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Abstract

We consider the alternating sums S
(m)
n =

∑n
k=0(−1)n−kkm

(

n
k

)

−1
, recently studied

by Belbachir, Rahmani, and Sury, and obtain some results complementary to those
found by the three authors, especially concerning generating functions, closed forms,
and asymptotic approximation.

1 Introduction

In the present note, we wish to study the sums

S(m)
n =

n
∑

k=0

(−1)n−kkm

(

n

k

)

−1

. (1)

These sums, with (−1)k instead of (−1)n−k have been recently considered by Belbachir,

Rahmani, and Sury [2] (see also Gould [3]), where they derive many properties of S
(m)
n . So,

the results reported in the present note are complementary to those obtained by the three
authors, and make some points, especially in asymptotic evaluation, more precise. Using
(−1)n−k allows us to treat only positive numbers, while maintaining the absolute value of all
the quantities taken into account. We think that this approach might improve the readability
of the paper.

For future reference, we list here the generating functions of the sums for 0 ≤ m ≤ 5 and
0 ≤ n ≤ 9. These functions have been directly computed by the formula 1, so our result
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should agree with these values.

S(0)(t) = 1 +
3

2
t2 +

5

3
t4 +

7

4
t6 +

9

5
t8 + · · ·

S(1)(t) = t +
3

2
t2 +

8

3
t3 +

10

3
t4 +

9

2
t5 +

21

4
t6 +

32

5
t7 +

36

5
t8 +

25

3
t9 + · · ·

S(2)(t) = t +
7

2
t2 + 8t3 +

85

6
t4 +

45

2
t5 +

651

20
t6 +

224

5
t7 +

294

5
t8 + 75t9 + · · ·

S(3)(t) = t +
15

2
t2 +

74

3
t3 +

175

3
t4 +

1143

10
t5 +

3969

20
t6 +

1584

5
t7 +

2376

5
t8 +

14275

21
t9 + · · ·

S(4)(t) = t +
31

2
t2 + 76t3 +

1429

6
t4 +

1161

2
t5 +

4823

4
t6 + 2240t7 +

134178

35
t8 +

43125

7
t9 + · · ·

S(5)(t) = t +
63

2
t2 +

698

3
t3 +

2905

3
t4 +

5883

2
t5 +

29253

4
t6 +

553744

35
t7 +

1081512

35
t8 +

1171825

21
t9 + · · · .

2 Recurrence relations and generating functions

The sums considered in this note are analogous to those treated in [1, 4], so we will try to
follow a similar pattern. Let us show how Staver’s identity is modified in the present context.

Theorem 1 (Staver’s identity). For even values of n ∈ N we have

S(1)
n =

n

2
S(0)

n ;

for odd values of n ∈ N we have S
(0)
n = 0.

Proof. By changing k 7→ n − k, we have

S(1)
n =

n
∑

k=0

(−1)n−kk

(

n

k

)

−1

=
n
∑

k=0

(−1)k(n − k)

(

n

k

)

−1

= n

n
∑

k=0

(−1)k

(

n

k

)

−1

−

n
∑

k=0

(−1)kk

(

n

k

)

−1

.

When n is even, (−1)k = (−1)n−k and Staver’s formula follows immediately. If n is odd,
the two last terms change sign when we consider (−1)n−k instead of (−1)k and we have

S
(0)
n = 0.

This lemma is not sufficient to go on with our study; the author [4] has shown

(

n + 1

k

)

−1

=

(

n

k

)

−1

−
k

n + 1

(

n

k

)

−1

and this allows to prove the basic result:
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Theorem 2. For the sums S
(m)
n the following recurrence relation holds true:

S(m+1)
n = (n + 1)

(

S
(m)
n+1 + S(m)

n − (n + 1)m
)

. (2)

Proof. According to the definition, by isolating the term with k = n + 1, we have

S
(m)
n+1 =

n+1
∑

k=0

(−1)n+1−kkm

(

n + 1

k

)

−1

= −

n
∑

k=0

(−1)n−kkm

(

n + 1

k

)

−1

+ (n + 1)m

(

n + 1

n + 1

)

.

We now apply the previous observation:

S
(m)
n+1 = −

n
∑

k=0

(−1)n−kkm

(

n

k

)

−1

+
n
∑

k=0

(−1)n−k k

n + 1
km

(

n

k

)

−1

+ (n + 1)m

= −S(m)
n +

1

n + 1
S(m+1)

n + (n + 1)m.

This identity can be written as:

S(m+1)
n = (n + 1)

(

S
(m)
n+1 + S(m)

n − (n + 1)m
)

which is what we wanted to prove.

Because of the initial condition (S
(0)
n ), the identity (2) corresponds to two different formu-

las, according to the fact that n is even or odd. We will see this better in the next sections,
where we deal with closed formulas and asymptotic approximation. Presently, we have two
possible approaches: either we take formula (2) as it stands and develop everything with
unitary expressions for the even and odd positions (as Belbachir, Rahmani, and Sury do),

or distinguish between even and odd cases, by introducing two sequences (E
(m)
n ) and (O

(m)
n ),

only valid for even and odd indices, respectively (obviously, E stands for “Even” and O for
“Odd”).

We decided to follow this latter approach, emphasizing the differences between terms in
even and odd positions. Actually, the sequence (E

(m)
n ) assumes a specific value, determined

by the recurrence, for every n ∈ N, but S
(m)
n = E

(m)
n if and only if n is even (otherwise,

the value of E
(m)
n is not immediately related to our problem). The same happens for O

(m)
n ,

relative to n odd. Taking into account this observation, formula (2) splits into two relations:

E(m+1)
n = (n + 1)

(

O
(m)
n+1 + E(m)

n − (n + 1)m
)

(3)

O(m+1)
n = (n + 1)

(

E
(m)
n+1 + O(m)

n − (n + 1)m
)

. (4)

From the other hand, in terms of generating functions, we immediately have

S(m)(t) =
E(m)(t) + E(m)(−t)

2
+

O(m)(t) − O(m)(−t)

2
; (5)
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thus obtaining the general formula, in case it is necessary.
We are now in a position to derive our results, some of which had already been found by

Belbachir, Rahmani, and Sury.

Theorem 3. The generating function of the sequence (E
(0)
n )n∈N is

E(0)(t) =
2

t(1 − t)
−

2

t2
ln

(

1

1 − t

)

,

while for S(0)(t) we have

S(0)(t) =
2

1 − t2
−

1

t2
ln

(

1

1 − t2

)

.

Proof. For m = 0, Staver’s formula shows that O(0)(t) = 0 and E
(1)
n = n

2
E

(0)
n . So relation (3)

corresponds to the differential equation

t

2

d

dt
E(0)(t) = t

d

dt
E(0)(t) + E(0)(t) −

1

(1 − t)2
;

this equation can be solved in an elementary way, and the result is just the formula given
in the assertion of the theorem. Finally, we observe that equation (5) reduces to S(0)(t) =
(E(0)(t) + E(0)(−t)/2 and the generating function is immediately obtained.

It is now possible to find the generating function O(1)(t):

Theorem 4. The generating function of the sequence (O
(1)
n )n∈N is

O(1)(t) = −
4 − 6t + t2

t2(1 − t)2
+

4

t3
ln

(

1

1 − t

)

.

Proof. Formula (4) becomes

O(1)(t) =
d

dt
E(0)(t) −

1

(1 − t)2

and the identity in the theorem assertion follows immediately.

Here we took into consideration the fact that O(0)(t) = 0. Analogously, we find the
generating function E(1)(t).

Theorem 5. For the sequence (E
(1)
n )n∈N we find the generating function:

E(1)(t) = −
2 − 3t

t(1 − t)2
+

2

t2
ln

(

1

1 − t

)

.

Proof. This time we use formula (3), obtaining

E(1)(t) = t
d

dt
E(0)(t) + E(0)(t) −

1

(1 − t)2
.

At this point, we only have to perform some simple computations.
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By using identity (5) we get the generating function:

S(1)(t) = −
2 − 3t

t(1 − t)2
+

2 + t

t3
ln

(

1

1 − t2

)

:

with S(0)(t) a result already obtained by Belbachir, Rahmani, and Sury in [2].
The successive generating functions can be obtained in a similar way, by applying formulas

(3) and (4). The method of coefficients gives.

E(m+1)(t) =
d

dt
O(m)(t) + t

d

dt
E(m)(t) + E(m)(t) − G((n + 1)m+1);

O(m+1)(t) =
d

dt
E(m)(t) + t

d

dt
O(m)(t) + O(m)(t) − G((n + 1)m+1).

The generating function G((n+1)m) is well-known and is used to define the Eulerian numbers
En,k

1. In fact we have G((n + 1)m) =
∑m

k=0 Em,kt
k and

G ((n + 1)m) =
E(m)(t)

(1 − t)m+1

G((n + 1)m) =
1

t
θm

(

1

1 − t

)

where θ = t
d

dt
.

The first few instances of E(m)(t) are (see sequence A008292 in OEIS):

E(1)(t) = 1

E(2)(t) = 1 + t

E(3)(t) = 1 + 4t + t2

E(4)(t) = 1 + 11t + 11t2 + t3

E(5)(t) = 1 + 26t + 66t2 + 26t3 + t4.

It is well-known that E(m)(1) = m!.
Putting everything together, we have

E(2)(t) =
2(6 − 15t + 12t2 − 4t3 + 2t4)

t3(1 − t)3
−

2t2 + 12

t4
ln

(

1

1 − t

)

;

O(2)(t) =
2(−6 + 15t − 11t2 + t3)

t2(1 − t)3
−

12

t3
ln

(

1

1 − t

)

;

E(3)(t) =
−72 + 252t − 314t2 + 157t3 − 22t4 + 5t5

t3(1 − t)4
+

2(t2 + 36)

t4
ln

(

1

1 − t

)

;

O(3)(t) = −
48 − 168t + 236t2 − 198t3 + 131t4 − 58t5 + 3t6

t4(1 − t)4
+

4(7t2 + 12)

t5
ln

(

1

1 − t

)

;

1I hate to use the same letter to denote uncorrelated quantities. This time, however, I have not been able
to refrain from using the letter E for Even and Eulerian, and the letter O for Odd and Landau’s O-notation.
To avoid ambiguity, Eulerian numbers are noted by a bold E, while Landau’s notation never uses indices or
exponents, always present in odd functions.
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and we could continue for every m ∈ N. Finally, we leave to the interested reader the
computation of the corresponding functions S(m)(t) by means of identity (5).

3 Closed formulas

By developing generating functions as shown at the end of the previous section, we obtain
expressions rapidly growing in complexity. Fortunately, formulas (3) and (4) can be used to
derive directly closed formulas, without passing through generating functions. We begin by
computing closed formulas for E

(0)
n and O

(0)
n , then proceed to compute the formulas relative

to m > 0.

Theorem 6. For m = 0 we have

E(0)
n =

2(n + 1)

n + 2
and O(0)

n = 0

Proof. We have already proved the second identity. For the first one, we use the method of
coefficients:

E(0)
n = [tn]

2

t(1 − t)
−[tn]

2

t2
ln

(

1

1 − t

)

= 2[tn+1]
1

1 − t
−2[tn+2] ln

(

1

1 − t

)

= 2−
2

n + 2
=

2(n + 1)

n + 2
.

Let us now show how formulas (3) and (4) are used to proceed with closed forms.

Theorem 7. For m = 1 we have

E(1)
n =

n(n + 1)

n + 2
and O(1)

n =
(n + 1)2

n + 3
.

Proof. By applying formula (3) we find

E(1)
n = (n + 1)

(

0 +
2(n + 1)

n + 2
− 1

)

=
n(n + 1)

n + 2
;

in the same way, by using (4):

O(1)
n = (n + 1)

(

2(n + 2)

n + 3
+ 0 − 1

)

=
(n + 1)2

n + 3
.

We can now go on and find closed formulas for our quantities; we only consider m ≤ 5,
so that the reader can compare them and the numerical values given in the Introduction:

E(2)
n =

n(n + 1)(n2 + 4n + 2)

(n + 2)(n + 4)
;

O(2)
n =

n(n + 1)2

n + 3
;
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E(3)
n =

n2(n + 1)2(n + 3)

(n + 2)(n + 4)
;

O(3)
n =

(n + 1)2(n3 + 5n2 + n − 1)

(n + 3)(n + 5)
;

E(4)
n =

n(n + 1)(n5 + 10n4 + 28n3 + 22n2 − 2n − 4)

(n + 2)(n + 4)(n + 6)
;

O(4)
n =

n(n + 1)3(n2 + 4n − 2)

(n + 3)(n + 5)
;

E(5)
n =

n2(n + 1)2(n4 + 9n3 + 20n2 + 5n − 10)

(n + 2)(n + 4)(n + 6)
;

O(5)
n =

(n + 1)2(n6 + 12n5 + 38n4 + 17n3 − 22n2 − 3n + 5)

(n + 3)(n + 5)(n + 7)
.

The starting point of the paper by Belbachir, Rahmani, and Sury was identity (2.1) in
Gould’s collection [3]. Actually, other identities of that book can be proved by the results
above; for instance:

Theorem 8. The two identities (2.7) and (2.8) in Gould’s collection:

n
∑

k=1

(−1)k−1

(

2n

k

)

−1

=
1

2(n + 1)
−

(−1)n

2

(

2n

n

)

−1

;

2n−1
∑

k=1

(−1)k−1k

(

2n

k

)

−1

=
n

n + 1

hold true.

Proof. Let us call Vn the first sum:

Vn =
n
∑

k=1

(−1)k−1

(

2n

k

)

−1

= −

n
∑

k=1

(−1)2n−k

(

2n

k

)

−1

,

relating this sum to E
(0)
2n . Here, the elements in position 1, 2, . . . , n−1 equal, by symmetry,

the elements in position 2n−1, 2n−2, . . . , n+1 so that Vn is obtained from E
(0)
2n by deleting

the elements with k = 0 and k = 2n, by adding a copy of the central element and finally by
dividing everything by 2:

Vn = −
1

2

(

E
(0)
2n − 2 + (−1)2n−n

(

2n

n

)

−1
)

= −
1

2
·
2(2n + 1)

2n + 2
+ 1 −

(−1)n

2

(

2n

n

)

−1

.

By simplifying Vn we obtain the closed form in the theorem assertion.
For identity (2.8) we call Wn the sum in the left hand side:

Wn = −

2n−1
∑

k=1

(−1)2n−kk

(

2n

k

)

−1

.
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The sum is thus related to E
(1)
2n and we have

E
(1)
2n = 0

(

2n

0

)

−1

+ (−Wn) + 2n

(

2n

2n

)

−1

;

consequently:

Wn = −E
(1)
2n + 2n = 2n −

2n(2n + 1)

2n + 2
=

2n2 + 2n − 2n2 − n

n + 1
=

n

n + 1
.

As for generating functions, also closed formulas grow rapidly in complexity. Therefore,
it is important to have approximate formulas to compute these quantities. The closed for-
mulas can be easily changed into asymptotic expansions, for example substituting 1/x to n,
expanding into a Taylor series around x = 0 and finally coming back to n. This procedure
yields the following interesting expansions:

E(0)
n = 2 −

2

n
+

4

n2
−

8

n3
+ O

(

1

n4

)

;

O(0)
n = 0;

E(1)
n = n − 1 +

2

n
−

4

n2
+

8

n3
+ O

(

1

n4

)

;

O(1)
n = n − 1 +

4

n
−

12

n2
+

36

n3
+ O

(

1

n4

)

;

E(2)
n = n2 − n + 4 −

14

n
+

52

n2
−

200

n3
+ O

(

1

n4

)

;

O(2)
n = n2 − n + 4 −

12

n
+

36

n2
−

108

n3
+ O

(

1

n4

)

;

E(3)
n = n3 − n2 + 5n − 19 +

74

n
−

292

n2
+

1160

n3
+ O

(

1

n4

)

;

O(3)
n = n3 − n2 + 5n − 19 +

76

n
−

324

n2
+

1452

n3
+ O

(

1

n4

)

;

E(4)
n = n4 − n3 + 6n2 − 26n + 116 −

542

n
+

2644

n2
−

13448

n3
+ O

(

1

n4

)

;

O(4)
n = n4 − n3 + 6n2 − 26n + 116 −

540

n
+

2580

n2
−

12540

n3
+ O

(

1

n4

)

;

E(5)
n = n5 − n4 + 7n3 − 34n2 + 168n − 871 +

4682

n
−

25924

n2
+

146888

n3
+ O

(

1

n4

)

;

O(5)
n = n5 − n4 + 7n3 − 34n2 + 168n − 871 +

4684

n
−

26052

n2
+

148676

n3
+ O

(

1

n4

)

;

These formulas suggest that we might have E
(m)
n ∼ O

(m)
n ∼ nm − nm−1, for every m ∈ N.

The next section will be dedicated to show that this is indeed the case, and something more.
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4 Asymptotics

If we look at the expansions found in the previous section, we may observe that E
(m)
n and

O
(m)
n have the same expansion up to the term O(1). If we are able to prove this fact, we are

in a position to find an asymptotic expansion of S
(m)
n , valid for every m ≥ k − 1, if k is the

number of terms we determine. In our expansion below, we will consider k = 4, which we
think sufficient to approximate all the elements S

(m)
n of interest.

First of all, we prove that E
(m)
n and O

(m)
n have the same expansion up to the term O(1).

To this purpose, let us define ∆
(m)
n = E

(m)
n − O

(m)
n and show that this difference is O(1/n),

which is precisely our assertion on E
(m)
n and O

(m)
n .

Theorem 9. For the sequence of differences ∆
(m)
n we have

∆(m)
n = −

2

n
+

2m+2

n2
+ O

(

1

n3

)

.

Proof. For small values of m the property is verified by the expansions in the previous section.
So, let us look for a recurrence relation and apply the fixed-point method. By formulas (3)
and (4) we obtain

∆(m+1)
n = −(n + 1)∆

(m)
n+1 + n∆(m)

n + ∆(m)
n .

We now suppose that ∆
(m)
n has a certain expansion and verify that it is correct. Imagine

that:

∆(m)
n =

λm

n
+

µm

n2
+

νm

n3
+ · · ·

where “· · · ” denotes terms of lower order, and (λm), (µm) and (νm) are coefficients, possibly
depending on m but not on n. If we substitute this expansion in the previous recurrence
relation, we get

λm+1

n
+

µm+1

n2
+ · · · = −λm −

µm

n + 1
−

νm

(n + 1)2
− · · · + λm +

µm

n
+

νm

n2
+ · · · +

λm

n
+

µm

n2
+ · · ·

= −
µm

n
+

µm

n2
+ · · · +

µm

n
+ · · · +

λm

n
+

µm

n2
+ · · · .

By equating terms in 1/n and 1/n2 we obtain two simple recurrence relations:

{

λm+1 = λm

µm+1 = 2µm.

The initial conditions can be deduced from the expansions in the previous section: λ0 = −2
and µ0 = 4 = 22. This implies λm = −2 and µm = 2m+2, for all m ∈ N.

This theorem explains why the formulas for E
(m)
n and O

(m)
n coincide up to the constant

term (for m > 0), that is, they coincide for the most significant terms in a possible asymptotic
expansion. In fact, this is the next step in our analysis. As a consequence of the previous
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theorem, we can consider the recurrence relation (2) and verify that its asymptotic expansion
has the form:

S(m)
n = αmnm + βmnm−1 + γmnm−2 + δmnm−3 + · · ·

for some values αm, βm, γm, δm, possibly depending on m, but not on n. In fact, we will
be able to determine explicitly these values. Although the method could be used to obtain
a complete asymptotic expansion, we think that four terms are enough to have a reasonable
approximation of the S

(m)
n ’s.

Theorem 10. The asymptotic expansion of S
(m)
n (or, equivalently, of E

(m)
n or O

(m)
n ) is

S(m)
n = nm − nm−1 + (m + 2)nm−2 −

m2 + 7m + 8

2
nm−3 + O(nm−4).

Proof. Let us suppose that the asymptotic expansion of S
(m)
n be the one given above, and

consider the recurrence relation (2). For the left hand side we have

S(m+1)
n = αm+1n

m+1 + βm+1n
m + γm+1n

m−1 + δm+1n
m−2 + · · · ;

For the right hand side we have three contributions. The first one is

(n + 1)S
(m)
n+1 = αm(n + 1)m+1 + βm(n + 1)m + γm(n + 1)m−1 + δm(n + 1)m−2 + · · ·

= αmnm+1 + αm(m + 1)nm + αm

(

m + 1

2

)

nm−1 + αm

(

m + 1

3

)

nm−2 + · · ·

+ βmnm + βmmnm−1 + βm

(

m

2

)

nm−2 + · · ·

+ γmnm−1 + γm(m − 1)nm−2 + · · · + δmnm−2 + · · · ;

the second term is

(n+1)S(m)
n = αmnm+1 +βmnm +γmnm−1 + δmnm−2 + · · ·+αmnm +βmnm−1 +γmnm−2 + · · · ;

finally, the third term is

(n + 1)m+1 = nm+1 + (m + 1)nm +

(

m + 1

2

)

nm−1 +

(

m + 1

3

)

nm−2 + · · · ;

where we ignored all the terms of order nm−3. We now collect like terms and from the
coefficients of nm+1 we obtain the recurrence relation:

αm+1 = 2αm − 1.

Since the initial condition is α0 = 1, the obvious solution is αm = 1 for every m ∈ N. We go
on with the coefficients of nm; they determine the relation:

βm+1 = (m + 1)αm + βm + βm + αm − (m + 1).
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Taking into account that αm = 1, we easily arrive to:

βm+1 = 2βm + 1.

We leave to the interested reader to justify our assertion that β0 = −1, so that βm = −1 for
all m ∈ N. The next case (coefficients of nm−1), gives the recurrence relation:

γm+1 = γm −
m(m + 1)

2
+ αm

m(m + 1)

2
+ βmm + γm;

γm+1 = 2γm − (m + 1).

For m = 2, we have γ2 = 4, and we can prove by mathematical induction that γ = m + 2.
Finally, let us come to δm, for which we collect terms in nm−2:

δm+1 = δm + γm −
m3 − m

6
+ αm

m3 − m

6
+ βm

m2 − m

2
+ γm(m − 1) + δm.

By simplifying:

δm+1 = 2δm + m(m + 2) −
m(m − 1)

2
.

We have now to determine the initial condition, that is, the value of δ0, which is not so
simple because we have δ0 = 8 for (E

(m)
n ) and δ0 = 0 for (O

(m)
n ). We can proceed in the

following way: the solution of the recurrence relation is a polynomial p(m) of degree 2; from
the values found in the previous section we know p(3) = 19, p(4) = 26 e p(5) = 34. This
information is enough to find:

p(m) = δm =
m2 + 7m + 8

2
.

As a curiosity, we observe that δm (for m = 0, 1, 2 is the mean between the values obtained
for E(m) and O(m); besides, it is a shifted version of sequence A034856 in OEIS.

Our concluding remark is that S
(m)
n ∼ nm − nm−1 for the alternating sums discussed in

this paper, while S
(m)
n ∼ nm + nm−1 for the absolute values sums considered in previous

papers [1, 4].
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