
23 11

Article 13.6.7
Journal of Integer Sequences, Vol. 16 (2013),2

3

6

1

47

A Generalization of the Gcd-Sum Function

Ulrich Abel, Waqar Awan, and Vitaliy Kushnirevych
Fachbereich MND

Technische Hochschule Mittelhessen
University of Applied Sciences
Wilhelm-Leuschner-Straße 13

61169 Friedberg
Germany

Ulrich.Abel@mnd.thm.de

Waqar.Awan@stud.h-da.de

Vitaliy.Kushnirevych@mnd.thm.de

Abstract

In this paper we consider the generalization Gd(n) of the Broughan gcd-sum func-
tion, i.e., the sum of such gcd’s that are divisors of the positive integer d. Examples of
Dirichlet series and asymptotic relations for Gd and related functions are given.

1 Introduction

In the recent article [5], Broughan studies the sum of the greatest common divisors of the
first n positive integers with n, i.e., the arithmetic function

G(n) :=
n∑

k=1

gcd(k, n).

This function arises in deriving asymptotic estimates for a lattice point counting problem [5,
Sect. 5]. The function G has polynomial growth as n tends to infinity. For p ∈ P (throughout
the paper P denotes the set of prime numbers) and α ∈ N, it is not difficult to show that

G(pα) =
α−1∑

j=0

(p− 1)pα−1−j

︸ ︷︷ ︸

number of gcd’s equal to pj

pj + 1 · pα = (α + 1)pα − αpα−1.
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(cf. [5, Th. 2.2]). Following [5, Cor. 2.1] G is a multiplicative function, i.e., G(mn) =
G(m)G(n) for coprime m,n ∈ N, that is, gcd(m,n) = 1. The corresponding Dirichlet series
G (s) converges at all points of the complex plane, except at the zeros of the Riemann zeta
function and the point s = 2, where it has a double pole. Moreover, Broughan derives
asymptotic expressions for the partial sums of the Dirichlet series at all real values of s.

The following generalization of G (see [2]) arises in the study of distribution of determi-
nant values in residue class rings.

For d ∈ N, we introduce the function

Gd(n) :=
n∑

k=1
gcd(k,n)|d

gcd(k, n).

Obviously, G(n) = Gn(n) and G1(n) = ϕ(n), where ϕ is Euler’s totient function.
The purpose of this note is to study the function Gd. In the next section we present

some elementary properties of Gd. Furthermore, we study the corresponding Dirichlet series
Gd (s). Some of the results will be applied in a forthcoming paper on the distribution of
determinant values in residue class rings and finite fields. As an example we mention that
in the residue class ring Zn (n ∈ N), for r ∈ Zn,

Hn(r) = |{(i, j) ∈ Zn × Zn | i · j = r}|,

the number of products equal to r having precisely two factors in Zn, is equal to

Hn(r) =

{

Gn(n) = G(n), if r = 0;

Gd(n) = Ggcd(r,n)(n), if r 6= 0.

A similar problem as the calculation of the value Hn(r) in the domain of positive integers
is the so-called multiplication table problem posed by Erdős (see [7]): how many integers
can be written as a product i · j for a given positive integer n ∈ N with positive integers
i 6 n and j 6 n? Erdős ([7, 8]) gave the first estimates of this quantity. Tenenbaum [13] had
made the results of Erdős more precise. Ford ([9, 10]) derived the exact order of magnitude
of the n× n multiplication table size completely. Koukoulopolous [11, 12] presents a perfect
overview of the actual situation and the further development of Ford-Erdős results.

2 Properties of Gd

The following lemma gathers some elementary properties of Gd(n).

Lemma 1.

(i) For m,n ∈ N, we have Gm(n) = Ggcd(m,n)(n).
In particular, for m,α ∈ N, p ∈ P, we have Ggcd(m,pα)(p

α) = Gm(p
α);
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(ii) for coprime d, n ∈ N, we have Gd(n) = ϕ(n);

(iii) for d = d1d2 with gcd(d1, n) = 1, we have Gd(n) = Gd2(n).

Proof. (i) Since gcd(k, n) | gcd(m,n) ⇐⇒ gcd(k, n) | m for all m,n, k ∈ N, the first
formula follows from the definition. One obtains the second one by substituting n = pα.

(ii) If gcd(d, n) = 1, using (i) we get

Gd(n) = G1(n) = ϕ(n).

(iii) Since gcd(d1, n) = 1 ⇒ gcd(d1d2, n) = gcd(d2, n), it follows that

Gd(n) = Gd1d2(n) = Ggcd(d1d2,n)(n) = Ggcd(d2,n)(n) = Gd2(n),

where we used (i) twice.
The proof of the lemma is completed.

Let ρd denote the multiplicative function

ρd(w) =

{

w, if w | d;

0, if w ∤ d.

Then we have the representation
Gd = ρd ∗ ϕ, (1)

where ∗ denotes Dirichlet product. Indeed,

Gd(n) =
n∑

k=1
gcd(k,n)|d

gcd(k, n) =
∑

w|d
w|n

wϕ
(n

w

)

=
∑

w|n

ρd(w)ϕ
(n

w

)

= (ρd ∗ ϕ)(n).

Therefore, Gd is multiplicative as it is the Dirichlet product of multiplicative functions [1,
Th. 2.5(c) and Th. 2.14].

Theorem 2. Gd is a multiplicative function, i.e., for coprime m,n ∈ N, we have

Gd(mn) = Gd(m)Gd(n).

We also give a direct proof of the preceding theorem.

Proof. Let d | n1n2 with coprime n1, n2 ∈ N. This implies d = d1d2 with d1 | n1 and d2 | n2,
so that d1 and d2 are coprime. One has

Gd(n1n2) = Gd1d2(n1n2) =
∑

w|d1d2

wϕ
(n1n2

w

)

=
∑

w1|d1

∑

w2|d2

w1w2ϕ

(
n1n2

w1w2

)

.
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Because ϕ is multiplicative and gcd
(

n1

w1

, n2

w2

)

= 1, one obtains

Gd(n1n2) =
∑

w1|d1

w1ϕ

(
n1

w1

)
∑

w2|d2

w2ϕ

(
n2

w2

)

= Gd1 (n1)Gd2 (n2) = Gd (n1)Gd (n2) .

This completes the proof.

Theorem 3. For n ∈ N and for coprime d1, d2 ∈ N, we have

Gd1(n) ·Gd2(n) = ϕ(n) ·Gd1d2(n).

In particular, Gd1d2(n) | Gd1(n)Gd2(n).

Proof. Let d = d1d2 with gcd(d1, d2) = 1. By Equation (1) we have

Gd(n) = (ρd ∗ ϕ)(n) =
∑

w|n

ρd1d2(w)ϕ
(n

w

)

=
∑

w1|n

∑

w2|n

ρd1(w1)ρd2(w2)ϕ

(
n

w1w2

)

.

Now, decompose n = kn1n2 in a product of three pairwise coprime factors k, n1, n2 such
that di | ni (i = 1, 2). If wi | di (i = 1, 2) we conclude that

ϕ

(
n

w1w2

)

= ϕ(k)ϕ

(
n1

w1

)

ϕ

(
n2

w2

)

= ϕ(k)
ϕ
(

n
w1

)

ϕ
(

n
w2

)

ϕ(kn2)ϕ(kn1)
=

ϕ
(

n
w1

)

ϕ
(

n
w2

)

ϕ(n)
.

Hence, we obtain

ϕ (n)Gd(n) =
∑

w1|n

ρd1(w1)ϕ

(
n

w1

)
∑

w2|n

ρd2(w2)ϕ

(
n

w2

)

= Gd1(n) ·Gd2(n)

which is the desired formula.

We close this section with the following nice formula.

Theorem 4. For all n ∈ N, we have

n∑

i=1

Gi(n) = n2.

Proof. Analogously to the proof of Theorem 2 one has

n∑

i=1

Gi(n) =
n∑

i=1

∑

w|n

ρi(w)ϕ
(n

w

)

=
∑

w|n

ϕ
(n

w

) n∑

i=1

ρi(w)

=
∑

w|n

ϕ
(n

w

)

w
∑

16i6n
w|i

1 =
∑

w|n

ϕ
(n

w

)

w
n

w
= n

∑

w|n

ϕ (w) = n2,

where we used that
∑

w|n

ϕ (w) = n.
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3 Evaluation of Gd at positive integers

In this section we consider the problem how to calculate the values of Gd(n) for positive
integers. We start with the special case of prime powers. In the following δαβ denotes the

Kronecker symbol defined by δαβ =

{

1, if α = β;

0, otherwise.

Proposition 5. For prime powers n = pα (α ∈ N) and d = pβ, β 6 α (β ∈ N ∪ {0}), we
have

Gpβ(p
α) = ϕ(pα)

(

1 + β +
δαβ
p− 1

)

.

For prime powers n = pα (α ∈ N) and d = pβ, β > α (β ∈ N), we have

Gpβ(p
α) = Gpα(p

α) = ϕ(pα)

(

1 + α +
1

p− 1

)

.

Proof. For 0 < β < α, we have

Gpβ(p
α) =

β
∑

j=0

(pα−j − pα−j−1)pj = (pα − pα−1)(1 + β) = ϕ(pα)(1 + β),

and, for β = α,

Gpβ(p
α) = Gpα(p

α) = G(pα) = (α + 1)pα − αpα−1

= (α + 1)(pα − pα−1) + pα−1 = ϕ(pα)(1 + β) + pα−1.

In the case β = 0 application of Lemma 1 (ii) leads to G1(p
α) = ϕ(pα) = ϕ(pα)(1+β). Thus,

for all 0 6 β 6 α, one has

Gpβ(p
α) = ϕ(pα)(1 + β) + pα−1 · δαβ = ϕ(pα)

(

1 + β +
pα−1 · δαβ
ϕ(pα)

)

.

Taking into account that ϕ(pα) = pα − pα−1 one obtains the first result.
For β > α, we have gcd(k, pα) | pβ ⇐⇒ gcd(k, pα) | pα. Hence,

Gpβ(p
α) =

pα
∑

k=1
gcd(k,pα)|pβ

gcd(k, pα) =

pα
∑

k=1
gcd(k,pα)|pα

gcd(k, pα) = Gpα(p
α)

and the second result follows by application of the first formula.

Remark 6. The result of Proposition 5 can be written in one single formula: for p ∈ P, α ∈ N
and β ∈ N ∪ {0}, we have

Gpβ(p
α) = ϕ(pα)

(

1 + min(α, β) +
δα,min(α,β)

p− 1

)

.

5



Theorem 7. For n ∈ N with prime powers decomposition n = pλ1

1 · . . . · pλt

t and positive
integer d = c·pκ1

1 · · · pκt

t with pj ∤ c for all j = 1, . . . , t, and 0 6 κj we have the representation
1

Gd(n) = ϕ(n) ·
t∏

j=1

(

1 + min(κj, λj) + δλj ,min(κj ,λj)
1

pj − 1

)

.

Proof. Because Gd is multiplicative, by Theorem 2, and applying Lemma 1 (iii), we obtain

Gd(n) = Gd

(
t∏

j=1

p
λj

j

)

=
t∏

j=1

Gc·p
κ1
1

···p
κt
t

(

p
λj

j

)

=
t∏

j=1

G
p
κj
j

(

p
λj

j

)

=
t∏

j=1

ϕ
(

p
λj

j

)(

1 + min(κj, λj) +
δλj min(κj ,λj)

pj − 1

)

,

where the last equation is a consequence of Rem. 6.

We note that under the notation of Theorem 7 the equation

gcd(d, n) = pκ1

1 · · · pκt

t

defines unique numbers κj (j = 1, . . . , t) with 0 6 κj 6 λj, such that the result can be
written in the form

Gd(n) = Ggcd(d,n)(n) = ϕ(n) ·
t∏

j=1

(

1 + κj + δλj ,κj

1

pj − 1

)

.

4 Dirichlet series, averages and asymptotic properties

Some asymptotic formulas of the Broughan’s gcd-sum function were derived by Broughan
[5] and Bordellès [4]. The average order of the Dirichlet series of the Broughan’s gcd-sum
function was studied by Broughan [6] and Bordellès [3]. In this section we give some examples
of Dirichlet series of arithmetic functions connected with Gd(n). We calculate the average
functions and derive some asymptotic formulas for these examples.

1κj = 0 means that pj is not present in the decomposition of d, i.e., pj ∤ d.
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The Dirichlet series for an arithmetic function f(n) is defined (see, e.g., [1, 11.1, p. 224])
by

F(s) :=
∞∑

n=1

f(n)

ns
.

The most prominent example is the Riemann ζ function ζ(s) =
∞∑

n=1

1

ns
. It is clear, that ζ(s)

is the Dirichlet series associated to f(n) = 1, for all n ∈ N.
For any prime number p, the Bell series [1, Sect. 2.15, p. 42ff] of an arithmetic function

f is the formal power series

fp(x) =
∞∑

n=0

f(pn)xn.

If f is multiplicative the corresponding Dirichlet series is given by

F(s) =
∞∑

n=1

f(n)n−s =
∏

p

fp(p
−s)

provided that the Dirichlet series converges absolutely for Re s > a (see, e.g., [1, Th. 11.7,
p. 231]).

The number e ∈ N ∪ {0} is called the m-adic order of n ∈ N (m ∈ N), if me | n and
me+1 ∤ n. It is denoted by e = νm(n).

4.1 The arithmetic function Gd

4.1.1 Dirichlet series

Since Gd = ρd ∗ ϕ (see (1)) and

Pd(s) :=
∞∑

n=1

ρd(n)

ns
=
∑

n|d

1

ns−1
;

Φ(s) :=
∞∑

n=1

ϕ(n)

ns
=

ζ(s− 1)

ζ(s)
=
∏

p

1− p−s

1− p1−s
,

([1, Ex. 4, p. 229 and p. 231]), we have according to [1, Th. 11.5]: for Re s > 2,

Gd(s) :=
∞∑

n=1

Gd(n)

ns
=

∞∑

n=1

ρd(n) ∗ ϕ(n)

ns
= Pd(s)Φ(s),

so

Gd(s) =
ζ(s− 1)

ζ(s)
·
∑

n|d

1

ns−1
=
∏

p

1− p−s

1− p1−s
·
∑

n|d

1

ns−1
.
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If d = 1 one obviously has G1(s) =
ζ(s− 1)

ζ(s)
(cf. [1, Ex. 3, p. 231]). For d ∈ P, one has

Gd(s) =
ζ(s− 1)

ζ(s)

(

1 +
1

ds−1

)

.

4.1.2 Average functions

We study the asymptotic behaviour of the average function

G
[α]
d (x) :=

∑

n≤x

n−αGd (n)

as n tends to infinity. Taking advantage of the representation Gd = ρd ∗ ϕ we obtain

G
[α]
d (x) =

∑

n≤x

∑

w|n

ρd (w)

wα

ϕ
(
n
w

)

(
n
w

)α .

By application of [1, Th. 3.10, p. 65], we conclude that

G
[α]
d (x) =

∑

n≤x

n−αρd (n) Φ
[α]
(x

n

)

=
∑

w|d

w−(α−1)Φ[α]
( x

w

)

,

where Φ[α] denotes the average

Φ[α] (x) :=
∑

n≤x

n−αϕ (n)

of Euler’s totient function ϕ. We distinguish 3 cases. Because, for α ≤ 1,

Φ[α] (x) ∼
x2−α

2− α
ζ−1 (2) +O

(
x1−α log x

)
(x → ∞) ,

([1, Ex. 8, p. 71]), we have

G
[α]
d (x) ∼

x2−α

2− α
ζ−1 (2)

∑

w|d

1

w
+O

(
x1−α log x

)
(x → ∞) .

Because, for α > 1, α 6= 2,

Φ[α] (x) ∼
x2−α

2− α
ζ−1 (2) +

ζ (α− 1)

ζ (α)
+O

(
x1−α log x

)
(x → ∞) ,

([1, Ex. 7, p. 71]), we have

G
[α]
d (x) ∼

x2−α

2− α
ζ−1 (2)

∑

w|d

1

w
+

ζ (α− 1)

ζ (α)

∑

w|d

w−(α−1) +O
(
x1−α log x

)
(x → ∞) .
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Finally, for α = 2, we have

Φ[2] (x) ∼
log x

ζ (2)
+

γ

ζ (2)
− A+O

(
log x

x

)

(x → ∞) ,

where γ is Euler’s constant and A =
∑∞

n=1 µ (n)n−2 log n ([1, Ex. 6, p. 71]), and we conclude
that

G
[2]
d (x) ∼

1

ζ (2)

∑

w|d

log (x/w)

w
+

(
γ

ζ (α)
− A

)
∑

w|d

w−1 +O

(
log x

x

)

(x → ∞) .

4.2 The arithmetic function Gn/ gcd(r,n)(n)

Let r ∈ N be given. Consider the arithmetic function

b(r)(n) := Gn/ gcd(r,n)(n).

which is easily seen to be multiplicative. Let p be a prime number and put β = νp(r).
According to Prop. 5 one has

b(r)(pn) = Gpn/ gcd(r,pn)(p
n) = Gpn−β(pn) = ϕ(pn)

(

1 + n− β +
δn,n−β

p− 1

)

.

So, if β = 0 one has δn,n−β = 1 and

b(r)(pn) = ϕ(pn)

(

1 + n+
1

p− 1

)

= (n+ 1)pn − npn−1.

Therefore, for β = 0, the Bell series is given by

b(r)p (x) =
∞∑

n=0

b(r)(pn)xn =
∞∑

n=0

(
(n+ 1)pn − npn−1

)
xn =

1− x

(1− px)2
.

If β > 0 one has δn,n−β = 0 and

b(r)p (x) =
∞∑

n=0

b(r)(pn)xn =
∞∑

n=0

ϕ(pn)(1 + n− β)xn

=
∞∑

n=0

(pn − pn−1)(1 + n− β)xn =
(p− 1)(pxβ − β + 1)

p(px− 1)2
.

Hence, the Dirichlet series is given by

B(r)(s) :=
ζ2(s− 1)

ζ(s)

∏

p|r

(p− 1)(1− (1− p1−s) β (p))

p− p1−s
(Re s > 2) ,

where β (p) = νp(r).
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4.3 The arithmetic function Gn(gcd(r, n)n)

Let r ∈ N be given. Consider the arithmetic function

a(r)(n) := Gn(gcd(r, n) · n)

which is easily seen to be multiplicative. Let p be a prime number and put β = νp(r).
According to Remark 6 one has

a(r)(pn) = Gpn(gcd(r, p
n)pn) = Gpn

(
pn+min(β,n)

)

= ϕ
(
pn+min(β,n)

)
(

1 + n+ δ0,min(β,n)
1

p− 1

)

.

If β = 0, one has δ0,min(β,n) = 1 and

a(r)(pn) = ϕ(pn)

(

1 + n+
1

p− 1

)

= (n+ 1)pn − npn−1.

Therefore, for β = 0, the Bell series is given by

a(r)p (x) =
∞∑

n=0

a(r)(pn)xn =
∞∑

n=0

(
(n+ 1)pn − npn−1

)
xn =

1− x

(1− px)2
.

If β > 0 one has δ0,min(β,n) = 0 and

a(r)p (x) = 1 +
∞∑

n=1

(1 + n)ϕ(pn+min(β,n))xn

= 1 +

β
∑

n=1

(1 + n)ϕ(p2n)xn +
∞∑

n=β+1

(1 + n)ϕ(pn+β)xn

= 1 +

β
∑

n=1

(1 + n)(p2n − p2n−1)xn +
∞∑

n=β+1

(1 + n)(pn+β − pn+β−1)xn

= 1 +
p− 1

p

β
∑

n=1

(n+ 1)(p2x)n + pβ−1(p− 1)
∞∑

n=β+1

(n+ 1)(px)n

= 1 +
(p− 1)px((β + 1)(p2x)β+1 − (β + 2)(p2x)β − p2x+ 2)

(p2x− 1)2

−
(p− 1)p2βxβ+1((β + 1)px− (β + 2))

(px− 1)2
.

Hence, the Dirichlet series is given by

A(r)(s) :=
ζ2(s− 1)

ζ(s)

∏

p|r

(

(1− p1−s)
2

1− p−s
a(r)p (p−s)

)

(Re s > 2) .
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where

a(r)p (p−s) = 1−
(p− 1)p2βp−s(β+1)((β + 1)p1−s − (β + 2))

(1− p1−s)2

+
(p− 1)p1−s((β + 1)p(2−s)(β+1) − (β + 2)p(2−s)β − p2x+ 2)

(p2x− 1)2

and β = β (p) = νp(r).
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