Some More Van der Waerden Numbers

Tanbir Ahmed
Department of Computer Science and Software Engineering Concordia University Montréal, QC H3G1M8
Canada
ta_ahmed@cs.concordia.ca

Abstract

The van der Waerden number $w\left(k ; t_{0}, t_{1}, \ldots, t_{k-1}\right)$ is the smallest positive integer n such that every k-coloring of the sequence $1,2, \ldots, n$ yields a monochromatic arithmetic progression of length t_{i} for some color $i \in\{0,1, \ldots, k-1\}$. In this paper, we propose a problem-specific backtracking algorithm for computing van der Waerden numbers $w\left(k ; t_{0}, t_{1}, \ldots, t_{k-1}\right)$ with $t_{0}=t_{1}=\cdots=t_{j-1}=2$, where $k \geqslant j+2$, and $t_{i} \geqslant 3$ for $i \geqslant j$. We report some previously unknown van der Waerden numbers using this method. We also report the exact value of the previously unknown van der Waerden number $w(2 ; 5,7)$.

1 Introduction

The van der Waerden number $w\left(k ; t_{0}, t_{1}, \ldots, t_{k-1}\right)$ is the smallest positive integer n such that every k-coloring of the sequence $1,2, \ldots, n$ yields a monochromatic arithmetic progression of length t_{i} for some color $i \in\{0,1, \ldots, k-1\}$. For a list of all known values of $w\left(k ; t_{0}, t_{1}, \ldots, t_{k-1}\right)$ and corresponding references, see Ahmed [1, 2, 3], Ahmed, Kullmann, and Snevily [4], and Kouril [7]. A good k-coloring of the set $\{1,2, \ldots, n\}$ corresponding to $w\left(k ; t_{0}, t_{1}, \ldots, t_{k-1}\right)$ contains no monochromatic arithmetic progression of length t_{i} for any i. We call such a good k-coloring of $1,2, \ldots, n$ a certificate of the lower bound $w\left(k ; t_{0}, t_{1}, \ldots, t_{k-1}\right)>n$. We denote colorings as strings; for example, 00110011 means the color partition $\{1,2,5,6\} \cup\{3,4,7,8\}$.

In this paper, we propose a problem-specific backtracking algorithm for computing van der Waerden numbers $w\left(k ; t_{0}, t_{1}, \ldots, t_{k-1}\right)$ with $t_{0}=t_{1}=\cdots=t_{j-1}=2$ where $k \geqslant j+2$, and $t_{i} \geqslant 3$ for $i \geqslant j$. We report some previously unknown numbers using this method.

We also report the previously unknown value of $w(2 ; 5,7)$ to be 260 . By far, only two values in the sequence $w(2 ; 5, t)$ for $t \geqslant 5$ are known, namely $w(2 ; 5,5)=178$ (Stevens and Shantaram [8]) and $w(2 ; 5,6)=206$ (Kouril [6]).

2 Some new values of $w\left(k ; t_{0}, t_{1}, \ldots, t_{k-1}\right)$

In this section, we discuss an idea to compute van der Waerden numbers with specific values of $t_{0}, t_{1}, \ldots, t_{k-1}$ taking symmetry into consideration.

2.1 On $w\left(k ; 2,2, \ldots, 2, t_{j}, t_{j+1} \ldots, t_{k-1}\right)$

Suppose in $w\left(k ; t_{0}, \ldots, t_{j-1}, t_{j}, \ldots, t_{k-1}\right)$ where $k-j \geqslant 2$, we have $t_{0}=t_{1}=\cdots=t_{j-1}=2$, and $t_{i} \geqslant 3$ for $i=j, j+1, \ldots, k-1$. Any certificate of a lower bound of this van der Waerden number will contain each of $0,1, \ldots, j-1$ exactly once. Hence the certificate will still remain valid after any in-place permutation of $0,1, \ldots, j-1$ in the certificate. For example, 898998879898031546989829988989 is a certificate of the lower bound

$$
w(10 ; 2,2,2,2,2,2,2,2,3,3)>30,
$$

which uses 10 colors. Keeping 8 and 9 in place, there are 8 ! certificates that prove the same lower bound.

In such a case, any certificate containing k colors can be transformed into an equivalent certificate replacing each of $0,1, \ldots, j-1$ with a symbol x, and keeping the remaining $k-j$ colors. When we extend a certificate, we prohibit t_{i}-term arithmetic progressions for $i=j, j+1, \ldots, k-1$ and check that the number of x does not exceed j. This observation greatly reduces the search space (the backtrack search-tree becomes $(k-j+1)$-ary instead of k-ary) of a trivial backtrack algorithm and makes way for computing new van der Waerden numbers.

From the above discussion, an equivalent certificate in our example is
8989988x9898xxxxxx9898x9988989,
which uses only two colors and a symbol x. For computational convenience, we can write this certificate as
121221102121000000212102211212,
with symbol x being replaced by integer color 0 and color c being replaced by integer color $c-j+1$.

2.2 On $w(k ; 2,2, \ldots, 2, t, t \ldots, t)$ with $t \geqslant 3$

Let $t_{0}=t_{1}=\cdots=t_{j-1}=2$ and $t_{i}=t \geqslant 3$ for $i=j, j+1, \ldots, k-1$. We can further minimize the backtrack search-space by extending only one certificate from the set of isomorphic
certificates under symmetry. Consider the 48 certificates of the lower bound $w(3 ; 3,3,3)>26$ with the colors named 1,2 , and 3 .

$1:$	11221123233131121223133232	$2:$	11223113132233223131132211
$3:$	11232113132233223131123211	$4:$	11323112123322332121132311
$5:$	11331132322121131332122323	$6:$	11332112123322332121123311
$7:$	12112123322332121123311313	$8:$	12122113223231133113232231
$9:$	12122113223231133113232232	$10:$	12122321131332322121331133
$11:$	12332321122112323321133131	$12:$	13113132233223131132211212
$13:$	13133112332321122112323321	$14:$	13133112332321122112323323
$15:$	13133231121223233131221122	$16:$	13223231133113232231122121
$17:$	21211223113132233223131131	$18:$	21211223113132233223131132
$19:$	21211312232331311212332233	$20:$	21221213311331212213322323
$21:$	21331312211221313312233232	$22:$	22112213133232212113233131
23:	22113223231133113232231122	$24:$	22131223231133113232213122
$25:$	22313221213311331212231322	$26:$	22331221213311331212213322
$27:$	22332231311212232331211313	$28:$	23113132233223131132211212
$29:$	23223231133113232231122121	$30:$	23233132212113133232112211
$31:$	23233221331312211221313312	$32:$	23233221331312211221313313
$33:$	31221213311331212213322323	$34:$	31311213323221211313223322
$35:$	31311332112123322332121121	$36:$	31311332112123322332121123
$37:$	31331312211221313312233232	$38:$	32112123322332121123311313
$39:$	32322123313112122323113311	$40:$	32322331221213311331212212
$41:$	32322331221213311331212213	$42:$	32332321122112323321133131
$43:$	33112332321122112323321133	$44:$	33113312122323313112322121
$45:$	33121332321122112323312133	$46:$	33212331312211221313321233
$47:$	33221331312211221313312233	$48:$	33223321211313323221311212

Table 1: All certificates of $w(3 ; 3,3,3)>26$
Let a permutation π of $1,2, \ldots, k$ be a sequence $\pi(1), \pi(2), \ldots, \pi(k)$. Let $S(k)$ denote the set of all permutations of $1,2, \ldots, k$. We write the permutations in $S(k)$ in parenthesized notation with respect to the indices $1,2, \ldots, k$. For example,

$$
S(3)=\{(1)(2)(3),(1)(2,3),(1,2)(3),(1,2,3),(1,3,2),(1,3)(2)\} .
$$

Let $C=c_{1} c_{2} \cdots c_{n}$ denote a certificate of the lower bound $w(k ; t, t, \ldots, t)>n$. Define $T_{\pi}(C)$ and $T_{S(k)}(C)$ by $\pi\left(c_{1}\right) \pi\left(c_{2}\right) \ldots \pi\left(c_{n}\right)$ and $\left\{T_{\pi}(C): \pi \in S(k)\right\}$, respectively.

For example, $T_{S(3)}(11221123233131121223133232)$ equals the set with the following elements

Similarly, all 48 certificates can be generated from the following 8 certificates:

1:	11221123233131121223133232	$2:$	11223113132233223131132211
$3:$	11232113132233223131123211	$7:$	12112123322332121123311313
$8:$	12122113223231133113232231	$9:$	12122113223231133113232232
$10:$	12122321131332322121331133	$11:$	12332321122112323321133131

Table 2: Representative certificates of $w(3 ; 3,3,3)>26$

So instead of generating and extending all certificates, we can consider only one from the 3 ! equivalent certificates. To do so, we can observe that, in a certificate $c_{1} c_{2} \cdots c_{n}$ of $w(k ; t, t, \ldots, t)>n$, if c_{i} is greater than c_{ℓ} for $1 \leqslant \ell \leqslant i-1$, then we can ignore branching on $c_{i}+1, c_{i}+2, \ldots, k$ at position i.

2.3 The algorithm

We combine the ideas from Sections 2.1 and 2.2 to obtain the following algorithm for $w\left(k ; t_{0}, t_{1}, \ldots, t_{k-1}\right)$, where $t_{0}=t_{1}=\cdots=t_{j-1}=2$ and $k \geqslant j+2$.

```
Algorithm 1 Recursive algorithm \(\operatorname{Run}(k, j\), index, \(x)\)
    function \(\operatorname{RuN}(k, j, i n d e x, x)\)
        if zeroCount \(>j\) then return end if
        if index \(>0\) and \(x>0\) then
            if the indices of \(t_{x+j-1} x\) 's in \(c_{1} c_{2} \cdots c_{\text {index }}\) form an AP then
                return
            end if
        end if
        if index \(>\) max then max \(=\) index end if
        for \(i=0\) to \(k-j\) do
            if \(i=0\) then zeroCount \(=\) zeroCount +1 end if
            \(c_{\text {index }+1}=i\)
            \(\operatorname{Run}(k, j\), index \(+1, i)\)
            if \(i=0\) then zeroCount \(=\) zeroCount -1 end if
            if \(i>0\) and \(t_{j}=t_{j+1}=\cdots=t_{k-1}=t\) then
                if index \(\leqslant j+(i-1)(t-1)+1\) then
                    if \(c_{\text {index }+1}>c_{\ell}\) for \(1 \leqslant \ell \leqslant\) index then
                    break
                    end if
                    end if
            end if
        end for
    end function
```

We can observe that function Run in Algorithm 1 returns with

$$
\max +1=w\left(k ; 2,2, \ldots, 2, t_{j}, t_{j+1}, \ldots, t_{k-1}\right)
$$

when called as $\operatorname{RUN}(k, j, 0,0)$ with zeroCount and max initialized to zero.

2.4 Experiment on some known van der Waerden numbers

In Table 3, we report test-results of Algorithm 1 with parameters corresponding to some known van der Waerden numbers. We consider numbers that are relevant to the algorithm and take less than half an hour of run-time.

	$\left(t_{j}, t_{j+1}, \ldots, t_{k-1}\right)$	$\max +1$	time(s)
Run(2, 0, 0, 0)	$(3,3)$	$9=w(2 ; 3,3)$	0.00
$\operatorname{Run}(2,0,0,0)$	$(4,4)$	$35=w(2 ; 4,4)$	0.00
$\operatorname{Run}(3,1,0,0)$	$(3,3)$	$14=w(3 ; 2,3,3)$	0.00
$\operatorname{Run}(3,1,0,0)$	$(4,4)$	$40=w(3 ; 2,4,4)$	0.38
$\operatorname{Run}(3,0,0,0)$	$(3,3,3)$	$27=w(3 ; 3,3,3)$	0.12
$\operatorname{Run}(4,2,0,0)$	$(3,3)$	$17=w(4 ; 2,2,3,3)$	0.00
$\operatorname{Run}(4,2,0,0)$	$(3,4)$	$25=w(4 ; 2,2,3,4)$	0.07
$\operatorname{Run}(4,2,0,0)$	$(3,5)$	$43=w(4 ; 2,2,3,5)$	2.20
$\operatorname{Run}(4,2,0,0)$	$(3,6)$	$48=w(4 ; 2,2,3,6)$	42.93
$\operatorname{Run}(4,2,0,0)$	$(4,4)$	$53=w(4 ; 2,2,4,4)$	10.25
$\operatorname{Run}(4,1,0,0)$	(3,3,3)	$40=w(4 ; 2,3,3,3)$	4.97
$\operatorname{Run}(5,3,0,0)$	$(3,3)$	$20=w(5 ; 2,2,2,3,3)$	0.00
$\operatorname{Run}(5,3,0,0)$	$(3,4)$	$29=w(5 ; 2,2,2,3,4)$	0.84
$\operatorname{Run}(5,3,0,0)$	$(3,5)$	$44=w(5 ; 2,2,2,3,5)$	38.11
$\operatorname{Run}(5,3,0,0)$	$(4,4)$	$54=w(5 ; 2,2,2,4,4)$	208.74
$\operatorname{Run}(5,2,0,0)$	(3,3,3)	$41=w(5 ; 2,2,3,3,3)$	102.71
$\operatorname{Run}(6,4,0,0)$	$(3,3)$	$21=w(6 ; 2,2,2,2,3,3)$	0.05
$\operatorname{Run}(6,4,0,0)$	$(3,4)$	$33=w(6 ; 2,2,2,2,3,4)$	7.66
$\operatorname{Run}(6,4,0,0)$	$(3,5)$	$50=w(6 ; 2,2,2,2,3,5)$	522.64
$\operatorname{Run}(6,3,0,0)$	(3,3,3)	$42=w(6 ; 2,2,2,3,3,3)$	1615.73
$\operatorname{Run}(7,5,0,0)$	$(3,3)$	$24=w(7 ; 2,2,2,2,2,3,3)$	0.31
$\operatorname{Run}(7,5,0,0)$	$(3,4)$	$36=w(7 ; 2,2,2,2,2,3,4)$	59.64
$\operatorname{Run}(8,6,0,0)$	$(3,3)$	$25=w(8 ; 2,2,2,2,2,2,3,3)$	1.38
$\operatorname{Run}(8,6,0,0)$	$(3,4)$	$40=w(8 ; 2,2,2,2,2,2,3,4)$	434.12
$\operatorname{Run}(9,7,0,0)$	$(3,3)$	$28=w(9 ; 2,2,2,2,2,2,2,3,3)$	5.58

Table 3: Experiment on some known values

2.5 New values of $w\left(k ; t_{0}, t_{1}, \ldots, t_{k-1}\right)$

We have computed the following new values of $w\left(k ; t_{0}, t_{1}, \ldots, t_{k-1}\right)$ using Algorithm 1.

$w\left(k ; t_{0}, t_{1}, \ldots, t_{k-1}\right)$	$=65$
$w(7 ; 2,2,2,2,2,3,6)$	$=66$
$w(7 ; 2,2,2,2,2,4,4)$	$=45$
$w(7 ; 2,2,2,2,3,3,3)$	$=61$
$w(8 ; 2,2,2,2,2,2,3,5)$	$=71$
$w(8 ; 2,2,2,2,2,2,3,6)$	$=67$
$w(8 ; 2,2,2,2,2,2,4,4)$	$=49$
$w(8 ; 2,2,2,2,2,3,3,3)$	$=42$
$w(9 ; 2,2,2,2,2,2,2,3,4)$	$=65$
$w(9 ; 2,2,2,2,2,2,2,3,5)$	$=52$
$w(9 ; 2,2,2,2,2,2,3,3,3)$	$=31$
$w(10 ; 2,2,2,2,2,2,2,2,3,3)$	$=45$
$w(10 ; 2,2,2,2,2,2,2,2,3,4)$	$=70$
$w(10 ; 2,2,2,2,2,2,2,2,3,5)$	$=33$
$w(11 ; 2,2,2,2,2,2,2,2,2,3,3)$	$=48$
$w(11 ; 2,2,2,2,2,2,2,2,2,3,4)$	$=35$
$w(12 ; 2,2,2,2,2,2,2,2,2,2,3,3)$	$=52$
$w(12 ; 2,2,2,2,2,2,2,2,2,2,3,4)$	$=37$
$w(13 ; 2,2,2,2,2,2,2,2,2,2,2,3,3)$	$=55$
$w(13 ; 2,2,2,2,2,2,2,2,2,2,2,3,4)$	$=39$
$w(14 ; 2,2,2,2,2,2,2,2,2,2,2,2,3,3)$	$=42$
$w(15 ; 2,2,2,2,2,2,2,2,2,2,2,2,2,3,3)$	$=44$
$w(16 ; 2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3)$	$=46$
$w(17 ; 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3)$	$=48$
$w(18 ; 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3)$	$=50$
$w(19 ; 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3)$	$=51$
$w(20 ; 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3)$	$=1$

Table 4: New values of $w\left(k ; t_{0}, t_{1}, \ldots, t_{k-1}\right)$

Based on the results in Table 4, we have added and extended (as shown in bold fonts) the following entries in the OEIS:

1. A217005: $w\left(j+2 ; t_{0}, t_{1}, \ldots, t_{j-1}, 3,3\right)$ for $j \geqslant 0$ with $t_{i}=2,0 \leqslant i \leqslant j-1$.
$9,14,17,20,21,24,25,28,31,33,35,37,39,42,44,46,48,50,51$.
2. A217058: $w\left(j+2 ; t_{0}, t_{1}, \ldots, t_{j-1}, 3,4\right)$ for $j \geqslant 0$ with $t_{i}=2,0 \leqslant i \leqslant j-1$.
$18,21,25,29,33,36,40,42,45,48,52,55$.
3. A217059: $w\left(j+2 ; t_{0}, t_{1}, \ldots, t_{j-1}, 3,5\right)$ for $j \geqslant 0$ with $t_{i}=2,0 \leqslant i \leqslant j-1$.

$$
22,32,43,44,50,55, \mathbf{6 1}, \mathbf{6 5}, \mathbf{7 0} .
$$

4. A217060: $w\left(j+2 ; t_{0}, t_{1}, \ldots, t_{j-1}, 3,6\right)$ for $j \geqslant 0$ with $t_{i}=2,0 \leqslant i \leqslant j-1$.
$32,40,48,56,60,65,71$.
5. A217007: $w\left(j+2 ; t_{0}, t_{1}, \ldots, t_{j-1}, 4,4\right)$ for $j \geqslant 0$ with $t_{i}=2,0 \leqslant i \leqslant j-1$.

$$
35,40,53,54,56, \mathbf{6 6}, 67 .
$$

6. A217008: $w\left(j+3 ; t_{0}, t_{1}, \ldots, t_{j-1}, 3,3,3\right)$ for $j \geqslant 0$ with $t_{i}=2,0 \leqslant i \leqslant j-1$.
$27,40,41,42,45,49,52$.

3 Exact value of $w(2 ; 5,7)$ using SAT

In this section, we report the exact value of $w(2 ; 5,7)$ to be 260 .
$3.1 w(2 ; 5,7) \geqslant 260$
The following certificate (a good 2 -coloring of $1,2, \ldots, 259$) establishes the lower bound $w(2 ; 5,7) \geqslant 260$ (Ahmed [3]):

$$
\begin{gathered}
1111110111101111100001111000010001110111101001111100101111011100 \\
0100001011001001101000010001110111101001111100101111011100010000 \\
1011001001101000010001110111101001111100101111011100010000101100 \\
10011010 \text { a0010001 11011111 10011011 } 001011110111 b 0110001101101011110 \\
\text { 111. (ab is arbitrary) }
\end{gathered}
$$

$4 \quad w(2 ; 5,7)=260$
It remains to show that every 2 -coloring of $1,2, \ldots, 260$ either contains a 5 -term arithmetic progression in color 0 , or a 7 -term arithmetic progression in color 1 .

$4.1 \quad w(2 ; 5,7) \leqslant 260$

We construct an instance F of the satisfiability problem (or SAT for short) with 260 variables for the van der Waerden number $w(2 ; 5,7)$ such that F is satisfiable if and only if $w(2 ; 5,7)>$ 260. For a brief introduction to SAT and SAT-encoding of van der Waerden numbers, see Section 1 in Ahmed [2]. We use a distributed application of an efficient implementation
of the DPLL [5] algorithm to show that the constructed instance is unsatisfiable. For a brief description of this implementation and its distributed application, see Sections 3 and 4, respectively, in Ahmed [2].

We have split the instance into 256 parts and then each of them into further parts to distribute them over the cluster machines at Concordia. It took 2002.2 GHz AMD Opteron processors to run roughly for a year to conclude that there is no good 2-coloring of $1,2, \ldots, 260$ corresponding to $w(2 ; 5,7)$.

In such a large computation where thousands of distributed branches of the search tree have run on hundreds of processors, we hope we have not fallen into the trap of an undetected hardware failure (an electricity failure is natural and every detected hardware-failure was rerun from the last state of the search), or a file-manipulation error on a particular branch which unfortunately could contain a good 2-coloring of $1,2, \ldots, 260$. We welcome interested readers with proper resources to conduct another search to verify our result.

5 Acknowledgements

The author would like to thank Clement Lam for his continuous support, Donald Knuth for his time and valuable suggestions, and the anonymous referee for the helpful comments. The author would also like to thank Andalib Parvez for carefully reading the manuscript.

References

[1] T. Ahmed, Some new van der Waerden numbers and some van der Waerden-type numbers, Integers, 9 (2009), A06, 65-76.
[2] T. Ahmed, Two new van der Waerden numbers: $w(2 ; 3,17)$ and $w(2 ; 3,18)$, Integers, 10 (2010), A32, 369-377.
[3] T. Ahmed, On computation of exact van der Waerden numbers, Integers, 11 (2011), A71.
[4] T. Ahmed, O. Kullmann, and H. Snevily, On the van der Waerden numbers $w(2 ; 3, t)$, preprint, http://arxiv.org/abs/1102.5433.
[5] M. Davis, G. Logemann, D. Loveland, A machine program for theorem-proving, Comm. ACM, 5 (1962), 394-397.
[6] M. Kouril, A backtracking framework for Beowulf clusters with an extension to multicluster computation and SAT benchmark problem implementation, Ph. D. Thesis, University of Cincinnati, Engineering : Computer Science and Engineering, 2006.
[7] M. Kouril, Computing the van der Waerden number $W(3,4)=293$, Integers, 12 (2012), A46.
[8] R. Stevens and R. Shantaram, Computer-generated van der Waerden partitions, Math. Comp., 32 (1978), 635-636.
[9] D. A. D. Tompkins and H. H. Hoos, UBCSAT: An implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT. In Holger H. Hoos and David G. Mitchell, eds., Theory and Applications of Satisfiability Testing of 2004, Lecture Notes in Computer Science, Vol. 3542, Springer, 2005, pp. 306-320.

2010 Mathematics Subject Classification: Primary 11B25; Secondary 05D10.
Keywords: van der Waerden number.
(Concerned with sequences A217005, A217007, A217008, A217058, A217059, A217060, and A217037.)

Received September 28 2012; revised version received March 12 2013. Published in Journal of Integer Sequences, March 162013.

Return to Journal of Integer Sequences home page.

