



4 Extremal orders concerning classical generalized arith-
metic functions

(n)

a(n) Ok
Vi.(n)

Vi (n)

For the quotient , we notice that > 1 for every n > 1. Since

we get
. Lop(n)
llgglogf V) 1;
hence the minimal order of {'/’; EZ% is 1. Now consider the quotient
U (n)
Ve(n)
Since
Yr(n) > 1
Vi(n)
for every n > 1 and
ve(p) _ P41
Vilp) P
for every prime p, it is immediate that
liming 20—
n—00 Vk(”)
Thus, the minimal order of % is 1. It is known that
: a(n) 2
1 = e
ey V(n)(loglogn)? ‘
and 6
lim sup v(n) = —¢”;

e V(n)(oglogn)? — w2

see [2]. Proposition 6 shows that the maximal order of ;’;E:; and ﬁ:gz)) is 5e? (loglogn)?.
Proposition 6. For k > 2,
6
lim sup 7(n) = lim sup Vi) = —e?.

n—oo  Vi(n)(loglogn)? nsoo  Vi(n)(loglogn)? w2



Proof. Take f(n ,/ . Then

(a+Dk _ 1 F1 1 -1
p p

oy = < - 1— -
) \/(pk —1)(p**k —ple=Dk + 1) = {V p—1 plp) < ( p)

o p3k_1 1
f(p)_\/(pk—l)(ka—pk+1) SR

for every prime p, so (i7) in Lemma 1 is satisfied. We obtain

lim su = /1 —eV = \/—67
n%oop V Vi(n log logn H

. ok(n) 6
1 = —e.
lin_ilip Vi(n)(loglogn)? w2 ‘

and

SO

Since y(n) < ox(n) and for the primes p we have ¥y (p) = ox(p) = p* + 1, the result for

i (n)

Vi(n) Qoglog)Z follows from the previous one. O

5 Extremal orders concerning unitary analogues of o;
and ¢

In what follows we consider the functions o} (n) and ¢;(n), representing the generalizations
for the sum of the unitary divisors of n and the unitary analogue Euler function, respectively.
Let k > 1 be a fixed integer. We have oj(n) =3, d* and o} (p*) = p°* + 1. Also,

Bi(n) = > 1=y dw(5),

ged(ay,...,ap)€{1,2,...n}"* dl|n
ged(ged(ar,az,...,ak),n) =1
and hence ¢} (p®) = p** — 1. Note that
ged(a, b), = max{d : d|a,d || b}

and y*(n) is the unitary analogue of the M&bius function, given by p*(n) = (—1)“(, where
w(n) is the number of distinct prime factors of n. The functions o} (n) and ¢;(n) are multi-
plicative. Let n = p{* --- p2" be the prime factorisation of n > 1. We obtain

op(n) = (" = 1)~ (X" =1) and oi(n) = (" + 1) (B + 1),



Observe that of(n) = or(n) and ¢;(n) = ¢r(n) for all squarefree n. Furthermore, for
every n > 1,
dr(n) < 9i(n) < n* < j(n) < ox(n).

Recall that an integer n > 1 is called powerful if it is divisible by the square of each of
its prime factors. A powerful integer is also called a squarefull integer. We give extremal

orders for the quotients {'/E EZ; and 32%, the minimal order of ?;’;EZ; being studied for powerful
numbers. Since ;’;EZ; > 1 for every n > 1 and lim, % = lim, o0 ’% = 1 for prime

oi(n) _
novoo i) = L
If n is powerful, it is easy to see that (\@ZEZ;

«a > 2. For prime numbers p, we notice that

* ()2 2k 1
lim o) = lim T
p=oo Vi(p?)  pooo p?t —pk 41

numbers p, it follows that lim inf

> 1, taking into account that % > 1 for

Y

which implies that
G

so the minimal order of 3’“—(2) is 1.

For the maximal orders of these quotients we have
Proposition 7. For k > 1,

. or(n) . o5 (n)
1 A A—— B AN
lgl_il.}p Vi.(n)loglogn lin_)Sogp Vi.(n)loglogn ¢

Proof. Take f(n) = UVQEZ; in Lemma 2, which is a nonnegative real-valued multiplicative

arithmetic function. We have

ak -1
p+1 1
4 = <|1-—- = <
f(p ) pak _ p(a—l)k +1 - ( p) p<p) o
and R =1, so
lim sup 7i(n) < e

Now let g(n) = (‘é:—EZ; Here

and



Hence, by Lemma 3 we have

: ¢i(n)
| — 5 >,
ey Vi.(n)loglogn — c

It is obvious that ¢j(n) < oj(n) for every n > 1. We obtain

$i(n)

a3 (n)

T — 0 <1li —
¢ = Vi.(n)loglogn — TP Vi.(n)loglogn — “
which shows that
. o (n) . Pr(1)
1 — k) — kv
lin_igp Vi(n) loglogn lzn_igp Vi.(n)loglogn ‘
as desired. ]

cin) s i)
A IULAAD

Corollary 8. The maximal order of both 15 €7 loglogn.

6 Extremal orders regarding compositions of arithmeti-
cal functions

We now move to the study of extremal orders of some composite arithmetic functions. We

start with Vi (Vi(n)) and ¢x(Vi(n)).
We know that Vj(n) < n* for every n > 1, so

k k\k
ViVi(n) _ (Ve(m))* _ ()t
nk nk? nk*
and k k2 (k—1)k
Vi(Vi v, —p-Dk 11
lim i ( :2(19)) ~ i k(}fi ) _ lim popt L
p prime p p prime p p prime p

so the maximal order of Vi(Vi(n)) is n**. Since ¢ (n) < n* and Vi, (n) < n* for any n > 1, we

k 2 -
have ¢k(V:2(n)) < (Vk(]g)) < 1. But lim poo ¢k(‘2€2(p)) = lim,_, o0 p* —I;:Qk Dk
p prime

order of ¢y, (Vi(n)) is n¥”.
The maximal order of V(¢(n)) was investigated in [2]. Using the general idea of that
proof, we show

= 1, so the maximal

Proposition 9. The mazimal order of Vi(¢r(n)) is n*".

Proof. We will use Linnik’s theorem which states that if ged(¢,¢) = 1, then there exists a
prime p such that p = ¢ (mod t) and p < t°, where ¢ is a constant (one can take ¢ < 11).



Let A = []x<p<s p- Since ged(A%* A + 1) = 1, by Linnik’s theorem there is a prime
p prime

number ¢ such that ¢ = A + 1 (mod A?%) and ¢ < (A?)¢ = A*, where c satisfies ¢ < 11.
Also, ¢* = kA + 1 (mod A?%). Let ¢ be the least prime satisfying the above condition. We
have ¢p(q) = ¢ — 1 = AB, where B = k + sA, for some s. Thus ged(4, B) = 1, so B is free
of prime factors < z and > k. Since Vi (n) is multiplicative, we have

Vilor(e) _ Vi(AB) _ Vi(A) Vi(B) (AB)* (1)

g+  (AB+ 1)k Ak Bt (AB+ 1)k
Here % — 1 as x — 00, so it is sufficient to study V’;l(kA ) and V’jg(f). Clearly,
Vi(A)
Y 1. (2)

We have A =[], _,,p <[l[,<,p= 9@, Since B < A'° we obtain B < ¢“®) so
log B < . (3)
If B=1[_, qﬁ” is the prime factorization of B, we obtain, taking into account that £ > 1

is a fixed integer, that logB = > b;loggq; > (logx) > :_, b; for sufficiently large x. But
S b >, 50 log B > klogx, implying that r < 122 <« 2 (hy (3)). Since

log x log z
Vi(B) _ T 1 d 1 1\" 1\ O'iez)
> 1——= > 1—=)>(1—-—=) >(1——=
B E( Qf> _g< Qi) ( :U) - ( x> ’
We obtain Vi(B) '
k

1 ) 4
B T O(logx> (4)

By (1), (2), (4) and ((Ai — 1 as ¢ — 00, we obtain

AB+1)F
y
—’“(;b;(q)) 1+ O(lo;;x) (5)

By relation (5), and since V’“(::Q(")) < (d”;(,g))k < 1, the claim follows. O

The maximal order of V(¢*(n)) is n (see [2]). For the maximal order of Vi(¢*(n)) we
give

Proposition 10.
Vo )

lim sup k
n

n—o0



Proof. We apply the following lemma:

If a is an integer, a > 1, p is a prime number and f(n) is an arithmetical function

satisfying ¢(n) < f(n) < o(n), one has

fim LWNV@P)
poo N(a,p)

where N(a,p) = Z=L (see, e.g., Suryanarayana [13]).

a—1

Since gb*(n)_g n, it follows that V(¢*(n)) < (¢*(n))* < n*, so
V Vi(¢*(n))

n
Obviously, ¥/ Vi(n) meets the conditions of the lemma. We have

<1

Pp—00 P—00 P = N(Q)p)

p prime p prime p prime

Y/ Vi(¢*(n))

- = 1, and we are done.

Now (7) and (8) imply limsup,,_,
Apostol [2] proved that

o(¢*(n)) o(¢*(n))

lim sup = lim sup =¥
noo V(¢*(n))(loglogn)?  nooo” V(*(n))(loglog ¢*(n))?
and . § 6
SR ) NP ) N
noo V(¢*(n))(loglogn)? noee V(¢*(n))(loglog ¢*(n))* =
: ok (¢*(n)) V(¢ (n)) :
The maximal orders of Vi o) and m are given by
Proposition 11. For k > 2 we have
SIRF ok (¢” (1)) T ok (¢" (1)) _ 6
(1) W Supy oo 775 () og logy® = W0 SUPn—so0 TG} loglog 67 — 7€

s Ue(0* () 1
(i) W SUP;,_, o0 35 () loglogm)? = LI SUPn 00 V(37 (m)) (log los ()7 — 72

Proof. (i) Let

(" (n) _ 6.

lim k—w = lim k—VVk(Qp_l) = lim k\/ Vi(N(2,p)) —1
2p e .

. oul(" () L 7" (n)
[ = llin_)Solip Vel (n))(log log )2 and [y 1= 11211_?01.}1) Vi(6*(n))(loglog ¢*(n))?’
Since ¢*(n) < n for every n > 1, we have
L or(¢*(n))
hT NP Ve ) og log )
L or(¢*(n))
= B PV ) (o log o ()2
or(m) 6

e

< limsup

moeo Ve(m)(loglogm)? — w2
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by Proposition 6. Since ged(n, 1) = 1, by Linnik’s theorem, there exists a prime number p
such that p = 1 (mod n) and p < n°. Let p, be the least prime such that p, = 1 (mod n),
for every n. Then n | p, — 1 and p, < n¢, so loglog p, ~ loglogn.

Observe that a | b implies —;’;EZ; < —‘U/’;Ezg If p” | p* (B < a), it is easy to see that
(‘T/:ggg <# Ei Z; The general case follows, taking into account that ¢* EZ; is multiplicative. So,

01(¢*(pn)) _ or(pn — 1) N o (pn — 1)
Vi(¢*(pn))(loglog pn)?  Vi(pn — 1)(loglogpn)?  Vi(pn — 1)(loglogn)?

On the other hand,

Uk(pn - 1) > Uk(n)
Vi.(pn — 1)(loglogn)? = Vi(n)(loglogn)?
Therefore,
. or(¢*(n)) : k(9" (Pn))
B S (3 () (og log n)? = enP V(6 (pu)) (g log p)?
> lim sup ok (1) = 0 e,

oo Vi(n)(loglogn)? — w2

We obtain %e? <l; <l < %e?, and hence [} = I, = Se?.

(i) The proof is similar to the proof of (i), taking into account that a | b implies % < 1‘/}:%
and limsup,,_, W&W = %627, by Proposition 6. [
; o, (¢*(n)) Vi (0" (1)) 6 .2 2

So, the maximal orders of both SACIO) and Vi) ATC 7€ 7(loglogn)*.

In a similar manner, since

: oi(n) : ¢i(n)

1 u =1 b =

TP Vi(n) loglogn TP Vi(n) loglogn ‘
(using Proposition 7), the fact that a | b implies ;Egzg < it

b $p(a o7 (b .
i Vk(bg and Vk( ) < V:E;,;, respectively,
it can be shown that

k(a)

ok (¢7(n))

| o B
D G ) loglogn o SP V(Gr(n)) loglog 7 (n)  ©

and
. ¢r(¢*(n)) Y ¢ (¢"(n)) _
hﬁsﬁp Vi(¢*(n))loglogn hgls;ip Vi(¢*(n))loglog ¢*(n) “
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7 Open Problems
Open Problem 12. Note that

lim inf M}En)) — liminf Vk(¢—k<n)) — liminf ¢k;(vk(n)) —0.
n—roo n n—0oo n n—00 n

For ny = p1 -+ p, (the product of the first 7 primes), we have

Vie(n,)) _ Vi((pr=1)--- (o =1) _ (o —D*--(p-=D* 1. 1.
nk o plf---p’ﬁ < Pk pk _((1 p1) (1 p))»
* . Vi(o(n, . 1 1
tim O i (121t =,

similarly the other relations. What are the minimal orders for the Vi (¢(n)), Vi(¢*(n)), and
Pp(V(n)) ?

Open Problem 13. Taking n, = p; - - - p, (the product of the first r primes),

or(V(n,))  orlpi---pr) @ +1)---(F+1) 1 1o \k
— — — 1—|—_ P 1+_ — 0
nk py---pk py---pk ( pl) ( pr))

(V(n))

as r — 00, so limsup,,_, . Ukn—k = 0o. What is the maximal order for o}(V(n)) ?
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