Journal of Integer Sequences, Vol. 16 (2013), Article 13.6.7

A Generalization of the Gcd-Sum Function

Ulrich Abel, Waqar Awan, and Vitaliy Kushnirevych Fachbereich MND
Technische Hochschule Mittelhessen
University of Applied Sciences
Wilhelm-Leuschner-Straße 13
61169 Friedberg
Germany
Ulrich.Abel@mnd.thm.de
Waqar.Awan@stud.h-da.de
Vitaliy.Kushnirevych@mnd.thm.de

Abstract

In this paper we consider the generalization $G_{d}(n)$ of the Broughan gcd-sum function, i.e., the sum of such gcd's that are divisors of the positive integer d. Examples of Dirichlet series and asymptotic relations for G_{d} and related functions are given.

1 Introduction

In the recent article [5], Broughan studies the sum of the greatest common divisors of the first n positive integers with n, i.e., the arithmetic function

$$
G(n):=\sum_{k=1}^{n} \operatorname{gcd}(k, n)
$$

This function arises in deriving asymptotic estimates for a lattice point counting problem [5, Sect. 5]. The function G has polynomial growth as n tends to infinity. For $p \in \mathbb{P}$ (throughout the paper \mathbb{P} denotes the set of prime numbers) and $\alpha \in \mathbb{N}$, it is not difficult to show that

$$
G\left(p^{\alpha}\right)=\sum_{j=0}^{\alpha-1} \underbrace{(p-1) p^{\alpha-1-j}}_{\text {number of gcd's equal to } p^{j}} p^{j}+1 \cdot p^{\alpha}=(\alpha+1) p^{\alpha}-\alpha p^{\alpha-1} .
$$

(cf. [5, Th. 2.2]). Following [5, Cor. 2.1] G is a multiplicative function, i.e., $G(m n)=$ $G(m) G(n)$ for coprime $m, n \in \mathbb{N}$, that is, $\operatorname{gcd}(m, n)=1$. The corresponding Dirichlet series $\mathcal{G}(s)$ converges at all points of the complex plane, except at the zeros of the Riemann zeta function and the point $s=2$, where it has a double pole. Moreover, Broughan derives asymptotic expressions for the partial sums of the Dirichlet series at all real values of s.

The following generalization of G (see [2]) arises in the study of distribution of determinant values in residue class rings.

For $d \in \mathbb{N}$, we introduce the function

$$
G_{d}(n):=\sum_{\substack{k=1 \\ \operatorname{gcd}(k, n) \mid d}}^{n} \operatorname{gcd}(k, n) .
$$

Obviously, $G(n)=G_{n}(n)$ and $G_{1}(n)=\varphi(n)$, where φ is Euler's totient function.
The purpose of this note is to study the function G_{d}. In the next section we present some elementary properties of G_{d}. Furthermore, we study the corresponding Dirichlet series $\mathcal{G}_{d}(s)$. Some of the results will be applied in a forthcoming paper on the distribution of determinant values in residue class rings and finite fields. As an example we mention that in the residue class ring $\mathbb{Z}_{n}(n \in \mathbb{N})$, for $r \in \mathbb{Z}_{n}$,

$$
H_{n}(r)=\left|\left\{(i, j) \in \mathbb{Z}_{n} \times \mathbb{Z}_{n} \mid i \cdot j=r\right\}\right|,
$$

the number of products equal to r having precisely two factors in \mathbb{Z}_{n}, is equal to

$$
H_{n}(r)= \begin{cases}G_{n}(n)=G(n), & \text { if } r=0 \\ G_{d}(n)=G_{\operatorname{gcd}(r, n)}(n), & \text { if } r \neq 0\end{cases}
$$

A similar problem as the calculation of the value $H_{n}(r)$ in the domain of positive integers is the so-called multiplication table problem posed by Erdős (see [7]): how many integers can be written as a product $i \cdot j$ for a given positive integer $n \in \mathbb{N}$ with positive integers $i \leqslant n$ and $j \leqslant n$? Erdős $([7,8])$ gave the first estimates of this quantity. Tenenbaum [13] had made the results of Erdős more precise. Ford ([9, 10]) derived the exact order of magnitude of the $n \times n$ multiplication table size completely. Koukoulopolous $[11,12]$ presents a perfect overview of the actual situation and the further development of Ford-Erdős results.

2 Properties of G_{d}

The following lemma gathers some elementary properties of $G_{d}(n)$.

Lemma 1.

(i) For $m, n \in \mathbb{N}$, we have $G_{m}(n)=G_{\operatorname{gcd}(m, n)}(n)$.

In particular, for $m, \alpha \in \mathbb{N}, p \in \mathbb{P}$, we have $G_{\operatorname{gcd}\left(m, p^{\alpha}\right)}\left(p^{\alpha}\right)=G_{m}\left(p^{\alpha}\right)$;
(ii) for coprime $d, n \in \mathbb{N}$, we have $G_{d}(n)=\varphi(n)$;
(iii) for $d=d_{1} d_{2}$ with $\operatorname{gcd}\left(d_{1}, n\right)=1$, we have $G_{d}(n)=G_{d_{2}}(n)$.

Proof. (i) Since $\operatorname{gcd}(k, n)|\operatorname{gcd}(m, n) \Longleftrightarrow \operatorname{gcd}(k, n)| m$ for all $m, n, k \in \mathbb{N}$, the first formula follows from the definition. One obtains the second one by substituting $n=p^{\alpha}$.
(ii) If $\operatorname{gcd}(d, n)=1$, using (i) we get

$$
G_{d}(n)=G_{1}(n)=\varphi(n)
$$

(iii) Since $\operatorname{gcd}\left(d_{1}, n\right)=1 \Rightarrow \operatorname{gcd}\left(d_{1} d_{2}, n\right)=\operatorname{gcd}\left(d_{2}, n\right)$, it follows that

$$
G_{d}(n)=G_{d_{1} d_{2}}(n)=G_{\operatorname{gcd}\left(d_{1} d_{2}, n\right)}(n)=G_{\operatorname{gcd}\left(d_{2}, n\right)}(n)=G_{d_{2}}(n),
$$

where we used (i) twice.
The proof of the lemma is completed.
Let ρ_{d} denote the multiplicative function

$$
\rho_{d}(w)= \begin{cases}w, & \text { if } w \mid d \\ 0, & \text { if } w \nmid d\end{cases}
$$

Then we have the representation

$$
\begin{equation*}
G_{d}=\rho_{d} * \varphi \tag{1}
\end{equation*}
$$

where $*$ denotes Dirichlet product. Indeed,

$$
G_{d}(n)=\sum_{\substack{k=1 \\ \operatorname{gcd}(k, n) \mid d}}^{n} \operatorname{gcd}(k, n)=\sum_{\substack{w|d \\ w| n}} w \varphi\left(\frac{n}{w}\right)=\sum_{w \mid n} \rho_{d}(w) \varphi\left(\frac{n}{w}\right)=\left(\rho_{d} * \varphi\right)(n)
$$

Therefore, G_{d} is multiplicative as it is the Dirichlet product of multiplicative functions [1, Th. 2.5(c) and Th. 2.14].

Theorem 2. G_{d} is a multiplicative function, i.e., for coprime $m, n \in \mathbb{N}$, we have

$$
G_{d}(m n)=G_{d}(m) G_{d}(n)
$$

We also give a direct proof of the preceding theorem.
Proof. Let $d \mid n_{1} n_{2}$ with coprime $n_{1}, n_{2} \in \mathbb{N}$. This implies $d=d_{1} d_{2}$ with $d_{1} \mid n_{1}$ and $d_{2} \mid n_{2}$, so that d_{1} and d_{2} are coprime. One has

$$
G_{d}\left(n_{1} n_{2}\right)=G_{d_{1} d_{2}}\left(n_{1} n_{2}\right)=\sum_{w \mid d_{1} d_{2}} w \varphi\left(\frac{n_{1} n_{2}}{w}\right)=\sum_{w_{1} \mid d_{1}} \sum_{w_{2} \mid d_{2}} w_{1} w_{2} \varphi\left(\frac{n_{1} n_{2}}{w_{1} w_{2}}\right) .
$$

Because φ is multiplicative and $\operatorname{gcd}\left(\frac{n_{1}}{w_{1}}, \frac{n_{2}}{w_{2}}\right)=1$, one obtains

$$
G_{d}\left(n_{1} n_{2}\right)=\sum_{w_{1} \mid d_{1}} w_{1} \varphi\left(\frac{n_{1}}{w_{1}}\right) \sum_{w_{2} \mid d_{2}} w_{2} \varphi\left(\frac{n_{2}}{w_{2}}\right)=G_{d_{1}}\left(n_{1}\right) G_{d_{2}}\left(n_{2}\right)=G_{d}\left(n_{1}\right) G_{d}\left(n_{2}\right) .
$$

This completes the proof.
Theorem 3. For $n \in \mathbb{N}$ and for coprime $d_{1}, d_{2} \in \mathbb{N}$, we have

$$
G_{d_{1}}(n) \cdot G_{d_{2}}(n)=\varphi(n) \cdot G_{d_{1} d_{2}}(n) .
$$

In particular, $G_{d_{1} d_{2}}(n) \mid G_{d_{1}}(n) G_{d_{2}}(n)$.
Proof. Let $d=d_{1} d_{2}$ with $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$. By Equation (1) we have

$$
G_{d}(n)=\left(\rho_{d} * \varphi\right)(n)=\sum_{w \mid n} \rho_{d_{1} d_{2}}(w) \varphi\left(\frac{n}{w}\right)=\sum_{w_{1} \mid n} \sum_{w_{2} \mid n} \rho_{d_{1}}\left(w_{1}\right) \rho_{d_{2}}\left(w_{2}\right) \varphi\left(\frac{n}{w_{1} w_{2}}\right) .
$$

Now, decompose $n=k n_{1} n_{2}$ in a product of three pairwise coprime factors k, n_{1}, n_{2} such that $d_{i} \mid n_{i}(i=1,2)$. If $w_{i} \mid d_{i}(i=1,2)$ we conclude that

$$
\varphi\left(\frac{n}{w_{1} w_{2}}\right)=\varphi(k) \varphi\left(\frac{n_{1}}{w_{1}}\right) \varphi\left(\frac{n_{2}}{w_{2}}\right)=\varphi(k) \frac{\varphi\left(\frac{n}{w_{1}}\right) \varphi\left(\frac{n}{w_{2}}\right)}{\varphi\left(k n_{2}\right) \varphi\left(k n_{1}\right)}=\frac{\varphi\left(\frac{n}{w_{1}}\right) \varphi\left(\frac{n}{w_{2}}\right)}{\varphi(n)}
$$

Hence, we obtain

$$
\varphi(n) G_{d}(n)=\sum_{w_{1} \mid n} \rho_{d_{1}}\left(w_{1}\right) \varphi\left(\frac{n}{w_{1}}\right) \sum_{w_{2} \mid n} \rho_{d_{2}}\left(w_{2}\right) \varphi\left(\frac{n}{w_{2}}\right)=G_{d_{1}}(n) \cdot G_{d_{2}}(n)
$$

which is the desired formula.
We close this section with the following nice formula.
Theorem 4. For all $n \in \mathbb{N}$, we have

$$
\sum_{i=1}^{n} G_{i}(n)=n^{2}
$$

Proof. Analogously to the proof of Theorem 2 one has

$$
\begin{aligned}
\sum_{i=1}^{n} G_{i}(n) & =\sum_{i=1}^{n} \sum_{w \mid n} \rho_{i}(w) \varphi\left(\frac{n}{w}\right)=\sum_{w \mid n} \varphi\left(\frac{n}{w}\right) \sum_{i=1}^{n} \rho_{i}(w) \\
& =\sum_{w \mid n} \varphi\left(\frac{n}{w}\right) w \sum_{\substack{1 \leqslant i \leqslant n \\
w \mid i}} 1=\sum_{w \mid n} \varphi\left(\frac{n}{w}\right) w \frac{n}{w}=n \sum_{w \mid n} \varphi(w)=n^{2}
\end{aligned}
$$

where we used that $\sum_{w \mid n} \varphi(w)=n$.

3 Evaluation of G_{d} at positive integers

In this section we consider the problem how to calculate the values of $G_{d}(n)$ for positive integers. We start with the special case of prime powers. In the following $\delta_{\alpha \beta}$ denotes the Kronecker symbol defined by $\delta_{\alpha \beta}= \begin{cases}1, & \text { if } \alpha=\beta ; \\ 0, & \text { otherwise. }\end{cases}$
Proposition 5. For prime powers $n=p^{\alpha}(\alpha \in \mathbb{N})$ and $d=p^{\beta}, \beta \leqslant \alpha(\beta \in \mathbb{N} \cup\{0\})$, we have

$$
G_{p^{\beta}}\left(p^{\alpha}\right)=\varphi\left(p^{\alpha}\right)\left(1+\beta+\frac{\delta_{\alpha \beta}}{p-1}\right) .
$$

For prime powers $n=p^{\alpha}(\alpha \in \mathbb{N})$ and $d=p^{\beta}, \beta>\alpha(\beta \in \mathbb{N})$, we have

$$
G_{p^{\beta}}\left(p^{\alpha}\right)=G_{p^{\alpha}}\left(p^{\alpha}\right)=\varphi\left(p^{\alpha}\right)\left(1+\alpha+\frac{1}{p-1}\right) .
$$

Proof. For $0<\beta<\alpha$, we have

$$
G_{p^{\beta}}\left(p^{\alpha}\right)=\sum_{j=0}^{\beta}\left(p^{\alpha-j}-p^{\alpha-j-1}\right) p^{j}=\left(p^{\alpha}-p^{\alpha-1}\right)(1+\beta)=\varphi\left(p^{\alpha}\right)(1+\beta),
$$

and, for $\beta=\alpha$,

$$
\begin{aligned}
G_{p^{\beta}}\left(p^{\alpha}\right) & =G_{p^{\alpha}}\left(p^{\alpha}\right)=G\left(p^{\alpha}\right)=(\alpha+1) p^{\alpha}-\alpha p^{\alpha-1} \\
& =(\alpha+1)\left(p^{\alpha}-p^{\alpha-1}\right)+p^{\alpha-1}=\varphi\left(p^{\alpha}\right)(1+\beta)+p^{\alpha-1} .
\end{aligned}
$$

In the case $\beta=0$ application of Lemma 1 (ii) leads to $G_{1}\left(p^{\alpha}\right)=\varphi\left(p^{\alpha}\right)=\varphi\left(p^{\alpha}\right)(1+\beta)$. Thus, for all $0 \leqslant \beta \leqslant \alpha$, one has

$$
G_{p^{\beta}}\left(p^{\alpha}\right)=\varphi\left(p^{\alpha}\right)(1+\beta)+p^{\alpha-1} \cdot \delta_{\alpha \beta}=\varphi\left(p^{\alpha}\right)\left(1+\beta+\frac{p^{\alpha-1} \cdot \delta_{\alpha \beta}}{\varphi\left(p^{\alpha}\right)}\right) .
$$

Taking into account that $\varphi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1}$ one obtains the first result.
For $\beta>\alpha$, we have $\operatorname{gcd}\left(k, p^{\alpha}\right)\left|p^{\beta} \Longleftrightarrow \operatorname{gcd}\left(k, p^{\alpha}\right)\right| p^{\alpha}$. Hence,

$$
G_{p^{\beta}}\left(p^{\alpha}\right)=\sum_{\substack{k=1 \\ \operatorname{gcd}\left(k, p^{\alpha}\right) \mid p^{\beta}}}^{p^{\alpha}} \operatorname{gcd}\left(k, p^{\alpha}\right)=\sum_{\substack{k=1 \\ \operatorname{gcd}\left(k, p^{\alpha}\right) \mid p^{\alpha}}}^{p^{\alpha}} \operatorname{gcd}\left(k, p^{\alpha}\right)=G_{p^{\alpha}}\left(p^{\alpha}\right)
$$

and the second result follows by application of the first formula.
Remark 6. The result of Proposition 5 can be written in one single formula: for $p \in \mathbb{P}, \alpha \in \mathbb{N}$ and $\beta \in \mathbb{N} \cup\{0\}$, we have

$$
G_{p^{\beta}}\left(p^{\alpha}\right)=\varphi\left(p^{\alpha}\right)\left(1+\min (\alpha, \beta)+\frac{\delta_{\alpha, \min (\alpha, \beta)}}{p-1}\right) .
$$

Theorem 7. For $n \in \mathbb{N}$ with prime powers decomposition $n=p_{1}^{\lambda_{1}} \cdot \ldots \cdot p_{t}^{\lambda_{t}}$ and positive integer $d=c \cdot p_{1}^{\kappa_{1}} \cdots p_{t}^{\kappa_{t}}$ with $p_{j} \nmid c$ for all $j=1, \ldots, t$, and $0 \leqslant \kappa_{j}$ we have the representation ${ }^{1}$

$$
G_{d}(n)=\varphi(n) \cdot \prod_{j=1}^{t}\left(1+\min \left(\kappa_{j}, \lambda_{j}\right)+\delta_{\lambda_{j}, \min \left(\kappa_{j}, \lambda_{j}\right)} \frac{1}{p_{j}-1}\right) .
$$

Proof. Because G_{d} is multiplicative, by Theorem 2, and applying Lemma 1 (iii), we obtain

$$
\begin{aligned}
G_{d}(n) & =G_{d}\left(\prod_{j=1}^{t} p_{j}^{\lambda_{j}}\right) \\
& =\prod_{j=1}^{t} G_{c \cdot p_{1}^{k_{1}} \ldots p_{t}^{\kappa_{t}}}\left(p_{j}^{\lambda_{j}}\right) \\
& =\prod_{j=1}^{t} G_{p_{j}^{\kappa_{j}}}\left(p_{j}^{\lambda_{j}}\right) \\
& =\prod_{j=1}^{t} \varphi\left(p_{j}^{\lambda_{j}}\right)\left(1+\min \left(\kappa_{j}, \lambda_{j}\right)+\frac{\delta_{\lambda_{j} \min \left(\kappa_{j}, \lambda_{j}\right)}}{p_{j}-1}\right)
\end{aligned}
$$

where the last equation is a consequence of Rem. 6 .
We note that under the notation of Theorem 7 the equation

$$
\operatorname{gcd}(d, n)=p_{1}^{\kappa_{1}} \cdots p_{t}^{\kappa_{t}}
$$

defines unique numbers $\kappa_{j}(j=1, \ldots, t)$ with $0 \leqslant \kappa_{j} \leqslant \lambda_{j}$, such that the result can be written in the form

$$
G_{d}(n)=G_{\operatorname{gcd}(d, n)}(n)=\varphi(n) \cdot \prod_{j=1}^{t}\left(1+\kappa_{j}+\delta_{\lambda_{j}, \kappa_{j}} \frac{1}{p_{j}-1}\right) .
$$

4 Dirichlet series, averages and asymptotic properties

Some asymptotic formulas of the Broughan's gcd-sum function were derived by Broughan [5] and Bordellès [4]. The average order of the Dirichlet series of the Broughan's gcd-sum function was studied by Broughan [6] and Bordellès [3]. In this section we give some examples of Dirichlet series of arithmetic functions connected with $G_{d}(n)$. We calculate the average functions and derive some asymptotic formulas for these examples.

[^0]The Dirichlet series for an arithmetic function $f(n)$ is defined (see, e.g., [1, 11.1, p. 224]) by

$$
\mathcal{F}(s):=\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}
$$

The most prominent example is the Riemann ζ function $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$. It is clear, that $\zeta(s)$ is the Dirichlet series associated to $f(n)=1$, for all $n \in \mathbb{N}$.

For any prime number p, the Bell series [1, Sect. 2.15, p. 42ff] of an arithmetic function f is the formal power series

$$
f_{p}(x)=\sum_{n=0}^{\infty} f\left(p^{n}\right) x^{n}
$$

If f is multiplicative the corresponding Dirichlet series is given by

$$
\mathcal{F}(s)=\sum_{n=1}^{\infty} f(n) n^{-s}=\prod_{p} f_{p}\left(p^{-s}\right)
$$

provided that the Dirichlet series converges absolutely for $\operatorname{Re} s>a$ (see, e.g., [1, Th. 11.7, p. 231]).

The number $e \in \mathbb{N} \cup\{0\}$ is called the m-adic order of $n \in \mathbb{N}(m \in \mathbb{N})$, if $m^{e} \mid n$ and $m^{e+1} \nmid n$. It is denoted by $e=\nu_{m}(n)$.

4.1 The arithmetic function G_{d}

4.1.1 Dirichlet series

Since $G_{d}=\rho_{d} * \varphi($ see (1)) and

$$
\begin{aligned}
\mathcal{P}_{d}(s) & :=\sum_{n=1}^{\infty} \frac{\rho_{d}(n)}{n^{s}}=\sum_{n \mid d} \frac{1}{n^{s-1}} \\
\Phi(s) & :=\sum_{n=1}^{\infty} \frac{\varphi(n)}{n^{s}}=\frac{\zeta(s-1)}{\zeta(s)}=\prod_{p} \frac{1-p^{-s}}{1-p^{1-s}}
\end{aligned}
$$

([1, Ex. 4, p. 229 and p. 231]), we have according to [1, Th. 11.5]: for $\operatorname{Re} s>2$,

$$
\mathcal{G}_{d}(s):=\sum_{n=1}^{\infty} \frac{G_{d}(n)}{n^{s}}=\sum_{n=1}^{\infty} \frac{\rho_{d}(n) * \varphi(n)}{n^{s}}=\mathcal{P}_{d}(s) \Phi(s)
$$

so

$$
\mathcal{G}_{d}(s)=\frac{\zeta(s-1)}{\zeta(s)} \cdot \sum_{n \mid d} \frac{1}{n^{s-1}}=\prod_{p} \frac{1-p^{-s}}{1-p^{1-s}} \cdot \sum_{n \mid d} \frac{1}{n^{s-1}} .
$$

If $d=1$ one obviously has $\mathcal{G}_{1}(s)=\frac{\zeta(s-1)}{\zeta(s)}$ (cf. [1, Ex. 3, p. 231]). For $d \in \mathbb{P}$, one has

$$
\mathcal{G}_{d}(s)=\frac{\zeta(s-1)}{\zeta(s)}\left(1+\frac{1}{d^{s-1}}\right)
$$

4.1.2 Average functions

We study the asymptotic behaviour of the average function

$$
\mathcal{G}_{d}^{[\alpha]}(x):=\sum_{n \leq x} n^{-\alpha} G_{d}(n)
$$

as n tends to infinity. Taking advantage of the representation $G_{d}=\rho_{d} * \varphi$ we obtain

$$
\mathcal{G}_{d}^{[\alpha]}(x)=\sum_{n \leq x} \sum_{w \mid n} \frac{\rho_{d}(w)}{w^{\alpha}} \frac{\varphi\left(\frac{n}{w}\right)}{\left(\frac{n}{w}\right)^{\alpha}} .
$$

By application of [1, Th. 3.10, p. 65], we conclude that

$$
\mathcal{G}_{d}^{[\alpha]}(x)=\sum_{n \leq x} n^{-\alpha} \rho_{d}(n) \Phi^{[\alpha]}\left(\frac{x}{n}\right)=\sum_{w \mid d} w^{-(\alpha-1)} \Phi^{[\alpha]}\left(\frac{x}{w}\right),
$$

where $\Phi^{[\alpha]}$ denotes the average

$$
\Phi^{[\alpha]}(x):=\sum_{n \leq x} n^{-\alpha} \varphi(n)
$$

of Euler's totient function φ. We distinguish 3 cases. Because, for $\alpha \leq 1$,

$$
\Phi^{[\alpha]}(x) \sim \frac{x^{2-\alpha}}{2-\alpha} \zeta^{-1}(2)+O\left(x^{1-\alpha} \log x\right) \quad(x \rightarrow \infty)
$$

([1, Ex. 8, p. 71]), we have

$$
\mathcal{G}_{d}^{[\alpha]}(x) \sim \frac{x^{2-\alpha}}{2-\alpha} \zeta^{-1}(2) \sum_{w \mid d} \frac{1}{w}+O\left(x^{1-\alpha} \log x\right) \quad(x \rightarrow \infty)
$$

Because, for $\alpha>1, \alpha \neq 2$,

$$
\Phi^{[\alpha]}(x) \sim \frac{x^{2-\alpha}}{2-\alpha} \zeta^{-1}(2)+\frac{\zeta(\alpha-1)}{\zeta(\alpha)}+O\left(x^{1-\alpha} \log x\right) \quad(x \rightarrow \infty)
$$

([1, Ex. 7, p. 71]), we have

$$
\mathcal{G}_{d}^{[\alpha]}(x) \sim \frac{x^{2-\alpha}}{2-\alpha} \zeta^{-1}(2) \sum_{w \mid d} \frac{1}{w}+\frac{\zeta(\alpha-1)}{\zeta(\alpha)} \sum_{w \mid d} w^{-(\alpha-1)}+O\left(x^{1-\alpha} \log x\right) \quad(x \rightarrow \infty)
$$

Finally, for $\alpha=2$, we have

$$
\Phi^{[2]}(x) \sim \frac{\log x}{\zeta(2)}+\frac{\gamma}{\zeta(2)}-A+O\left(\frac{\log x}{x}\right) \quad(x \rightarrow \infty)
$$

where γ is Euler's constant and $A=\sum_{n=1}^{\infty} \mu(n) n^{-2} \log n([1$, Ex. 6, p. 71] $)$, and we conclude that

$$
\mathcal{G}_{d}^{[2]}(x) \sim \frac{1}{\zeta(2)} \sum_{w \mid d} \frac{\log (x / w)}{w}+\left(\frac{\gamma}{\zeta(\alpha)}-A\right) \sum_{w \mid d} w^{-1}+O\left(\frac{\log x}{x}\right) \quad(x \rightarrow \infty)
$$

4.2 The arithmetic function $G_{n / \operatorname{gcd}(r, n)}(n)$

Let $r \in \mathbb{N}$ be given. Consider the arithmetic function

$$
b^{(r)}(n):=G_{n / \operatorname{gcd}(r, n)}(n) .
$$

which is easily seen to be multiplicative. Let p be a prime number and put $\beta=\nu_{p}(r)$. According to Prop. 5 one has

$$
b^{(r)}\left(p^{n}\right)=G_{p^{n} / \operatorname{gcd}\left(r, p^{n}\right)}\left(p^{n}\right)=G_{p^{n-\beta}}\left(p^{n}\right)=\varphi\left(p^{n}\right)\left(1+n-\beta+\frac{\delta_{n, n-\beta}}{p-1}\right) .
$$

So, if $\beta=0$ one has $\delta_{n, n-\beta}=1$ and

$$
b^{(r)}\left(p^{n}\right)=\varphi\left(p^{n}\right)\left(1+n+\frac{1}{p-1}\right)=(n+1) p^{n}-n p^{n-1} .
$$

Therefore, for $\beta=0$, the Bell series is given by

$$
b_{p}^{(r)}(x)=\sum_{n=0}^{\infty} b^{(r)}\left(p^{n}\right) x^{n}=\sum_{n=0}^{\infty}\left((n+1) p^{n}-n p^{n-1}\right) x^{n}=\frac{1-x}{(1-p x)^{2}} .
$$

If $\beta>0$ one has $\delta_{n, n-\beta}=0$ and

$$
\begin{aligned}
b_{p}^{(r)}(x) & =\sum_{n=0}^{\infty} b^{(r)}\left(p^{n}\right) x^{n}=\sum_{n=0}^{\infty} \varphi\left(p^{n}\right)(1+n-\beta) x^{n} \\
& =\sum_{n=0}^{\infty}\left(p^{n}-p^{n-1}\right)(1+n-\beta) x^{n}=\frac{(p-1)(p x \beta-\beta+1)}{p(p x-1)^{2}} .
\end{aligned}
$$

Hence, the Dirichlet series is given by

$$
\mathcal{B}^{(r)}(s):=\frac{\zeta^{2}(s-1)}{\zeta(s)} \prod_{p \mid r} \frac{(p-1)\left(1-\left(1-p^{1-s}\right) \beta(p)\right)}{p-p^{1-s}} \quad(\operatorname{Re} s>2)
$$

where $\beta(p)=\nu_{p}(r)$.

4.3 The arithmetic function $G_{n}(\operatorname{gcd}(r, n) n)$

Let $r \in \mathbb{N}$ be given. Consider the arithmetic function

$$
a^{(r)}(n):=G_{n}(\operatorname{gcd}(r, n) \cdot n)
$$

which is easily seen to be multiplicative. Let p be a prime number and put $\beta=\nu_{p}(r)$. According to Remark 6 one has

$$
\begin{aligned}
a^{(r)}\left(p^{n}\right) & =G_{p^{n}}\left(\operatorname{gcd}\left(r, p^{n}\right) p^{n}\right)=G_{p^{n}}\left(p^{n+\min (\beta, n)}\right) \\
& =\varphi\left(p^{n+\min (\beta, n)}\right)\left(1+n+\delta_{0, \min (\beta, n)} \frac{1}{p-1}\right) .
\end{aligned}
$$

If $\beta=0$, one has $\delta_{0, \min (\beta, n)}=1$ and

$$
a^{(r)}\left(p^{n}\right)=\varphi\left(p^{n}\right)\left(1+n+\frac{1}{p-1}\right)=(n+1) p^{n}-n p^{n-1}
$$

Therefore, for $\beta=0$, the Bell series is given by

$$
a_{p}^{(r)}(x)=\sum_{n=0}^{\infty} a^{(r)}\left(p^{n}\right) x^{n}=\sum_{n=0}^{\infty}\left((n+1) p^{n}-n p^{n-1}\right) x^{n}=\frac{1-x}{(1-p x)^{2}} .
$$

If $\beta>0$ one has $\delta_{0, \min (\beta, n)}=0$ and

$$
\begin{aligned}
& a_{p}^{(r)}(x)=1+\sum_{n=1}^{\infty}(1+n) \varphi\left(p^{n+\min (\beta, n)}\right) x^{n} \\
&=1+\sum_{n=1}^{\beta}(1+n) \varphi\left(p^{2 n}\right) x^{n}+\sum_{n=\beta+1}^{\infty}(1+n) \varphi\left(p^{n+\beta}\right) x^{n} \\
&=1+\sum_{n=1}^{\beta}(1+n)\left(p^{2 n}-p^{2 n-1}\right) x^{n}+\sum_{n=\beta+1}^{\infty}(1+n)\left(p^{n+\beta}-p^{n+\beta-1}\right) x^{n} \\
&=1+\frac{p-1}{p} \sum_{n=1}^{\beta}(n+1)\left(p^{2} x\right)^{n}+p^{\beta-1}(p-1) \sum_{n=\beta+1}^{\infty}(n+1)(p x)^{n} \\
&=1+\frac{(p-1) p x\left((\beta+1)\left(p^{2} x\right)^{\beta+1}-(\beta+2)\left(p^{2} x\right)^{\beta}-p^{2} x+2\right)}{\left(p^{2} x-1\right)^{2}} \\
& \quad-\frac{(p-1) p^{2 \beta} x^{\beta+1}((\beta+1) p x-(\beta+2))}{(p x-1)^{2}}
\end{aligned}
$$

Hence, the Dirichlet series is given by

$$
\mathcal{A}^{(r)}(s):=\frac{\zeta^{2}(s-1)}{\zeta(s)} \prod_{p \mid r}\left(\frac{\left(1-p^{1-s}\right)^{2}}{1-p^{-s}} a_{p}^{(r)}\left(p^{-s}\right)\right) \quad(\operatorname{Re} s>2)
$$

where

$$
\begin{aligned}
a_{p}^{(r)}\left(p^{-s}\right)= & 1-\frac{(p-1) p^{2 \beta} p^{-s(\beta+1)}\left((\beta+1) p^{1-s}-(\beta+2)\right)}{\left(1-p^{1-s}\right)^{2}} \\
& +\frac{(p-1) p^{1-s}\left((\beta+1) p^{(2-s)(\beta+1)}-(\beta+2) p^{(2-s) \beta}-p^{2} x+2\right)}{\left(p^{2} x-1\right)^{2}}
\end{aligned}
$$

and $\beta=\beta(p)=\nu_{p}(r)$.

5 Acknowledgment

The authors are grateful to the referee for valuable remarks, in particular for pointing out the similarity of our function $H_{n}(r)$ to the famous Erdős multiplication table problem.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
[2] W. Awan, Werteverteilung der Determinanten von Matrizen über Restklassenringen und endlichen Körpern, Bachelor thesis, Friedberg, Germany, 2012.
[3] O. Bordellès, A note on the average order of the gcd-sum function, J. Integer Seq. 10 (2007), Article 07.3.3.
[4] O. Bordellès, An asymptotic formula for short sums of gcd-sum functions, J. Integer Seq. 15 (2012), Article 12.6.8.
[5] K. A. Broughan, The gcd-sum function, J. Integer Seq. 4 (2001), Article 01.2.2.
[6] K. A. Broughan, The average order of the Dirichlet series of the gcd-sum function, J. Integer Seq. 10 (2007), Article 07.4.2.
[7] P. Erdős, Some remarks on number theory, Riveon Lematematika 9 (1955), 45-48.
[8] P. Erdős, An asymptotic inequality in the theory of numbers, Vestnik Leningrad Univ. 15 (1960), 41-49.
[9] K. Ford, Integers with a divisor in $(y, 2 y]$ in J.-M. Koninck, A. Granville, F. Luca, eds., Anatomy of Integers, CRM Proc. and Lect. Notes 46, Amer. Math. Soc., Providence, RI, 2008, pp. 65-81.
[10] K. Ford, The distribution of integers with a divisor in a given interval, Annals of Math. 168 (2008), 367-433.
[11] D. Koukoulopolous, Generalized and restricted multiplication tables of integers, Ph.D. thesis, Univ. Illinois, 2010, http://dms.umontreal.ca/~koukoulo/documents/publications/phdthesis.pdf.
[12] D. Koukoulopolous, On the number of integers in a generalized multiplication table, preprint, http://arxiv.org/abs/1102.3236v3.
[13] G. Tenenbaum, Sur la probabilité qu'un entier possède un diviseur dans un intervalle donné, Compositio Math. 51 (1984), 243-263.

2010 Mathematics Subject Classification: Primary 11A05; Secondary 11A25, 11F66, 11N37, 11N56.
Keywords: multiplicative structure, arithmetic function, one-variable Dirichlet series, asymptotic results on arithmetic functions.

Received February 6 2013; revised version received June 29 2013. Published in Journal of Integer Sequences, July 292013.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1} \kappa_{j}=0$ means that p_{j} is not present in the decomposition of d, i.e., $p_{j} \nmid d$.

