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Abstract

In this paper, we give a matrix decomposition method used to calculate unified

generalized Stirling numbers in an explicit, non-recursive mode, and some of its ap-

plications. Then, we define generalized factorial matrices which may be regarded as

a generalization in the form of the Vandermonde matrices, and presents some of their

properties — in particular, triangular matrix factors of the inverse matrices of the

generalized factorial matrices.

1 Introduction

The unified generalized Stirling numbers, defined by Hsu and Shuie [1], are the connection
coefficients of linear relations between generalized factorial functions. The generalized fac-
torial functions of a real or complex number x with real increment α, denoted by (x|α)n, are
special polynomials in x of degree n, as

(x|α)0 = 1, and (x|α)n = x(x − α) · · · (x − nα + α), n = 1, 2, . . . . (1)

Thus, the unified generalized Stirling numbers with real parameters α, β, γ, denoted by
S(n, k; α, β, γ), n, k = 0, 1, 2, . . ., may be defined as (see [1])

(x|α)n =
∞

∑

k=0

S(n, k; α, β, γ)(x − γ|β)k. (2)
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We see from (2) that for any α, β, γ, S(n, n; α, β, γ) = 1; and S(n, k; α, β, γ) = 0 if k > n.
Therefore, the upper limit ∞ of the summation in the right side of equality (2) may be
replaced by n.

As Hsu and Shuie pointed, the definition (2) gives a more transparent unification of
various Stirling-type numbers studied previously by other authors (see [1]). In particularly,
we see from (2) that S(n, k; 0, 0, 0) = δn,k (the Kronecker symbols), S(n, k; 1, 0, 0) = s(n, k),
S(n, k; 0, 1, 0) = S(n, k), and S(n, k; 0, 0, 1) =

(

n

k

)

, where s(n, k) and S(n, k) are the Stirling
numbers of the first and second kind respectively.

Hsu, Shuie and other authors then investigated basic properties of the unified generalized
Stirling numbers, such as recurrence relations, generating functions, convolution formulas,
congruence properties, asymptotic expansion, q-analoque formulas and corresponding com-
binatorial interpretation (see [1, 2, 3]).

2 Matrix Decomposition of the Unified Generalized

Stirling Numbers

Now let’s have the following definition.

Definition 1. the unified generalized Stirling (transform) matrix with real parameters α, β, γ,
denoted by Sα,β,γ , is defined to be an infinite-dimensional lower triangular matrix, the (n, k)th
entries of which are S(n, k; α, β, γ) (n, k = 0, 1, 2, . . .), such that

vα(x) = Sα,β,γvβ(x − γ) (3)

where vα(x) is the vector of the generalized factorials with real increment α, as follows

vα(x) = (1, x, (x|α)2, . . . , (x|α)n, . . .)T . (4)

Remark 2. It can easily be shown that equations (2) and (3) are equivalent. We may find
immediately that matrices S0,0,0 = E, S0,0,1 = B, S1,0,0 = S1, S0,1,0 = S2 are, respectively,
the infinite-dimensional unit matrix and the matrices of the binomial transform, the Stirling
transforms of the first and second kind for integer sequences.

Remark 3. We see from the matrix definition of the unified generalized Stirling numbers,
(3), that

vβ(x − γ) = Sβ,α,−γvα(x).

This leads to that
vα(x) = Sα,β,γSβ,α,−γvα(x),

namely (Sα,β,γSβ,α,−γ −E)vα(x) = 0 (the infinite-dimensional zero matrix). Because x is an
arbitrary real or complex number, we have Sα,β,γSβ,α,−γ = E, namely matrix Sβ,α,−γ is the
inverse of Sα,β,γ .

We first investigate three basic types of the generalized Stirling matrices: S0,0,γ , Sα,0,0,
and S0,β,0.
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According to the binomial theorem, we have that

(x|0)n = xn =
n

∑

k=0

(

n

k

)

γn−k(x − γ)k =
n

∑

k=0

(

n

k

)

γn−k(x − γ|0)k.

Hence, the (n, k)th entry of S0,0,γ is that

S(n, k; 0, 0, γ) = γn−k

(

n

k

)

, (n, k = 0, 1, 2, . . .). (5)

Remark 4. In case γ is an integer, S0,0,γ is just the γ-fold binomial transform matrix for an
integer sequence, namely γ successive binomial transform for an integer sequence (see [4]).

Next, we look at the generalized Stirling numbers S(n, k; α, 0, 0) (α 6= 0) defined in
expression (x|α)n =

∑n

k=0
S(n, k; α, 0, 0)xk, (n, k = 0, 1, 2, . . .).

Because (x|α)n = αn( x
α
|1)n and xk = αk( x

α
)k,

αn(
x

α
|1)n =

n
∑

k=0

S(n, k; α, 0, 0)αk(
x

α
)k.

On the other hand, ( x
α
|1)n =

∑n

k=0
S(n, k; 1, 0, 0)( x

α
)k. Hence, we have S(n, k; α, 0, 0)αk =

αnS(n, k; 1, 0, 0), which implies that

S(n, k; α, 0, 0) = αn−kS(n, k; 1, 0, 0) = αn−ks(n, k), (n, k = 0, 1, 2, . . .). (6)

Namely, the (n, k)th entry of matrix Sα,0,0 is the Stirling number s(n, k) of the first kind,
multiplied by αn−k.

Similarly, we may obtain that when β 6= 0,

S(n, k; 0, β, 0) = βn−kS(n, k; 0, 1, 0) = βn−kS(n, k), (n, k = 0, 1, 2, . . .). (7)

Namely, the (n, k)th entry of matrix S0,β,0 is the Stirling number S(n, k) of the second kind,
multiplied by βn−k.

Remark 5. We see from (5), (6), and (7) that, if θ is an integer, then each one of the
generalized Stirling numbers S(n, k; θ, 0, 0), S(n, k; 0, θ, 0) and S(n, k; 0, 0, θ)) is an integer
number.

Remark 6. In case α (or β) is an integer, matrix Sα,0,0 (or S0,β,0) defines a generalized Stirling
transform matrix of the first (or second) kind for an integer sequence. They both are a pair
of transform and inverse transform of integer sequences, if and only if α = β.

Now we may give a general decomposition formula of the unified generalized Stirling
matrices, Sα,β,γ .

Theorem 7. Let Sα,β,γ be a generalized Stirling matrix with real parameters α, β, γ. Then

Sα,β,γ = Sα,0,0S0,0,γS0,β,0. (8)
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Proof. We see from (3) that

vα(x) = Sα,0,0v0(x), v0(x) = S0,0,γv0(x − γ), v0(x − γ) = S0,β,0vβ(x − γ).

Hence we have
vα(x) = Sα,0,0S0,0,γS0,β,0vβ(x − γ).

On the other hand, we also have vα(x) = Sα,β,γvβ(x − γ). Thus,

(Sα,β,γ − Sα,0,0S0,0,γS0,β,0)vβ(x − γ) = 0.

Because x is an arbitrary real or complex number, the equality (8) holds.

Remark 8. In case all of α, β, γ are integer numbers, we may regard Sα,β,γ as a transform
matrix of integer sequences. However, we see from (8) that, it is better to regard Sα,β,γ as a
composition of three successive transforms: S0,β,0, S0,0,γ and Sα,0,0.

Remark 9. As we know that, a linear homogeneous recurrent integer sequence a(n) of order
q has the general-term with the following form: a(n) =

∑q

i=1
ciλ

n
i , (n = 0, 1, 2, . . .), where λi,

(i = 1, . . . , q) are its q real or complex characteristic values. We see from [5] that if γ is an
integer, the q characteristic values of the γ-fold binomial transform b(n) of integer sequence
a(n) are λi + γ, and the general-term of integer sequence b(n) is b(n) =

∑q

i=1
ci(λi + γ)n.

Now, we may also obtain this conclusion by using the basic relation (3). Denoting the
vectors corresponding to integer sequences a(n) and b(n) by a = (a(0), a(1), · · · , a(n), · · · )T

and b = (b(0), b(1), · · · , b(n), · · · )T , we have a =
∑q

i=1
civ0(λi), and

b = S0,0,γa = S0,0,γ

q
∑

i=1

civ0(λi) =

q
∑

i=1

ciS0,0,γv0(λi) =

q
∑

i=1

civ0(λi + γ).

Before we mention the next theorem, let us consider first the following definition.

Definition 10. Let α be an integer, and a(n) (n = 0, 1, 2, . . .) be a linear homogeneous
recurrent integer sequence of order q. The α-generalized Stirling transform of the first kind
of a(n) is defined by

b(n) =
n

∑

k=0

S(n, k; α, 0, 0)a(k).

Now, let us give another property related to the recurrent integer sequences, as follows.

Theorem 11. The α-generalized Stirling transform of the first kind of a linear homogeneous
recurrent integer sequence

a(n) =

q
∑

i=1

ciλ
n
i , n = 0, 1, 2, . . . ,

is an integer sequence with the general-term

b(n) =

q
∑

i=1

ci(λi|α)n, n = 0, 1, 2, . . . ,

where λi, (i = 1, . . . , q) are q real or complex characteristic values of a(n).
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Proof. Denoting the vectors corresponding to integer sequences a(n) and b(n) by a =
(a(0), a(1), · · · , a(n), · · · )T and b = (b(0), b(1), · · · , b(n), · · · )T , we have a =

∑q

i=1
civ0(λi),

and

b = Sα,0,0a = Sα,0,0

q
∑

i=1

civ0(λi) =

q
∑

i=1

ciSα,0,0v0(λi) =

q
∑

i=1

civα(λi),

that is, b(n) =
∑q

i=1
ci(λi|α)n, (n = 0, 1, 2, . . .). At the same time, we see from (6) that if

α is integer, each of entries of Sα,0,0 is also an integer, which implies that b(n) is an integer
sequences.

Example 12. For example, the general-term of the recurrent integer sequence of order 2
of Lucas numbers L(n) = 2, 1, 3, 4, 7, 11, 18, . . . (A000032[6]) is L(n) = c1λ

n
1 + c2λ

n
2 =

(1

2
+

√
5

2
)n + (1

2
−

√
5

2
)n. Hence, we find from Theorem 11 that the general-term of its Stirling

transform of the first kind is

L1(n) = (
1

2
+

√
5

2
|1)n + (

1

2
−

√
5

2
|1)n, n = 0, 1, 2, . . . ,

that is, L1(n) = 2, 1, 2, −3, 10, −45, 250, −1645, . . . (A213593[6]).

3 Generalized Factorial Matrices

We may see that if taking Sα,β,γ to be a p-dimensional (p = 1, 2, 3, . . .) matrix, which in fact
is the p × p upper-left sub-matrix of the (original) infinite dimensional generalized Stirling
matrix, then all of the conclusions presented in the preceding section still hold. We need to
remember always this point of view while reading this section.

Definition 13. Let x1, x2, . . . , xp be p distinct real or complex numbers, and α be a given
real parameter. The Generalized Factorial Matrices of order p is a p × p matrix, denoted
by Vα(x1, x2, . . . , xp), whose ith column entries are the entries of the p-dimensional column
vector vα(xi) (i = 1, . . . , p). That is

Vα(x1, x2, . . . , xp) = [vα(x1),vα(x2), · · · ,vα(xp)]. (9)

In particular, V0(x1, x2, . . . , xp) is just the Vandermonde matrix of p distinct parameters
x1, x2, . . . , xp. Hence we may regard the generalized factorial matrices as a generalization in
form of the Vandermonde matrices.

Example 14. For example, the 6× 6 matrices Vα(0, 1, 2, 3, 4, 5), (α = 0, 1, 2, 3) are, respec-
tively,

V0(0, 1, 2, 3, 4, 5) =

















1 1 1 1 1 1
0 1 2 3 4 5
0 1 4 9 16 25
0 1 8 27 64 125
0 1 16 81 256 625
0 1 32 243 1024 3125

















,
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V1(0, 1, 2, 3, 4, 5) =

















1 1 1 1 1 1
0 1 2 3 4 5
0 0 2 6 12 20
0 0 0 6 24 60
0 0 0 0 24 120
0 0 0 0 0 120

















,

V2(0, 1, 2, 3, 4, 5) =

















1 1 1 1 1 1
0 1 2 3 4 5
0 −1 0 3 8 5
0 3 0 −3 0 15
0 −15 0 9 0 −15
0 105 0 −45 0 45

















,

and

V3(0, 1, 2, 3, 4, 5) =

















1 1 1 1 1 1
0 1 2 3 4 5
0 −2 −2 0 4 10
0 10 8 0 −8 −10
0 −80 −56 0 40 40
0 880 560 0 −320 −280

















.

The next theorem gives basic properties of the generalized factorial matrices.

Theorem 15. Let x1, x2, . . . , xp be p distinct real or complex numbers, and α,β,γ be three
real parameters. Then the generalized factorial matrices have the following basic properties.

(i) Two generalized factorial matrices can be connected with a suitable generalized Stirling
matrice, generally like

Vα(x1, x2, . . . , xp) = Sα,β,γVβ(x1 − γ, x2 − γ, . . . , xp − γ). (10)

(ii) Determinant of the generalized factorial matrix Vα(x1, x2, . . . , xp) is

detVα(x1, x2, . . . , xp) = detV0(x1, x2, . . . , xp) =
∏

1≤i<j≤p

(xj − xi). (11)

This implies that matrix Vα(x1, x2, . . . , xp) is invertible.
(iii) The inverse of the generalized factorial matrix Vα(x1, x2, . . . , xp) is

V−1
α (x1, x2, . . . , xp) = V−1

0 (x1, x2, . . . , xp)S0,α,0, (12)

namely, the inverse of the Vandermonde matrix with the same parameters, right-multiplied
by the α-generalized Stirling matrix of the second kind.

Proof. The matrix equality (10) is the matrix form of p equalities vα(xi) = Sα,β,γvβ(xi − γ),
(i = 1, 2, . . . , p). From (10), we have Vα(x1, x2, . . . , xp) = Sα,0,0V0(x1, x2, . . . , xp). Then, we
obtain

detVα(x1, x2, . . . , xp) = detSα,0,0 detV0(x1, x2, . . . , xp).

6



Because detSα,0,0 = 1 and detV0(x1, x2, . . . , xp) =
∏

1≤i<j≤p(xj − xi), the property (11)
holds. Besides, we also see that

V−1
α (x1, . . . , xp) = V−1

0 (x1, . . . , xp)S
−1
α,0,0 = V−1

0 (x1, . . . , xp)S0,α,0,

that is, equality (12) holds.

Corollary 16. Let Vα(x1, x2, . . . , xp) be a generalized factorial matrices of p distinct real or
complex numbers x1, x2, . . . , xp, with real parameter α. Then, we may express the inverse of
matrix Vα(x1, x2, . . . , xp) as

V−1
α (x1, x2, . . . , xp) = HpLpS0,α,0. (13)

where factor matrix Lp is a lower triangular matrix, the arbitrary entry Lp(n, k) (n, k =
0, 1, . . . , p − 1) of which is determined by the following linear relations

Lp(0, 0) = 1, and
n

∏

i=1

(x − xi) =
n

∑

k=0

Lp(n, k)xk, (14)

and the matrix factor Hp is a upper triangular matrix, the arbitrary entry hp(n, k) (n, k =
0, 1, . . . , p − 1) of which is given by

hp(0, 0) = 1, hp(n, k) =

{

0, if k < n,
(

∏k+1

i=1,i6=n+1
(xn+1 − xi)

)−1

, if k ≥ n.
(15)

Proof. By using a triangular-matrix decomposition method given by Hou and Hou [7], we
may obtain

V−1
0 (x1, x2, . . . , xp) = HpLp,

where the lower triangular matrix Lp and the upper triangular matrix Hp are calculated by
using (14) and (15). Hence, we see from (12) that the Corollary holds.

Example 17. In case x1 = 0, x2 = 1, x3 = 2,. . ., xp = p − 1, we have Lp = S1,0,0, and
Hp = ST

0,0,−1Dp, where matrix Dp is a diagonal matrix, the kth diagonal entry of which is
1

k!
, (k = 0, 1, . . . , p − 1). Hence,

V−1
α (0, 1, . . . , p − 1) = HpS1,0,0S0,α,0 = ST

0,0,−1DpS1,0,0S0,α,0. (16)

namely, V−1
α (0, 1, . . . , p − 1) is a product of several triangular matrices. For example, we

may obtain the inverse matrices of the 6 × 6 generalized factorial matrix Vα(0, 1, 2, 3, 4, 5)
(α = 0, 1, 2, 3) (see Example 14), as follows

V−1
0 (0, 1, 2, 3, 4, 5) = H6S1,0,0S0,0,0 = H6S1,0,0 =

















5 −77

12

71

24
− 7

12

1

24

−10 107

6
−59

6

13

6
−1

6

10 −39

2

49

4
−3 1

4

−5 61

6
−41

6

11

6
−1

6

1 −25

12

35

24
− 5

12

1

24

















,
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V−1
1 (0, 1, 2, 3, 4, 5) = H6S1,0,0S0,1,0 = H6 =

















1 −1 1

2
−1

6

1

24
− 1

120

0 1 −1 1

2
−1

6

1

24

0 0 1

2
−1

2

1

4
− 1

12

0 0 0 1

6
−1

6

1

12

0 0 0 0 1

24
− 1

24

0 0 0 0 0 1

120

















,

V−1
2 (0, 1, 2, 3, 4, 5) = H6S1,0,0S0,2,0 =

















1 −1

2

1

8
− 1

24
− 1

24
− 1

120

0 0 0 1

8

1

4

1

24

0 1

2
−1

4
−1

4
− 7

12
− 1

12

0 0 0 5

12

2

3

1

12

0 0 1

8
−3

8
−3

8
− 1

24

0 0 0 1

8

1

12

1

120

















,

and

V−1
3 (0, 1, 2, 3, 4, 5) = H6S1,0,0S0,3,0 =

















1 −1

3
0 −1

3
−1

8
− 1

120

0 0 1

3

11

6

2

3

1

24

0 0 −5

6
−25

6
−17

12
− 1

12

0 1

3
1 29

6

3

2

1

12

0 0 −5

6
−17

6
−19

24
− 1

24

0 0 1

3

2

3

1

6

1

120

















,

where matrices S0,2,0 and S0,3,0 are the 2- and 3-generalized Stirling matrices of the second
kind, their arbitrary entries are 2n−kS(n, k) and 3n−kS(n, k) respectively.
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