Journal of Integer Sequences, Vol. 15 (2012), Article 12.8.1

On Arithmetic Progressions of Integers with a Distinct Sum of Digits

Carlo Sanna
Italy
carlo.sanna.dev@gmail.com

Abstract

Let $b \geq 2$ be a fixed integer. Let $s_{b}(n)$ denote the sum of digits of the nonnegative integer n in the base- b representation. Further let q be a positive integer. In this paper we study the length k of arithmetic progressions $n, n+q, \ldots, n+q(k-1)$ such that $s_{b}(n), s_{b}(n+q), \ldots, s_{b}(n+q(k-1))$ are (pairwise) distinct. More specifically, let $L_{b, q}$ denote the supremum of k as n varies in the set of nonnegative integers \mathbb{N}. We show that $L_{b, q}$ is bounded from above and hence finite. Then it makes sense to define $\mu_{b, q}$ as the smallest $n \in \mathbb{N}$ such that one can take $k=L_{b, q}$. We provide upper and lower bounds for $\mu_{b, q}$. Furthermore, we derive explicit formulas for $L_{b, 1}$ and $\mu_{b, 1}$. Lastly, we give a constructive proof that $L_{b, q}$ is unbounded with respect to q.

1 Introduction

Let $b \geq 2$ be a fixed integer and let $s_{b}(n)$ denote the sum of digits of the nonnegative integer n in the base- b representation. Further let q a positive integer, we are interested in the length k of arithmetic progressions $n, n+q, \ldots, n+q(k-1)$ such that the integers $s_{b}(n), s_{b}(n+q), \ldots, s_{b}(n+q(k-1))$ are (pairwise) distinct.

There are known results on the asymptotic behavior of the sum of digits function [2, 4], and about its distribution along arithmetic progressions [3, 5]. But, to our knowledge, this particular problem has not been studied before.

More specifically, let $L_{b, q}$ denote the supremum of k as n varies in the set of nonnegative integers \mathbb{N}. We show that $L_{b, q}$ is bounded from above and hence finite. As a consequence, it makes sense to define $\mu_{b, q}$ as the smallest $n \in \mathbb{N}$ such that one can take $k=L_{b, q}$. Then, we provide upper and lower bounds for $\mu_{b, q}$. Everything allows for an effective computation of $L_{b, q}$ and $\mu_{b, q}$ by checking a finite number of candidates, though this is feasible in a short amount of time only for small values of b and q. Furthermore, we derive explicit formulas for $L_{b, 1}$ and $\mu_{b, 1}$. Lastly, we give a constructive proof that $L_{b, q}$ is unbounded with respect to q, in the sense that $\sup _{q \in \mathbb{N}^{+}} L_{b, q}=+\infty$.

2 Bounds for $L_{b, q}$ and $\mu_{b, q}$

Theorem 1. Let m be the least positive integer such that

$$
\begin{equation*}
m(b-1)+1 \leq\left\lfloor\frac{b^{m}}{q}\right\rfloor \tag{1}
\end{equation*}
$$

Then $L_{b, q} \leq 2\left\lfloor b^{m} / q\right\rfloor$.
Proof. Let $n \in \mathbb{N}, k \in \mathbb{N}^{+}$and $A:=\{n+q i: i=0,1, \ldots, k-1\}$ such that $s_{b}(n), s_{b}(n+q)$, $\ldots, s_{b}(n+q(k-1))$ are distinct. For any $t \in \mathbb{N}$ we define $A_{t}:=A \cap\left[t b^{m},(t+1) b^{m}-1\right]$. For convenience, take $M:=\left\lfloor b^{m} / q\right\rfloor$. Then for all nonnegative integers $t<u$ the following statements are true:
(i). $\left|A_{t}\right| \leq M$.
(ii). $A_{t}, A_{u} \neq \varnothing \Rightarrow \forall v \in \mathbb{N}, t<v<u \quad\left|A_{v}\right|=M$.
(iii). $\left|A_{t}\right|=M, t \not \equiv-1(\bmod b) \Rightarrow \forall u \in \mathbb{N}, u>t \quad A_{u}=\varnothing$.
(iv). $\left|A_{t}\right|=M, t \not \equiv 0(\bmod b) \Rightarrow \forall u \in \mathbb{N}, u<t \quad A_{u}=\varnothing$.
(i). For all $a \in A_{t}$ we have $s_{b}(a)=s_{b}(t)+s_{b}\left(a \bmod b^{m}\right)$ and therefore

$$
\begin{equation*}
s_{b}\left(A_{t}\right):=\left\{s_{b}(a): a \in A_{t}\right\} \subseteq\left\{s_{b}(t), s_{b}(t)+1, \ldots, s_{b}(t)+m(b-1)\right\} \tag{2}
\end{equation*}
$$

so by the hypotheses $\left|A_{t}\right|=\left|s_{b}\left(A_{t}\right)\right| \leq m(b-1)+1 \leq M$.
(ii). Since A_{t}, A_{u} are nonempty we have $n<v b^{m}$ and $(v+1) b^{m}-1<n+q(k-1)$. Then

$$
\begin{align*}
\left|A_{v}\right| & =\left|\{q i: i=0, \ldots, k-1\} \cap\left[v b^{m}-n,(v+1) b^{m}-n-1\right]\right| \\
& =\left\lvert\, q \mathbb{N} \cap\left[v b^{m}-n,(v+1) b^{m}-n-1\left[\left\lvert\, \geq\left\lfloor\frac{b^{m}}{q}\right\rfloor=M\right.,\right.\right.\right. \tag{3}
\end{align*}
$$

because $|q \mathbb{N} \cap[x, y]| \geq\lfloor(y-x+1) / q\rfloor$ for any integers $y \geq x \geq 0$. From point (i) it follows that $\left|A_{v}\right|=M$.
(iii). We have $s_{b}(t+1)=s_{b}(t)+1$. Suppose by contradiction that A_{t+1} is nonempty, so there exists $a:=\min \left(A_{t+1}\right)$. Now $s_{b}(a)=s_{b}(t)+1+s_{b}\left(a \bmod b^{m}\right)$ and, since $\left|A_{t}\right|=M$ implies $s_{b}\left(A_{t}\right)=\left\{s_{b}(t), s_{b}(t)+1, \ldots, s_{b}(t)+m(b-1)\right\}$, then necessarily $s_{b}\left(a \bmod b^{m}\right)=$ $m(b-1)$, so that $a=(t+2) b^{m}-1$. In fact, $s_{b}\left(a \bmod b^{m}\right) \leq m(b-1)$ and if we suppose $s_{b}\left(a \bmod b^{m}\right)<m(b-1)$ then $s_{b}(a) \in s_{b}\left(A_{t}\right)$, in contradiction to our standing hypotheses. But $q \leq \frac{1}{M} b^{m} \leq b^{m-1}$, so $a-q \geq(t+1) b^{m}$ and $a-q \in A_{t+1}$, a contradiction. In conclusion $A_{t+1}=\varnothing$ and, since $q<b^{m}$, this implies $A_{u}=\varnothing$.
(iv). Note that $t \geq 1$, we have $s_{b}(t-1)=s_{b}(t)-1$. Suppose that A_{t-1} is nonempty, so there exists $a:=\max \left(A_{t-1}\right)$. Then $s_{b}(a)=s_{b}(t)-1+s_{b}\left(a \bmod b^{m}\right)$ and, since $\left|A_{t}\right|=M$ implies $s_{b}\left(A_{t}\right)=\left\{s_{b}(t), s_{b}(t)+1, \ldots, s_{b}(t)+m(b-1)\right\}$, then it must be $s_{b}\left(a \bmod b^{m}\right)=0$ that is $a=(t-1) b^{m}$. But $a+q \leq t b^{m}-1$ so $a+q \in A_{t-1}$, a contradiction. Thus $A_{t-1}=\varnothing$ and, since $q<b^{m}$, it follows that $A_{u}=\varnothing$.

The sets $\left\{A_{t}\right\}_{t=0}^{\infty}$ form a partition of A, hence $A=\bigcup_{t \in \mathbb{N}} A_{t}$. On the other hand, for the statements proved, we have that at most two of the sets $\left\{A_{t}\right\}_{t=0}^{\infty}$ are nonempty and their cardinality is less than or equal to M. In conclusion $k=|A| \leq 2 M$.

Corollary 2. $L_{b, 1}=2 b, \mu_{2,1}=14$ and $\mu_{b, 1}=b^{3}-b$ if $b \geq 3$.
Proof. From Theorem 1 we know that $L_{b, 1} \leq 2 b$. It is easy to verify that $L_{2,1}=4$ and $\mu_{2,1}=14$ (OEIS $\underline{\text { A000120 }}$). If $b \geq 3$ then $L_{b, 1}=2 b$ and $\mu_{b, 1} \leq b^{3}-b$ because

$$
s_{b}\left(b^{3}-b+i\right)= \begin{cases}2(b-1)+i, & \text { if } \quad i=0,1, \ldots, b-1 ; \tag{4}\\ i-b+1, & \text { if } \quad i=b, b+1, \ldots, 2 b-1\end{cases}
$$

Now let $n<b^{3}-b$ be a nonnegative integer. Write $n=d_{2} b^{2}+d_{1} b+d_{0}$ with $d_{0}, d_{1}, d_{2} \in$ $\{0,1, \ldots, b-1\}$. If $d_{1} \neq b-1$ then let m be the least integer greater than or equal to n and not divisible by b. We have $m \leq n+1$ and $s_{b}(m)=s_{b}(m+b-1)$. If $d_{1}=b-1$ and $d_{0}=0$ then $d_{2} \leq b-2$, since $n<b^{3}-b$, and so $s_{b}(n)=s_{b}(n+2 b-2)$. If $d_{1}=b-1$ and $d_{0} \neq 0$ then let $h:=\left(d_{2}+1\right) b^{2}$. We have $h \leq n+b-1$ and $s_{b}(h+1)=s_{b}(h+b)$. In any case we have found two integers u, v such that $n \leq u<v \leq n+2 b-1$ and $s_{b}(u)=s_{b}(v)$. Therefore $\mu_{b, 1} \geq b^{3}-b$ and actually $\mu_{b, 1}=b^{3}-b$.

Theorem 3. $L_{b, b q}=L_{b, q}$ and $\mu_{b, b q}=b \mu_{b, q}$.
Proof. For all $n, i \in \mathbb{N}$ and $d \in\{0,1, \ldots, b-1\}$ we have $s_{b}(b n+d+b q i)=s_{b}(n+q i)+d$. Then for any $k \in \mathbb{N}$ we have that $s_{b}(b n+d), s_{b}(b n+d+b q), \ldots, s_{b}(b n+d+(k-1) b q)$ are distinct if and only if $s_{b}(b n), s_{b}(b n+b q), \ldots, s_{b}(b n+(k-1) b q)$ are distinct, which in turn holds if and only if $s_{b}(n), s_{b}(n+q), \ldots, s_{b}(n+(k-1) q)$ are distinct. In conclusion $L_{b, b q}=L_{b, q}$ and $\mu_{b, b q}=b \mu_{b, q}$.

Theorem 4. $\mu_{b, q}>b^{\frac{L_{b, q}-b}{b-1}}-q\left(L_{b, q}-1\right)$.
Proof. Let $r:=\left\lfloor\log _{b}\left(\mu_{b, q}+q\left(L_{b, q}-1\right)\right)\right\rfloor+1$. Since $s_{b}\left(\mu_{b, q}\right), s_{b}\left(\mu_{b, q}+q\right), \ldots s_{b}\left(\mu_{b, q}+q(k-1)\right)$ are distinct and less than or equal to $r(b-1)$, then

$$
\begin{equation*}
L_{b, q} \leq r(b-1)+1<(b-1) \log _{b}\left(\mu_{b, q}+q\left(L_{b, q}-1\right)\right)+b . \tag{5}
\end{equation*}
$$

Solving (5) for $\mu_{b, q}$ we get $\mu_{b, q}>b^{\frac{L_{b, q}-b}{b-1}}-q\left(L_{b, q}-1\right)$.
Theorem 5. $\mu_{b, q} \leq b^{3}\left[q\left(L_{b, q}-1\right)\right]^{2}-1$.
Proof. Take $r:=\left\lfloor\log _{b}\left(q\left(L_{b, q}-1\right)\right)\right\rfloor+1, \mu:=\left(\mu_{b, q} \bmod b^{r}\right), m:=\left\lfloor\mu_{b, q} / b^{r}\right\rfloor$, so that $\mu_{b, q}=$ $m b^{r}+\mu$, and let $i \in\left\{0,1, \ldots, L_{b, q}-1\right\}$. If $\mu+q i<b^{r}$ then

$$
\begin{equation*}
s_{b}\left(\mu_{b, q}+q i\right)=s_{b}(m)+s_{b}(\mu+q i), \tag{6}
\end{equation*}
$$

else if $\mu+q i \geq b^{r}$ then

$$
\begin{equation*}
s_{b}\left(\mu_{b, q}+q i\right)=s_{b}(m+1)+s_{b}\left(\mu+q i-b^{r}\right), \tag{7}
\end{equation*}
$$

for the fact that $\mu+q i \leq 2 b^{r}-2$. Define $n:=\left(b^{r+1}-1\right) b^{r}+\mu$, if $\mu+q i<b^{r}$ then

$$
\begin{equation*}
s_{b}(n+q i)=s_{b}\left(b^{r+1}-1\right)+s_{b}(\mu+q i)=(r+1)(b-1)+s_{b}(\mu+q i)>r(b-1) . \tag{8}
\end{equation*}
$$

On the other hand, if $\mu+q i \geq b^{r}$ then

$$
\begin{equation*}
s_{b}(n+q i)=s_{b}\left(b^{r+1}\right)+s_{b}\left(\mu+q i-b^{r}\right)=1+s_{b}\left(\mu+q i-b^{r}\right) \leq r(b-1), \tag{9}
\end{equation*}
$$

because $\mu+q i-b^{r} \leq b^{r}-2$ and so $s_{b}\left(\mu+q i-b^{r}\right) \leq r(b-1)-1$. In conclusion $s_{b}(n), s_{b}(n+q), \ldots, s_{b}\left(n+q\left(L_{b, q}-1\right)\right)$ are distinct and

$$
\begin{equation*}
\mu_{b, q} \leq n \leq b^{2 r+1}-1 \leq b^{3}\left[q\left(L_{b, q}-1\right)\right]^{2}-1 \tag{10}
\end{equation*}
$$

this completes our proof.

3 Arbitrarily large values of $L_{b, q}$

For the next theorem we need a lemma about the sum of digits of multiples of $b^{r}-1, r \in \mathbb{N}^{+}$. Similar results has been considered by Stolarsky [6, Lemma 2.2] in the case $b=2$, and by Balog and Dartyge [1, Lemma 1] for a generic base b.

Lemma 6. If $r \in \mathbb{N}^{+}$then $s_{b}\left(\left(b^{r}-1\right) i\right)=r(b-1)$ for all $i=1,2, \ldots, b^{r}-1$.
Proof. Let t be the greatest nonnegative integer such that $b^{t} \mid i$. If $i_{0}:=b^{-t} i$ then there exist $d_{0}, d_{1}, \ldots, d_{r-1} \in\{0,1, \ldots, b-1\}$ with $d_{0} \neq 0$ such that $i_{0}=\sum_{j=0}^{r-1} d_{j} b^{j}$ is the base- b representation of i_{0}. We have

$$
\begin{align*}
\left(b^{r}-1\right) i_{0} & =\sum_{j=r}^{2 r-1} d_{j-r} b^{j}-\sum_{j=0}^{r-1} d_{j} b^{j} \\
& =\sum_{j=r+1}^{2 r-1} d_{j-r} b^{j}+\left(d_{0}-1\right) b^{r}+b^{r}-\sum_{j=0}^{r-1} d_{j} b^{j} \\
& =\sum_{j=r+1}^{2 r-1} d_{j-r} b^{j}+\left(d_{0}-1\right) b^{r}+\sum_{j=1}^{r-1}\left(b-1-d_{j}\right) b^{j}+\left(b-d_{0}\right) \tag{11}
\end{align*}
$$

Then it is straightforward that

$$
\begin{equation*}
s_{b}\left(\left(b^{r}-1\right) i_{0}\right)=\sum_{j=r+1}^{2 r-1} d_{j-r}+\left(d_{0}-1\right)+\sum_{j=1}^{r-1}\left(b-1-d_{j}\right)+\left(b-d_{0}\right)=r(b-1) \tag{12}
\end{equation*}
$$

The claim follows from $s_{b}\left(\left(b^{r}-1\right) i\right)=s_{b}\left(\left(b^{r}-1\right) i_{0}\right)$.
Theorem 7. $\sup _{q \in \mathbb{N}^{+}} L_{b, q}=+\infty$.
Proof. Let $n \in \mathbb{N}$ and $q, k \in \mathbb{N}^{+}$such that $s_{b}(n), s_{b}(n+q), \ldots, s_{b}(n+q(k-1))$ are distinct. If t, r are the least positive integers such that $n+q k<b^{t}$ and $(b-1) b^{r-1} \geq k$ then we define

$$
\begin{align*}
n^{\prime} & =\left(\left(b^{t}-1\right) b^{2 r}+b^{2 r-1}+\left(b^{r}-1\right)\left((b-1) b^{r-1}-k+1\right)\right) b^{t}+n \\
q^{\prime} & =\left(b^{r}-1\right) b^{t}+q . \tag{13}
\end{align*}
$$

For any $i=0,1, \ldots, k$ we have

$$
\begin{equation*}
n^{\prime}+q^{\prime} i=\left(\left(b^{t}-1\right) b^{2 r}+b^{2 r-1}+\left(b^{r}-1\right)\left((b-1) b^{r-1}+i-k+1\right)\right) b^{t}+n+q i, \tag{14}
\end{equation*}
$$

and then

$$
\begin{equation*}
s_{b}\left(n^{\prime}+q^{\prime} i\right)=s_{b}\left(\left(b^{t}-1\right) b^{2 r}+b^{2 r-1}+\left(b^{r}-1\right)\left((b-1) b^{r-1}+i-k+1\right)\right)+s_{b}(n+q i) . \tag{15}
\end{equation*}
$$

If $i \leq k-1$ then $\left(b^{r}-1\right)\left((b-1) b^{r-1}+i-k+1\right)<(b-1) b^{2 r-1}$ and

$$
\begin{equation*}
s_{b}\left(n^{\prime}+q^{\prime} i\right)=t(b-1)+1+s_{b}\left(\left(b^{r}-1\right)\left((b-1) b^{r-1}+i-k+1\right)\right)+s_{b}(n+q i), \tag{16}
\end{equation*}
$$

so Lemma 6 implies that

$$
\begin{equation*}
s_{b}\left(n^{\prime}+q^{\prime} i\right)=(t+r)(b-1)+1+s_{b}(n+q i)>(t+r)(b-1) . \tag{17}
\end{equation*}
$$

On the other hand, if $i=k$ then

$$
\begin{align*}
s_{b}\left(n^{\prime}+q^{\prime} k\right) & =s_{b}\left(b^{2 r+t}+b^{r-1}-1\right)+s_{b}(n+q k)=1+(r-1)(b-1)+s_{b}(n+q k) \\
& \leq 1+(t+r-1)(b-1) \leq(t+r)(b-1) . \tag{18}
\end{align*}
$$

Therefore $s_{b}\left(n^{\prime}\right), s_{b}\left(n^{\prime}+q\right), \ldots, s_{b}\left(n^{\prime}+q k\right)$ are distinct, it follows that $L_{b, q^{\prime}}>L_{b, q}$ and hence $\sup _{q \in \mathbb{N}^{+}} L_{b, q}=+\infty$.

4 Further developments

Thanks to Theorem 1 we know that $L_{b, q}$ is not too large when q is small compared to b, e.g., if $q \leq \frac{1}{2} b$ then $L_{b, q} \leq 2 b^{2}$. Actually, it is likely that for small q there exist explicit formulas for $L_{b, q}$ and $\mu_{b, q}$ analogous to those of Corollary 2. However, when q is much larger than b the question becomes more difficult. Theorem 1 and 5 allowed us, with the aid of a personal computer, to calculate some values of $\mu_{b, q}$ and $L_{b, q}$.

$\mu_{b, q}, L_{b, q}$	$q=1$	$q=2$	$q=3$	$q=4$	$q=5$	$q=6$	$q=7$	$q=8$	$q=9$
$b=2$	14,4	28,4	58,4	56,4	242,6	116,4	109,5	112,4	994,6
$b=3$	24,6	24,3	72,6	234,5	705,9	72,3	697,10	18,3	216,6
$b=4$	60,8	56,8	60,3	240,8	1004,8	244,4	977,13	224,8	239,4

Table 1: Values of $\mu_{b, q}$ and $L_{b, q}$ for $b=2,3,4$ and $q=1,2, \ldots, 9$.
Through these series of numerical experiments we have reason to believe that the upper bound given by Theorem 1 is in some sense "astronomical" and surely can be improved. Similarly, also the upper and lower bounds for $\mu_{b, q}$ can be improved.

Many other questions remain unsolved. For instance, let $\kappa_{b, q}$ be the function sending the nonnegative integer n to the maximum $k \in \mathbb{N}$ such that $s_{b}(n), s_{b}(n+q), \ldots, s_{b}(n+q(k-1))$ are distinct. We proved that the function $\kappa_{b, q}$ is bounded. Is $\kappa_{b, q}$ definitely periodic? Does it present a fractal behavior? What is its Fourier expansion? What is its mean, variance, etc.? On the other side, for which $n \in \mathbb{N}$ is $\kappa_{b, q}(n)$ particularly small? These and other questions will be the subject of future investigations.

5 Acknowledgements

I am grateful to Salvatore Tringali (LJLL, Université Pierre et Marie Curie) for his careful proofreading and, more generally, his valuable support in the field of Mathematics. I am also thankful to the anonymous referee for his constructive comments.

References

[1] A. Balog and C. Dartyge, On the sum of the digits of multiples, Moscow J. Comb. Number Th. 2 (2012), 3-15.
[2] L. E. Bush, An asymptotic formula for the average sum of the digits of integers, Amer. Math. Monthly 47 (1940), 154-156.
[3] M. Drmota, C. Mauduit, and J. Rivat, The sum of digits function of polynomial sequences, J. Lond. Math. Soc. 84 (2011), 81-102.
[4] Y. Fang, A theorem on the k-adic representation of positive integers, Proc. Amer. Math. Soc. 130 (2002), 1619-1622.
[5] A. O. Gelfond, Sur les nombres qui ont des propriété additives et multiplicative données, Acta Arith. 13 (1967/1968), 259-265.
[6] K. B. Stolarsky, Integers whose multiples have anomalous digital frequencies, Acta Arith. 38 (1980), 117-128.

2010 Mathematics Subject Classification: Primary 11A63; Secondary 11A25, 11B25.
Keywords: Elementary number theory, radix representation, sum of digits, arithmetic progressions.
(Concerned with sequence A000120.)

Received August 5 2012; revised version received September 23 2012. Published in Journal of Integer Sequences, October 22012.

Return to Journal of Integer Sequences home page.

