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Abstract

The concept of Mersenne primes is studied in real quadratic fields with class number
one. Computational results are given. The field Q(

√
2) is studied in detail with a focus

on representing Mersenne primes in the form x
2 + 7y

2. It is also proved that x is
divisible by 8 and y ≡ ±3 (mod 8), generalizing a result of F. Lemmermeyer, first
proved by H. W. Lenstra and P. Stevenhagen using Artin’s reciprocity law.

1 Introduction

It is well known that ad − 1 divides an − 1 for each divisor d of n, and if n = p, a prime, then

ap − 1 = (a − 1)(1 + a + a2 + · · · + ap−1)

and if ap−1 is a prime, then a = 2. Number theorists of all persuasions have been fascinated
by prime numbers of the form 2p − 1 ever since Euclid used them for the construction of
perfect numbers. In modern times, they are named after Marin Mersenne (1588-1648). A
well known result due to Euclid is that, if 2p−1 is a prime then 2p−1(2p−1) is perfect. Much
later Euler proved the converse, every even-perfect number has this form.

Mersenne primes have been studied by amateurs as well as specialists. Mersenne primes
are used in cryptography too in generating pseudorandom numbers. By far, the most
widely used technique for pseudorandom number generation is an algorithm first proposed
by Lehmer, known as the linear congruential method. It is generated by the recursion
Xn+1 ≡ aXn (mod M31), where M31 is the Mersenne prime 231−1. Of the more than two bil-
lion choices for a, only a handful of multipliers are useful. One such value is a = 75 = 16807,
which was originally designed for use in the IBM 360 family of computers, Stallings [10].
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On March 3, 1998, the birth centenary of Emil Artin was celebrated at the Universiteit
van Amsterdam. The paper Lenstra and Stevenhagen [5] is based on two lectures given on
the occasion. We quote from Lenstra and Stevenhagen [5]: “Artin’s reciprocity law is one
of the cornerstones of class field theory. To illustrate its usefulness in elementary number
theory, we shall apply it to prove a recently observed property of Mersenne primes.” The
property of Mersenne primes referred to is the following: if Mp = 2p − 1 is prime and p ≡ 1
(mod 3), then Mp = x2 + 7y2 for some integers x, y and one always has x ≡ 0 (mod 8) and
y ≡ ±3 (mod 8). This was first observed by Franz Lemmermeyer.

Many have attempted to generalize the notion of Mersenne primes and even-perfect
numbers to complex quadratic fields with class number 1. One reason is that they have only
finitely many units. Indeed, with the exception of Q(

√
−1) and Q(

√
−3), the other seven

complex quadratic fields with class number 1 have only two units, ±1. Spira [9] defined
Mersenne primes over Q(

√
−1) to give a useful definition of even-perfect numbers over Z[i],

the ring of Gaussian integers. His work was continued later by McDaniel [6, 7] to give
an analogue of Euclid-Euler theorem over Q(

√
−1) and Q(

√
−3). In both the papers the

concept of Mersenne primes is used to give a valid definition of even-perfect numbers.
Recently Berrizbeitia and Iskra [1] studied Mersenne primes over Gaussian integers and

Eisenstein integers. The primality of Gaussian Mersenne numbers and Eisenstein Mersenne
numbers are tested using biquadratic reciprocity and cubic reciprocity laws respectively.

In this paper the concept of Mersenne primes is studied in real quadratic fields K = Q(
√

d)
with class number 1, so that unique factorization holds and irreducibles are always prime.

We denote the ring of integers of K by OK,

OK =

{

Z[
√

d], if d ≡ 2, 3 (mod 4);

Z[1+
√

d
2

], if d ≡ 1 (mod 4).

Since K is a unique factorization domain, irreducibles are primes in these domains. Hence
for any η ∈ K the two factorings

η = πk1

1 πk2

2 · · ·πkr
r and η = ǫ1π

k1

1 ǫ2π
k2

2 · · · ǫrπ
kr
r

are considered to be one and the same, where ǫi are units and πi are irreducibles.
We define Mp,α = αp−1

α−1
such that α ∈ OK is irreducible and u = α−1 is a unit other than

±1. Then Mp,α may be called as an analog of Mersenne prime if the norm of Mp,α namely
N(Mp,α) = N(αp−1

a−1
) is a rational prime. Condition for the irreducibility of α = 1 + u ∈ OK

such that α − 1 is a unit (other than ±1) is derived in the next section. For this we study
the case N(α−1) = N(u) = ±1 separately. We also give a list of such quadratic fields and a
few Mersenne primes in those fields. Computational results show that, among real quadratic
fields, Mersenne primes in Q(

√
2) have a definite structure.

The special property of the usual Mersenne primes observed by Franz Lemmermeyer
and proved in Lenstra and Stevenhagen [5] admits a generalization to Mersenne primes over
Q(

√
2). This property appears to be special only to Q(

√
2). Some interesting properties of

Mersenne primes and recent primality tests to check the primality of Mersenne numbers in
Q(

√
2) are given. Also, the usual Mersenne primes given by Mp = 2p − 1, can be obtained

from the field K = Q(
√

2) without altering the conditions on Mp,α.
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2 Basic Results

Below we consider various cases under which α is irreducible.

Theorem 1. Let d ≡ 2, 3 (mod 4) and N(α− 1) = −1. Then α is irreducible if and only if
d = 2 and u ∈ {1 +

√
2, 1 −

√
2, −1 +

√
2, −1 −

√
2}.

Proof. Let α be irreducible and u = a + b
√

d. Then α = (a + 1) + b
√

d. Hence N(α) =
(a + 1)2 − 2b2 = N(u) + 2a + 1 = 2a. Since α is irreducible, 2a should be a rational prime.
Hence a = ±1. With a = 1, u = 1 + b

√
d and N(u) = −1 = 1− b2d. i.e., b2d = 2. Since d is

square-free, d = 2 and b = ±1. Similarly with a = −1, we get b = ±1 and d = 2.
Conversely let d = 2 and u = a+b

√
2 be any unit in Q(

√
2). Then α = (a+1)+b

√
2 and

N(α) = (a+1)2−2b2 = a2−2b2+2a+1 = N(u)+2a+1 = 2a, is a rational prime, if and only
if a = ±1. As before, we get b = ±1. Hence different choices of u for which α is irreducible
are respectively, 1 +

√
2, 1 −

√
2, −1 +

√
2 and −1 −

√
2. As 1 +

√
2 is the fundamental

unit, these values are, u,−u−1, u−1,−u. Corresponding α values are, 2 +
√

2, 2 −
√

2,
√

2
and −

√
2.

Since 2 −
√

2 and −
√

2 are the conjugates of 2 +
√

2 and
√

2 respectively, we compute
Mp,α with α = 2 +

√
2 and

√
2.

For α = 2 +
√

2 a few Mersenne primes in Q(
√

2) are given below:

p Mp,α N(Mp,α)

2 3 +
√

2 7

3 9 + 5
√

2 31

5 97 + 67
√

2 431

7 1121 + 791
√

2 5279

11 152193 + 107615
√

2 732799

Table 1: Mersenne primes in Q(
√

2).

The next three Mersenne primes are found at p = 73, with

N(Mp,α) = 851569055172258793218602741480913108991,

p = 89 with

N(Mp,α) = 290315886781191681464330388772329064268797313023,

and at p = 233 with

N(Mp,α) = 18060475427282023033368001231166441784737806891537

806547065314167911959518498581747712829157156517940837234519177963497324543.

With α =
√

2, Mp,α = (
√

2)p−1√
2−1

. Thus N(Mp,α) = 2p − 1, giving all the usual Mersenne
numbers.
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Theorem 2. Let d ≡ 1 (mod 4) and α − 1 = u = a+b
√

d
2

be a unit such that, N(u) =
N(α− 1) = −1. Then α is irreducible if and only if a is a rational prime and b is some odd
integer.

Proof. By hypothesis, N(α) = (a+2)2−db2

4
= a, since N(u) = −1. For α to be irreducible a

should be an odd rational prime. Indeed if a = 2 then u = 2+b
√

d
2

and N(u) = 4−db2

4
= −1

⇒ b2d = 8. This is impossible since d ≡ 1 (mod 4). Hence it is clear that b is some odd
integer. Thus the analogs of Mersenne primes are defined for d ≡ 1 (mod 4) whenever units

are of the form u = p+(2n+1)
√

d

2
, where n ∈ Z and p is an odd rational prime. The converse

is straightforward since the norm of α is a = p, a rational prime by assumption.

Table 2 shows the values of d ≡ 1 (mod 4), d < 500 for which the class number is 1,
N(u) = −1 and α is irreducible.

Q(
√

d) u α N(α)

Q(
√

13) (3+
√

13
2

) (5+
√

13
2

) 3

Q(
√

29) (5+
√

29
2

) (7+
√

29
2

) 5

Q(
√

53) (7+
√

53
2

) (9+
√

53
2

) 7

Q(
√

149) (61+5
√

149
2

) (63+5
√

149
2

) 61

Q(
√

173) (13+
√

173
2

) (15+
√

173
2

) 13

Q(
√

293) (17+
√

293
2

) (19+
√

293
2

) 17

Table 2: d ≡ 1 (mod 4) N(u) = −1 ; α is irreducible.

Theorem 3. Let d ≡ 2, 3 (mod 4) and u = a + b
√

d be a unit, such that N(u) = 1. Then α

is always reducible.

Proof. By hypothesis, α = (a + 1) + b
√

d and N(α) = 2(1 + a), which is prime only if a = 0,
which contradicts N(u) = 1. Hence α is not irreducible.

Theorem 4. Let d ≡ 1 (mod 4) and u = a+b
√

d
2

be a unit such that N(u) = 1. Then, α is
irreducible if and only if a + 2 is a rational prime and b is some odd integer.

Proof. By hypothesis, N(α) = (a+2)2−db2

4
= a + 2, since N(u) = 1. For α to be irreducible

a + 2 should be a rational prime. Clearly a 6= 0 and a2 ≡ 1 (mod 4). Since d ≡ 1 (mod 4)
it is clear that b is some odd integer. Thus the analogs of Mersenne primes are defined for

d ≡ 1 (mod 4) whenever units are of the form u = a+(2n+1)
√

d

2
, where n ∈ Z and a + 2 is an

odd rational prime. Converse is straightforward as in theorem 2.

Table 3 below shows the values of d ≡ 1 (mod 4), d < 500 for which the class number is
1, N(u) = 1 and α is irreducible.
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Q(
√

d) u α N(α)

Q(
√

21) 5+
√

21
2

7+
√

21
2

7

Q(
√

77) 9+
√

77
2

11+
√

77
2

11

Q(
√

93) 29+3
√

93
2

31+3
√

93
2

31

Q(
√

237) 77+5
√

237
2

79+5
√

237
2

79

Q(
√

437) 21+
√

437
2

23+
√

437
2

23

Q(
√

453) 149+7
√

453
2

151+7
√

453
2

151

Table 3: d ≡ 1 (mod 4); N(u) = 1; α is irreducible.

As an illustration we consider the following table.

p N(Mp,α)
17 223358425353211

Table 4: Mersenne primes in Q(
√

21), u = 5+
√

21
2

.

The next Mersenne prime is found at p = 47.
Similar calculations are obtained for Q(

√
77), the fundamental unit is u = 9+

√
77

2
and

α = 11+
√

77
2

.

p N(Mp,α)
2 23
7 10248701

Table 5: Mersenne primes in Q(
√

77), u = 9+
√

77
2

.

The next Mersenne prime is found at p = 71.
The values of u for Tables 2 and 3 are taken from Cohen [3].

2.1 Observations

1. In Tables 2 and 3 above, we have chosen only the fundamental unit u in Q(
√

d).
However it is possible that α = 1+u is not irreducible with u as fundamental unit and
yet α′ = 1 + u′ is irreducible for some other unit u′ in Q(

√
d).

As an illustration we consider Q(
√

5). Here u = 1+
√

5
2

is the fundamental unit. But,

α = 1 + u = 3+
√

5
2

= u2 is again a unit! However, with u′ = u2 = 3+
√

5
2

, we get α′ =

1 + u′ = 5+
√

5
2

and N(α′) = 5, so α′ is irreducible. Another choice is u5 = u
′′

= 11+5
√

5
2

and α
′′

= 1 + u
′′

= 13+5
√

5
2

is irreducible since N(α
′′

) = 11.

2. Theorems 1 and 3 imply the following: Among all fields Q(
√

d), d ≡ 2, 3 (mod 4)
Q(

√
2) is the only field where α = 1 + u is irreducible. There are essentially only two

choices for α, namely
√

2 and 2 +
√

2.
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Similar to usual Mersenne primes in Z, quadratic Mersenne norms have the following prop-
erties:

2.2 Properties of N(Mp,α)

1. If N(Mn,α) is prime, then n is prime.

2. The sequence {N(Mn,α)}∞n=1 is an increasing sequence of integers that starts at 1.

3. If d divides n then Md,α divides Mn,α in Q(
√

d) and N(Md,α) divides N(Mn,α).

4. If d and n are relatively prime then Md,α is relatively prime to Mn,α in Q(
√

d) and
N(Mn,α) is relatively prime to N(Md,α).

Experimental evidence shows that Mersenne primes are sparse in Q(
√

d) for d ≡ 1 (mod 4).
Some interesting properties of Mersenne primes in Q(

√
2) are given below.

2.3 Properties of N(Mp,α) in Q(
√

2)

1. Since α = 1 + u = 2 +
√

2 = u
√

2, where u is the fundamental unit, we have
αn = an + bn

√
2 = un(

√
2)n, for any integer n > 0 and an, bn ∈ Z. A small calculation

also reveals that

αn =

{

(2
n−1

2

√
2)un, if n is odd;

2
n
2 un, if n is even.

Rewriting this,

αn =

{

(2
n−1

2

√
2)(vn + wn

√
2), if n is odd, wn, vn ∈ Z;

2
n
2 (v′

n + w′
n

√
2), if n is even, v′

n, w
′
n ∈ Z.

It can be noted that wn, the coefficient of
√

2 in un is odd if n is odd. Further,
2

n+1

2 wn = an and 2
n−1

2 vn = bn.

And w′
n, the coefficient of

√
2 in un is even if n is even. Further, 2

n
2 v′

n = an and
2

n
2 w′

n = bn.

For n odd, we have N(u)n = −1, so

N(αn) = N(2
n−1

2

√
2)N(u)n = N(2

n−1

2 )N(
√

2)(−1)n = 2n−1(−2)(−1) = 2n.

For n even, N(u)n = 1, and

N(αn) = N(2
n
2 )N(u)n = N(2

n
2 )(1) = 2n.
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2. For any odd prime p, let αp = (2
p−1

2

√
2)(vp + wp

√
2).

Then

N(αp − 1) = (2
p+1

2 wp − 1)2 − 2(2
p−1

2 vp)
2

= (2p+1wp
2 + 1 − 2

p+3

2 wp) − 2pvp
2

= 2p(2wp
2 − vp

2) − 2
p+3

2 wp + 1

= 2p − 2
p+3

2 wp + 1.

Thus,

N(Mp,α) = 2
p+3

2 wp − 2p − 1.

3. As already pointed out, ap has a factor of 2
p+1

2 . Hence 2ap ≡ 0 (mod 4). This further
implies that, N(Mp,α) ≡ −1 (mod 4) for p ≥ 2 and N(Mp,α) ≡ −1 (mod 8) for p > 2.

The next three properties are consequences of quadratic reciprocity, and
( ·
·
)

denotes
the Legendre symbol.

4. Let p be an odd prime and p ≡ ±1 (mod 8. Then

2
p+3

2 = 222
p−1

2 ≡ 4 (mod p).

If p ≡ ±3 (mod 8), then

2
p+3

2 = 222
p−1

2 ≡ −4 (mod p).

Combining the above we get

N(Mp,α) ≡
{

4wp − 3 (mod p), if p ≡ ±1 (mod 8);

−4wp − 3 (mod p), if p ≡ ±3 (mod 8).

5. If N(Mp,α) is a rational prime and q is any other prime then

(

N(Mp,α)

q

)(

q

N(Mp,α)

)

=

{

1, if q ≡ 1 (mod 4);

−1, if q ≡ 3 (mod 4).

6. If N(Mp,α) is a rational prime then
(

2
N(Mp,α)

)

= 1 since N(Mp,α) ≡ −1 (mod 8). Hence
√

2 ∈ FN(Mp,α) the finite field with N(Mp,α) elements.

3 Testing for primality

Several primality tests are available and some are specially designed for special numbers, an
example being the famous Lucas-Lehmer test for the usual Mersenne primes. We show that
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the generalized Mersenne numbers of Q(
√

2) can be put in a special form, so that, recent
primality tests can be used to determine whether they are prime. Now,

N(Mp,α) = 2
p+3

2 wp − 2p − 1,

or
N(Mp,α) = 2

p+3

2 (wp − 2
p−3

2 ) − 1.

Since wp is odd, (wp − 2
p−3

2 ) is odd for p > 3.
For p > 3,

N(Mp,α) = h.2
p+3

2 − 1, where h = (wp − 2
p−3

2 ), odd.

An algorithm to test the primality of numbers of the form h · 2n ± 1, for any odd integer h

such that, h 6= 4m − 1 for any m is described in Bosma [2]. It can be noted that, h is not
equal to 4m − 1 in Mp,α for any m. Hence this algorithm can be used to test the primality
of Mp,α.

4 Primes of the form x2 + 7y2

The problem of representing a prime number by the form x2 + ny2, where n is any fixed
positive integer dates back to Fermat. This question was best answered by Euler who spent
40 years in proving Fermat’s theorem and thinking about how they can be generalized, he
proposed some conjectures concerning p = x2+ny2, for n > 3. These remarkable conjectures,
among other things, touch on quadratic forms and their composition, genus theory, cubic
and biquadratic reciprocity. Refer Cox [4] for a thorough treatment.

Euler became intensely interested in this question in the early 1740’s and he mentions
numerous examples in his letters to Goldbach. One among several of his conjectures stated
in modern notation is

(−7

p

)

= 1 ⇐⇒ p ≡ 1, 9, 11, 15, 23, 25 (mod 28).

The following lemma gives necessary and sufficient condition for a number m to be repre-
sented by a form of discriminant D.

Lemma 5. Let D ≡ 0, 1 (mod 4) and m be an integer relatively prime to D. Then m is
properly represented by a primitive form of discriminant D if and only if D is a quadratic
residue modulo m.

As a corollary, we have the following:

Corollary 6. Let n be an integer and p be an odd prime not dividing n. Then
(

−n
p

)

= 1 if

and only if p is represented by a primitive form of discriminant −4n.

In 1903, Landau proved a conjecture of Gauss (theorem 7 below).
Let h(D) denote the number of classes of primitive positive definite forms of discriminant

D, i.e., h(D) is equal to the number of reduced forms of discriminant D.
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Theorem 7. Let n be a positive integer. Then

h(−4n) = 1 ⇔ n = 1, 2, 3, 4 or 7.

One may note that, x2 + ny2 is always a reduced form with discriminant −4n.

In this paper we consider the case n = 7 and represent N(Mp,α) in the form x2 + 7y2

whenever Mp,α is a Mersenne prime in Q(
√

2).
x2 + 7y2 is the only reduced form of discriminant −28, and it follows that

p = x2 + 7y2 ⇐⇒ p ≡ 1, 9, 11, 15, 23, 25 (mod 28).

for primes p 6= 7.
The special property of the usual Mersenne primes over Z referred to in the beginning,

Lenstra and Stevenhagen [5], has the following generalization over Q(
√

2):

Theorem 8. If N(Mp,α) is a rational prime, with α = 2 +
√

2, then N(Mp,α) is always a
quadratic residue (mod 7), and hence it can be written as x2 + 7y2. Also, x is divisible by
8, and y ≡ ±3 (mod 8).

The detailed proof is given in Palimar [8], using Artin’s reciprocity law.
Here we prove the theorem in two stages: first we show that N(Mp,α) is always a quadratic

residue (mod 7). Next, we give an outline of the proof that x is divisible by 8, and y ≡ ±3
(mod 8).

The first few Mersenne primes in Q(
√

2) with α = 2 +
√

2, as well as the representations
of their norms as x2 + 7y2 is given in Table 6.

p Mp,α x2 + 7y2

5 431 162 + 7 · 52

7 5279 642 + 7 · 132

11 732799 8562 + 7 · 32

Table 6: Norms of Mersenne primes in Q(
√

2) in the form x2 + 7y2.

For p = 73,

N(Mp,α) = 851569055172258793218602741480913108991 =

(28615996544447548272)2 + 7 · (2161143775888286749)2

For p = 89,

N(Mp,α) = 290315886781191681464330388772329064268797313023 =

(363706809248848497658560)2 + 7 · (150253711001099458172317)2

For p = 233,

N(Mp,α) = 1806047542728202303336800123116644178473780689153780654706531416
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7911959518498581747712829157156517940837234519177963497324543.

The corresponding representation is

(86527345603258677818378326573842407929031070590321223524182584)2+

7 · (38865140256563104639356290982349294477380709218952585423373629)2.

We now show that, if N(Mp,α) is a prime then, N(Mp,α) can be written as x2 + 7y2.

Since N(Mp,α) = 2
p+3

2 wp − 2p − 1, representing a prime in the form x2 + 7y2 depends on
wp. Now, we find the values of vp and wp (mod 7).

As we know, for any odd n, N(un) = v2
n − 2w2

n = −1.
If un = vn + wn

√
2, then vn and wn satisfy the following recursions:

vn+1 = vn + 2wn and wn+1 = vn + wn, with initial conditions v1 = 1, w1 = 1.
The above recursions can be used to show that vn and wn satisfy the following:

vn+2 = 3vn + 4wn , wn+2 = 2vn + 3wn;

vn+3 = 7vn + 10wn , wn+3 = 5vn + 10wn;

vn+4 = 17vn + 24wn , wn+4 = 12vn + 17wn;

vn+5 = 41vn + 58wn , wn+5 = 29vn + 41wn;

vn+6 = 99vn + 140wn , wn+6 = 70vn + 99wn;

From the above one may also easily obtain the following congruences:

{v6k+1} ≡ 1 (mod 7) , {w6k+1} ≡ 1 (mod 7);

{v6k+5} ≡ 6 (mod 7) , {w6k+5} ≡ 1 (mod 7).

Since only odd prime powers greater than 3 are considered, we have listed only the
congruences for indices congruent to ±1 (mod 6).

Hence
N(Mp,α) = 2

p+3

2 wp − 2p − 1 ≡ 2
p+3

2 − 2p − 1 (mod 7). (1)

Let us solve equation (1) for p > 3.

If p = 3k + 1 then, 2p ≡ 2 (mod 7) and 2
p+3

2 ≡ 4 (mod 7), so

N(Mp,α) ≡ 1 (mod 7).

If p = 3k + 2 then, 2p ≡ 4 (mod 7) and 2
p+3

2 ≡ 2 (mod 7), so

N(Mp,α) ≡ 4 (mod 7).

Thus in both cases N(Mp,α) can always be represented as x2 + 7y2.
To prove theorem 8 we need the following lemma.
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Lemma 9. If N(Mp,α) is a rational prime and N(Mp,α) = x2 + 7y2, then x ≡ 0 (mod 4),
and y ≡ ±3 (mod 8).

Proof. From the previous discussion, we know

N(Mp,α) = x2 + 7y2. (2)

But N(Mp,α) = 2
p+3

2 wp − 2p − 1. Clearly we may take p > 6. So either p = 6k + 1 or
p = 6k + 5.

If p = 6k + 1, then

N(Mp,α) = 2
6k+4

2 wp − 26k+1 − 1 ≡ −1 ≡ 7 (mod 8). (3)

If p = 6k + 5, then also,

N(Mp,α) = 2
6k+5

2 wp − 26k+5 − 1 ≡ 7 (mod 8). (4)

But right hand side of equation (2) is x2 + 7y2. We show that x must be even and y odd.
For, if x is odd and y is even, then x2 ≡ 1 (mod 8) and either y2 ≡ 0 (mod 8) or y2 ≡ 4

(mod 8). If y2 ≡ 0 (mod 8), then x2 + 7y2 ≡ 1 (mod 8) contradicting equations (3) and (4);
and if y2 ≡ 4 (mod 8), then

x2 + 7y2 ≡ 1 + 7.4 ≡ 5 (mod 8),

again contradicting equations (3) and (4). Thus x is even and y is odd.
Hence by equation (2)

7 ≡ x2 + 7y2 ≡ x2 + 7 (mod 8),

since y2 ≡ 1 (mod 8) and so, x2 ≡ 0 (mod 8) implying x ≡ 0 (mod 4).
We now prove that y ≡ ±3 (mod 8)
Let p ≡ 1 (mod 6). From equation (3)

N(Mp,α) = x2 + 7y2 = 2
6k+4

2 wp − 26k+1 − 1.

Reducing modulo 16, we get N(Mp,α) ≡ −1 (mod 16). But N(Mp,α) = x2 + 7y2 and x ≡ 0
(mod 4). Hence 7y2 ≡ −1 (mod 16), yielding y2 ≡ 9 (mod 16). This proves that y ≡ ±3
(mod 8). The same result follows from equation(4) when p ≡ 5 (mod 6).

Outline of the proof of Theorem 8. We now show that x ≡ 0 (mod 8). Virtually, the proof
given in Lenstra and Stevenhagen [5] carries over word-for-word, and so, we merely give
an outline. All details and notation are as in Lenstra and Stevenhagen [5]. By definition,

N(Mp,α) = (2+
√

2)p−1

1+
√

2
.
(2−

√
2)p−1

1−
√

2
. Denote the two factors on the right by vp and v̄p. It is easy

to see that vp and v̄p are both totally positive. We compute the Artin symbols of vpZE and
v̄pZE, and show that they are both trivial. We need to consider only two cases: p ≡ 1 (mod
6) and p ≡ 5 (mod 6).

Since
√

2 ≡ 3, 4 (mod 7), by taking
√

2 = 4 in vp and
√

2 = 3 in v̄p, a straightforward
computation shows that, vp ≡ 1 (mod 7) and v̄p ≡ 1 (mod 7). This completes the proof.
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