

Journal of Integer Sequences, Vol. 15 (2012), Article 12.8.1

On Arithmetic Progressions of Integers with a Distinct Sum of Digits

Carlo Sanna Italy

carlo.sanna.dev@gmail.com

Abstract

Let $b \ge 2$ be a fixed integer. Let $s_b(n)$ denote the sum of digits of the nonnegative integer n in the base-b representation. Further let q be a positive integer. In this paper we study the length k of arithmetic progressions $n, n + q, \ldots, n + q(k-1)$ such that $s_b(n), s_b(n+q), \ldots, s_b(n+q(k-1))$ are (pairwise) distinct. More specifically, let $L_{b,q}$ denote the supremum of k as n varies in the set of nonnegative integers \mathbb{N} . We show that $L_{b,q}$ is bounded from above and hence finite. Then it makes sense to define $\mu_{b,q}$ as the smallest $n \in \mathbb{N}$ such that one can take $k = L_{b,q}$. We provide upper and lower bounds for $\mu_{b,q}$. Furthermore, we derive explicit formulas for $L_{b,1}$ and $\mu_{b,1}$. Lastly, we give a constructive proof that $L_{b,q}$ is unbounded with respect to q.

1 Introduction

Let $b \geq 2$ be a fixed integer and let $s_b(n)$ denote the sum of digits of the nonnegative integer n in the base-b representation. Further let q a positive integer, we are interested in the length k of arithmetic progressions $n, n + q, \ldots, n + q(k-1)$ such that the integers $s_b(n), s_b(n+q), \ldots, s_b(n+q(k-1))$ are (pairwise) distinct.

There are known results on the asymptotic behavior of the sum of digits function [2, 4], and about its distribution along arithmetic progressions [3, 5]. But, to our knowledge, this particular problem has not been studied before.

More specifically, let $L_{b,q}$ denote the supremum of k as n varies in the set of nonnegative integers \mathbb{N} . We show that $L_{b,q}$ is bounded from above and hence finite. As a consequence, it makes sense to define $\mu_{b,q}$ as the smallest $n \in \mathbb{N}$ such that one can take $k = L_{b,q}$. Then, we provide upper and lower bounds for $\mu_{b,q}$. Everything allows for an effective computation of $L_{b,q}$ and $\mu_{b,q}$ by checking a finite number of candidates, though this is feasible in a short amount of time only for small values of b and q. Furthermore, we derive explicit formulas for $L_{b,1}$ and $\mu_{b,1}$. Lastly, we give a constructive proof that $L_{b,q}$ is unbounded with respect to q, in the sense that $\sup_{q \in \mathbb{N}^+} L_{b,q} = +\infty$.

2 Bounds for $L_{b,q}$ and $\mu_{b,q}$

Theorem 1. Let *m* be the least positive integer such that

$$m(b-1) + 1 \le \left\lfloor \frac{b^m}{q} \right\rfloor.$$
(1)

Then $L_{b,q} \leq 2\lfloor b^m/q \rfloor$.

Proof. Let $n \in \mathbb{N}$, $k \in \mathbb{N}^+$ and $A := \{n + qi : i = 0, 1, \dots, k - 1\}$ such that $s_b(n)$, $s_b(n + q)$, \dots , $s_b(n + q(k - 1))$ are distinct. For any $t \in \mathbb{N}$ we define $A_t := A \cap [tb^m, (t + 1)b^m - 1]$. For convenience, take $M := \lfloor b^m/q \rfloor$. Then for all nonnegative integers t < u the following statements are true:

- (i). $|A_t| \leq M$.
- (ii). $A_t, A_u \neq \emptyset \Rightarrow \forall v \in \mathbb{N}, t < v < u \quad |A_v| = M.$
- (iii). $|A_t| = M, t \not\equiv -1 \pmod{b} \Rightarrow \forall u \in \mathbb{N}, u > t \quad A_u = \emptyset.$
- (iv). $|A_t| = M, t \not\equiv 0 \pmod{b} \Rightarrow \forall u \in \mathbb{N}, u < t \quad A_u = \emptyset.$
 - (i). For all $a \in A_t$ we have $s_b(a) = s_b(t) + s_b(a \mod b^m)$ and therefore

$$s_b(A_t) := \{s_b(a) : a \in A_t\} \subseteq \{s_b(t), s_b(t) + 1, \dots, s_b(t) + m(b-1)\},$$
(2)

so by the hypotheses $|A_t| = |s_b(A_t)| \le m(b-1) + 1 \le M$.

(ii). Since A_t , A_u are nonempty we have $n < vb^m$ and $(v+1)b^m - 1 < n + q(k-1)$. Then

$$|A_{v}| = \left| \{qi : i = 0, \dots, k-1\} \cap [vb^{m} - n, (v+1)b^{m} - n-1] \right|$$

= $\left| q\mathbb{N} \cap [vb^{m} - n, (v+1)b^{m} - n-1[\right| \ge \left\lfloor \frac{b^{m}}{q} \right\rfloor = M,$ (3)

because $|q\mathbb{N}\cap[x,y]| \ge \lfloor (y-x+1)/q \rfloor$ for any integers $y \ge x \ge 0$. From point (i) it follows that $|A_v| = M$.

(iii). We have $s_b(t+1) = s_b(t) + 1$. Suppose by contradiction that A_{t+1} is nonempty, so there exists $a := \min(A_{t+1})$. Now $s_b(a) = s_b(t) + 1 + s_b(a \mod b^m)$ and, since $|A_t| = M$ implies $s_b(A_t) = \{s_b(t), s_b(t) + 1, \ldots, s_b(t) + m(b-1)\}$, then necessarily $s_b(a \mod b^m) = m(b-1)$, so that $a = (t+2)b^m - 1$. In fact, $s_b(a \mod b^m) \le m(b-1)$ and if we suppose $s_b(a \mod b^m) < m(b-1)$ then $s_b(a) \in s_b(A_t)$, in contradiction to our standing hypotheses. But $q \le \frac{1}{M}b^m \le b^{m-1}$, so $a - q \ge (t+1)b^m$ and $a - q \in A_{t+1}$, a contradiction. In conclusion $A_{t+1} = \emptyset$ and, since $q < b^m$, this implies $A_u = \emptyset$.

(iv). Note that $t \ge 1$, we have $s_b(t-1) = s_b(t) - 1$. Suppose that A_{t-1} is nonempty, so there exists $a := \max(A_{t-1})$. Then $s_b(a) = s_b(t) - 1 + s_b(a \mod b^m)$ and, since $|A_t| = M$ implies $s_b(A_t) = \{s_b(t), s_b(t) + 1, \dots, s_b(t) + m(b-1)\}$, then it must be $s_b(a \mod b^m) = 0$ that is $a = (t-1)b^m$. But $a + q \le tb^m - 1$ so $a + q \in A_{t-1}$, a contradiction. Thus $A_{t-1} = \emptyset$ and, since $q < b^m$, it follows that $A_u = \emptyset$.

The sets $\{A_t\}_{t=0}^{\infty}$ form a partition of A, hence $A = \bigcup_{t \in \mathbb{N}} A_t$. On the other hand, for the statements proved, we have that at most two of the sets $\{A_t\}_{t=0}^{\infty}$ are nonempty and their cardinality is less than or equal to M. In conclusion $k = |A| \leq 2M$.

Corollary 2. $L_{b,1} = 2b$, $\mu_{2,1} = 14$ and $\mu_{b,1} = b^3 - b$ if $b \ge 3$.

Proof. From Theorem 1 we know that $L_{b,1} \leq 2b$. It is easy to verify that $L_{2,1} = 4$ and $\mu_{2,1} = 14$ (OEIS <u>A000120</u>). If $b \geq 3$ then $L_{b,1} = 2b$ and $\mu_{b,1} \leq b^3 - b$ because

$$s_b(b^3 - b + i) = \begin{cases} 2(b-1) + i, & \text{if } i = 0, 1, \dots, b-1; \\ i - b + 1, & \text{if } i = b, b + 1, \dots, 2b - 1. \end{cases}$$
(4)

Now let $n < b^3 - b$ be a nonnegative integer. Write $n = d_2b^2 + d_1b + d_0$ with $d_0, d_1, d_2 \in \{0, 1, \ldots, b-1\}$. If $d_1 \neq b-1$ then let m be the least integer greater than or equal to n and not divisible by b. We have $m \leq n+1$ and $s_b(m) = s_b(m+b-1)$. If $d_1 = b-1$ and $d_0 = 0$ then $d_2 \leq b-2$, since $n < b^3 - b$, and so $s_b(n) = s_b(n+2b-2)$. If $d_1 = b-1$ and $d_0 \neq 0$ then let $h := (d_2+1)b^2$. We have $h \leq n+b-1$ and $s_b(h+1) = s_b(h+b)$. In any case we have found two integers u, v such that $n \leq u < v \leq n+2b-1$ and $s_b(u) = s_b(v)$. Therefore $\mu_{b,1} \geq b^3 - b$ and actually $\mu_{b,1} = b^3 - b$.

Theorem 3. $L_{b,bq} = L_{b,q}$ and $\mu_{b,bq} = b\mu_{b,q}$.

Proof. For all $n, i \in \mathbb{N}$ and $d \in \{0, 1, \ldots, b-1\}$ we have $s_b(bn+d+bqi) = s_b(n+qi)+d$. Then for any $k \in \mathbb{N}$ we have that $s_b(bn+d), s_b(bn+d+bq), \ldots, s_b(bn+d+(k-1)bq)$ are distinct if and only if $s_b(bn), s_b(bn+bq), \ldots, s_b(bn+(k-1)bq)$ are distinct, which in turn holds if and only if $s_b(n), s_b(n+q), \ldots, s_b(n+(k-1)q)$ are distinct. In conclusion $L_{b,bq} = L_{b,q}$ and $\mu_{b,bq} = b\mu_{b,q}$.

Theorem 4. $\mu_{b,q} > b^{\frac{L_{b,q}-b}{b-1}} - q(L_{b,q}-1).$

Proof. Let $r := \lfloor \log_b(\mu_{b,q} + q(L_{b,q} - 1)) \rfloor + 1$. Since $s_b(\mu_{b,q}), s_b(\mu_{b,q} + q), \ldots s_b(\mu_{b,q} + q(k-1))$ are distinct and less than or equal to r(b-1), then

$$L_{b,q} \le r(b-1) + 1 < (b-1)\log_b(\mu_{b,q} + q(L_{b,q} - 1)) + b.$$
(5)

Solving (5) for $\mu_{b,q}$ we get $\mu_{b,q} > b^{\frac{L_{b,q}-b}{b-1}} - q(L_{b,q}-1).$

Theorem 5. $\mu_{b,q} \leq b^3 [q(L_{b,q} - 1)]^2 - 1.$

Proof. Take $r := \lfloor \log_b(q(L_{b,q}-1)) \rfloor + 1$, $\mu := (\mu_{b,q} \mod b^r)$, $m := \lfloor \mu_{b,q}/b^r \rfloor$, so that $\mu_{b,q} = mb^r + \mu$, and let $i \in \{0, 1, \ldots, L_{b,q} - 1\}$. If $\mu + qi < b^r$ then

$$s_b(\mu_{b,q} + qi) = s_b(m) + s_b(\mu + qi), \tag{6}$$

else if $\mu + qi \ge b^r$ then

$$s_b(\mu_{b,q} + qi) = s_b(m+1) + s_b(\mu + qi - b^r),$$
(7)

for the fact that $\mu + qi \leq 2b^r - 2$. Define $n := (b^{r+1} - 1)b^r + \mu$, if $\mu + qi < b^r$ then

$$s_b(n+qi) = s_b(b^{r+1}-1) + s_b(\mu+qi) = (r+1)(b-1) + s_b(\mu+qi) > r(b-1).$$
(8)

On the other hand, if $\mu + qi \ge b^r$ then

$$s_b(n+qi) = s_b(b^{r+1}) + s_b(\mu + qi - b^r) = 1 + s_b(\mu + qi - b^r) \le r(b-1),$$
(9)

because $\mu + qi - b^r \leq b^r - 2$ and so $s_b(\mu + qi - b^r) \leq r(b-1) - 1$. In conclusion $s_b(n), s_b(n+q), \ldots, s_b(n+q(L_{b,q}-1))$ are distinct and

$$\mu_{b,q} \le n \le b^{2r+1} - 1 \le b^3 [q(L_{b,q} - 1)]^2 - 1, \tag{10}$$

this completes our proof.

3 Arbitrarily large values of $L_{b,q}$

For the next theorem we need a lemma about the sum of digits of multiples of $b^r - 1$, $r \in \mathbb{N}^+$. Similar results has been considered by Stolarsky [6, Lemma 2.2] in the case b = 2, and by Balog and Dartyge [1, Lemma 1] for a generic base b.

Lemma 6. If $r \in \mathbb{N}^+$ then $s_b((b^r - 1)i) = r(b - 1)$ for all $i = 1, 2, ..., b^r - 1$.

Proof. Let t be the greatest nonnegative integer such that $b^t \mid i$. If $i_0 := b^{-t}i$ then there exist $d_0, d_1, \ldots, d_{r-1} \in \{0, 1, \ldots, b-1\}$ with $d_0 \neq 0$ such that $i_0 = \sum_{j=0}^{r-1} d_j b^j$ is the base-b representation of i_0 . We have

$$(b^{r} - 1)i_{0} = \sum_{j=r}^{2r-1} d_{j-r}b^{j} - \sum_{j=0}^{r-1} d_{j}b^{j}$$

$$= \sum_{j=r+1}^{2r-1} d_{j-r}b^{j} + (d_{0} - 1)b^{r} + b^{r} - \sum_{j=0}^{r-1} d_{j}b^{j}$$

$$= \sum_{j=r+1}^{2r-1} d_{j-r}b^{j} + (d_{0} - 1)b^{r} + \sum_{j=1}^{r-1} (b - 1 - d_{j})b^{j} + (b - d_{0}).$$
(11)

Then it is straightforward that

$$s_b((b^r - 1)i_0) = \sum_{j=r+1}^{2r-1} d_{j-r} + (d_0 - 1) + \sum_{j=1}^{r-1} (b - 1 - d_j) + (b - d_0) = r(b - 1).$$
(12)

The claim follows from $s_b((b^r - 1)i) = s_b((b^r - 1)i_0)$.

Theorem 7. $\sup_{q \in \mathbb{N}^+} L_{b,q} = +\infty.$

Proof. Let $n \in \mathbb{N}$ and $q, k \in \mathbb{N}^+$ such that $s_b(n), s_b(n+q), \ldots, s_b(n+q(k-1))$ are distinct. If t, r are the least positive integers such that $n+qk < b^t$ and $(b-1)b^{r-1} \ge k$ then we define

$$n' = \left((b^t - 1)b^{2r} + b^{2r-1} + (b^r - 1)((b - 1)b^{r-1} - k + 1) \right) b^t + n$$

$$q' = (b^r - 1)b^t + q.$$
(13)

For any $i = 0, 1, \ldots, k$ we have

$$n' + q'i = \left((b^t - 1)b^{2r} + b^{2r-1} + (b^r - 1)((b - 1)b^{r-1} + i - k + 1)\right)b^t + n + qi,$$
(14)

and then

$$s_b(n'+q'i) = s_b((b^t-1)b^{2r}+b^{2r-1}+(b^r-1)((b-1)b^{r-1}+i-k+1)) + s_b(n+qi).$$
(15)

If $i \le k - 1$ then $(b^r - 1)((b - 1)b^{r-1} + i - k + 1) < (b - 1)b^{2r-1}$ and

$$s_b(n'+q'i) = t(b-1) + 1 + s_b((b^r-1)((b-1)b^{r-1}+i-k+1)) + s_b(n+qi),$$
(16)

so Lemma 6 implies that

$$s_b(n'+q'i) = (t+r)(b-1) + 1 + s_b(n+qi) > (t+r)(b-1).$$
(17)

On the other hand, if i = k then

$$s_b(n'+q'k) = s_b(b^{2r+t}+b^{r-1}-1) + s_b(n+qk) = 1 + (r-1)(b-1) + s_b(n+qk)$$

$$\leq 1 + (t+r-1)(b-1) \leq (t+r)(b-1).$$
(18)

Therefore $s_b(n'), s_b(n'+q), \ldots, s_b(n'+qk)$ are distinct, it follows that $L_{b,q'} > L_{b,q}$ and hence $\sup_{q \in \mathbb{N}^+} L_{b,q} = +\infty$.

4 Further developments

Thanks to Theorem 1 we know that $L_{b,q}$ is not too large when q is small compared to b, e.g., if $q \leq \frac{1}{2}b$ then $L_{b,q} \leq 2b^2$. Actually, it is likely that for small q there exist explicit formulas for $L_{b,q}$ and $\mu_{b,q}$ analogous to those of Corollary 2. However, when q is much larger than b the question becomes more difficult. Theorem 1 and 5 allowed us, with the aid of a personal computer, to calculate some values of $\mu_{b,q}$ and $L_{b,q}$.

$\mu_{b,q}, L_{b,q}$	q = 1	q = 2	q = 3	q = 4	q = 5	q = 6	q = 7	q = 8	q = 9
b=2	14, 4	28, 4	58, 4	56, 4	242, 6	116, 4	109, 5	112, 4	994, 6
b = 3	24, 6	24, 3	72, 6	234, 5	705, 9	72, 3	697, 10	18, 3	216, 6
b = 4	60, 8	56, 8	60, 3	240, 8	1004,8	244, 4	977, 13	224, 8	239, 4

Table 1: Values of $\mu_{b,q}$ and $L_{b,q}$ for b = 2, 3, 4 and q = 1, 2, ..., 9.

Through these series of numerical experiments we have reason to believe that the upper bound given by Theorem 1 is in some sense "astronomical" and surely can be improved. Similarly, also the upper and lower bounds for $\mu_{b,q}$ can be improved.

Many other questions remain unsolved. For instance, let $\kappa_{b,q}$ be the function sending the nonnegative integer n to the maximum $k \in \mathbb{N}$ such that $s_b(n), s_b(n+q), \ldots, s_b(n+q(k-1))$ are distinct. We proved that the function $\kappa_{b,q}$ is bounded. Is $\kappa_{b,q}$ definitely periodic? Does it present a fractal behavior? What is its Fourier expansion? What is its mean, variance, etc.? On the other side, for which $n \in \mathbb{N}$ is $\kappa_{b,q}(n)$ particularly small? These and other questions will be the subject of future investigations.

5 Acknowledgements

I am grateful to Salvatore Tringali (LJLL, Université Pierre et Marie Curie) for his careful proofreading and, more generally, his valuable support in the field of Mathematics. I am also thankful to the anonymous referee for his constructive comments.

References

- A. Balog and C. Dartyge, On the sum of the digits of multiples, Moscow J. Comb. Number Th. 2 (2012), 3–15.
- [2] L. E. Bush, An asymptotic formula for the average sum of the digits of integers, Amer. Math. Monthly 47 (1940), 154–156.
- [3] M. Drmota, C. Mauduit, and J. Rivat, The sum of digits function of polynomial sequences, J. Lond. Math. Soc. 84 (2011), 81–102.
- [4] Y. Fang, A theorem on the k-adic representation of positive integers, Proc. Amer. Math. Soc. 130 (2002), 1619–1622.
- [5] A. O. Gelfond, Sur les nombres qui ont des propriété additives et multiplicative données, Acta Arith. 13 (1967/1968), 259–265.
- [6] K. B. Stolarsky, Integers whose multiples have anomalous digital frequencies, Acta Arith. 38 (1980), 117–128.

2010 Mathematics Subject Classification: Primary 11A63; Secondary 11A25, 11B25. Keywords: Elementary number theory, radix representation, sum of digits, arithmetic progressions.

(Concerned with sequence $\underline{A000120}$.)

Received August 5 2012; revised version received September 23 2012. Published in *Journal* of Integer Sequences, October 2 2012.

Return to Journal of Integer Sequences home page.