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Abstract

A number N is a square if it can be written as N = n2 for some natural number
n; it is a triangular number if it can be written as N = n(n + 1)/2 for some natural
number n; and it is a balancing number if 8N2 +1 is a square. In this paper, we study
some properties of balancing numbers and square triangular numbers.

1 Introduction

A triangular number is a number of the form Tn = n(n+1)/2, where n is a natural number.
So the first few triangular numbers are 1, 3, 6, 10, 15, 21, 28, 36, 45,. . . (sequence A000217
in [20]). A well known fact about the triangular numbers is that x is a triangular number if
and only if 8x+1 is a perfect square. Triangular numbers can be thought of as the numbers
of dots needed to make a triangle. In a similar way, square numbers can be thought of as
the numbers of dots that can be arranged in the shape of a square. The m-th square number
is formed using an outher square whose sides have m dots. Let us denote the expression for
m-th square number by Sm = m2 [15]. Behera and Panda [1] introduced balancing numbers
m ∈ Z+ as solutions of the equation

1 + 2 + · · · + (m− 1) = (m+ 1) + (m+ 2) + · · · + (m+ r), (1)
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calling r ∈ Z+, the balancer corresponding to the balancing number m. For instance 6, 35,
and 204 are balancing numbers with balancers 2, 14, and 84, respectively. It is clear from
(1) that m is a balancing number with balancer r if and only if

m2 =
(m+ r)(m+ r + 1)

2
,

which when solved for r gives

r =
−(2m+ 1) +

√
8m2 + 1

2
. (2)

It follows from (2) that m is a balancing number if and only if 8m2 + 1 is a perfect square.
Since 8× 12+1 = 9 is a perfect square, we accept 1 as a balancing number. In what follows,
we introduce cobalancing numbers in a way similar to the balancing numbers. By modifying
(1), we call m ∈ Z+, a cobalancing number if

1 + 2 + · · · + (m− 1) +m = (m+ 1) + (m+ 2) + · · · + (m+ r) (3)

for some r ∈ Z+. Here, r ∈ Z+ is called a cobalancer corresponding to the cobalancing
number m. A few of the cobalancing numbers are 2, 14, and 84 with cobalancers 6, 35, and
204, respectively. It is clear from (3) that m is a cobalancing number with cobalancer r if
and only if

m(m+ 1) =
(m+ r)(m+ r + 1)

2
,

which when solved for r gives

r =
−(2m+ 1) +

√
8m2 + 8m+ 1

2
. (4)

It follows from (4) that m is a cobalancing number if and only if 8m2 + 8m+ 1 is a perfect
square, that is, m(m + 1) is a triangular number. Since 8 × 02 + 8 × 0 + 1 = 1 is a perfect
square, we accept 0 is a cobalancing number [7, 8]. Also since m(m + 1)/2 is known as a
triangular number by the very definition of triangular number, the above discussion means
that if m is a cobalancing number, then both m(m + 1) and m(m + 1)/2 are triangular
numbers. Panda and Ray [7] proved that every cobalancing number is even. And also they
showed that every balancer is a cobalancing number and every cobalancer is a balancing
number.

Oblong numbers are numbers of the form On = n(n + 1), where n is a positive integer.
The n-th oblong number represents the number of points in a rectangular array having n
columns and n+1 rows. The first few oblong numbers are 2, 6, 12, 20, 30, 42, 56, 72, 90, 110,. . .
(sequence A002378 in [20]). Since 2+4+6+· · ·+2n = 2(1+2+3+· · ·+n) = 2n(n+1)/2 =
n(n+1) = On, the sum of the first n even numbers equals the n-th oblong number. Actually
it is clear from the definition of oblong numbers and triangular numbers that an oblong
number is twice a triangular number. After the definition of oblong numbers, we can say
from (4) that if m is a cobalancing number, then m(m+1) is both an oblong and triangular
number. Well then, what about the square triangular numbers? Since triangular numbers
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are of the form Tn = n(n + 1)/2 and square numbers are of the form Sm = m2, square
triangular numbers are integer solutions of the equation

m2 =
n(n+ 1)

2
. (5)

Eq.(5) says something about the relation between balancing and square triangular numbers.
Behera and Panda [1] proved that a positive integer m is a balancing number if and only
if m2 is a triangular number, that is, 8m2 + 1 is a perfect square. Here, we will get Eq.(5)
again using an amusing problem and we will see the interesting relation between balancing
and square triangular numbers by means of this problem. In equation (1), if we make the
substitution m+ r = n, then we get 1 + 2+· · ·+(m− 1) = (m+ 1) + (m+ 2)+· · ·+n. Thus
this equation gives us a problem as follows.

I live on a street whose houses are numbered in order 1, 2, 3,. . ., n − 1, n; so the houses
at the ends of the street are numbered 1 and n. My own house number is m and of course
0 < m < n. One day, I add up the house numbers of all the houses to the left of my house;
then I do the same for all the houses to the right of my house. I find that the sums are the
same. So how can we findm and n [14]? Since 1+2+3+· · ·+m−1 = (m+1)+· · ·+(n−1)+n,
it follows that

(m− 1)m

2
=

n(n+ 1)

2
− m(m+ 1)

2
.

Thus we get m2 = n(n+ 1)/2. Here, m2 is both a triangular number and a square number.
That is, m2 is a square triangular number. In Eq.(1), since m is a balancing number, it
is easy to see that a balancing number is the square root of a square triangular number.
For more information about triangular, square triangular and balancing numbers, one can
consult [1, 13, 16, 17, 18].

2 Preliminaries

In this section, we introduce two kinds of sequences named generalized Fibonacci and Lucas
sequences (Un) and (Vn), respectively. Let k and t be two nonzero integers. The generalized
Fibonacci sequence is defined by U0 = 0, U1 = 1 and Un+1 = kUn + tUn−1 for n ≥ 1
and generalized Lucas sequence is defined by V0 = 2, V1 = k and Vn+1 = kVn + tVn−1 for
n ≥ 1, respectively. Also generalized Fibonacci and Lucas numbers for negative subscript
are defined as

U−n =
−Un

(−t)n
and V−n =

Vn

(−t)n
(6)

for n > 1. For k = t = 1, the sequences (Un) and (Vn) are called classic Fibonacci and
Lucas sequences and they are denoted as (Fn) and (Ln) , respectively. The first Fibonacci
numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,. . . (sequence A000045 in [20]) and the first Lucas
numbers are 2, 1, 3, 4, 7, 11, 18, 29, 47, 76,. . . (sequence A000032 in [20]). For k = 2 and t = 1,
the sequences (Un) and (Vn) are called Pell and Pell-Lucas sequences and they are denoted
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as (Pn) and (Qn) , respectively. Thus P0 = 0, P1 = 1 and Pn+1 = 2Pn + Pn−1 for n > 1 and
Q0 = 2, Q1 = 2 and Qn+1 = 2Qn + Qn−1 for n > 1. The first few terms of Pell sequence
are 0, 1, 2, 5, 12, 29, 70, 169, 408, 985,. . . (sequence A000129 in [20]) and the first few terms of
Pell-Lucas sequence are 2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786,. . . (sequence A002203 in [20]).
Moreover, for k = 6 and t = −1, we represent (Un) and (Vn) by (un) and (vn), respectively.
Thus u0 = 0, u1 = 1 and un+1 = 6un−un−1 and v0 = 2, v1 = 6 and vn+1 = 6vn− vn−1 for all
n > 1. The first few terms of the sequence (un) are 0, 1, 6, 35, 204,. . . (sequence A001109 in
[20]) and the first few terms of the sequence (vn) are 2, 6, 34, 198, 1154,. . . (sequence A003499
in [20]). Furthermore, from the equation (6), it clearly follows that

u−n = −un and v−n = vn

for all n > 1. For more information about generalized Fibonacci and Lucas sequences, one
can consult [4, 5, 6, 10, 11, 19]. Now we present some well known theorems and identities
regarding the sequences (Pn), (Qn), (un), and (vn), which will be useful during the proofs of
the main theorems and the new properties of the sequence (yn), where yn = (vn − 2)/4.

Theorem 1. Let γ and δ be the roots of the characteristic equation x2 − 2x− 1 = 0. Then

we have Pn =
γn − δn

2
√
2

and Qn = γn + δn for all n ≥ 0.

Theorem 2. Let α and β be the roots of the characteristic equation x2 − 6x+ 1 = 0. Then

un =
αn − βn

4
√
2

(7)

and

vn = αn + βn

for all n ≥ 0.

The formulas given in the above theorems are known as Binet’s formulas. Let Bn denote
the n−th balancing number. From [8], we know that

Bn =
(3 +

√
8)n − (3−

√
8)n

2
√
8

. (8)

From Theorems 1 and 2, it is easily seen that un = Bn = P2n/2 and vn = Q2n for n ≥ 0.
Moreover, from identities (7) and (8), it is easily seen that Bn = un for negative integer n.
Then well known identities for (Pn) , (Qn) , (Bn) and (vn) are

Q2
n − 8P 2

n = 4(−1)n, (9)

v2n − 32B2
n = 4, (10)

B2
n − 6BnBn−1 + B2

n−1 = 1, (11)
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Q2
n = Q2n + 2(−1)n, (12)

B2n = Bnvn, (13)

P2n = PnQn, (14)

and

v2n = v2n + 2. (15)

In order to see close relations between balancing numbers and square triangular numbers,
we can give the following well known theorem which characterizes all square triangular
numbers. We omit the proof of this theorem due to Karaatlı and Keskin [5].

Theorem 3. A natural number x is a square triangular number if and only if x = B2
n for

some natural number n.

Since yn = (vn − 2)/4, it follows that

B2
n =

v2n − 4

32
=

1

2

(vn − 2)

4

(

(vn − 2)

4
+ 1

)

=
yn(yn + 1)

2
.

Then, it is seen that x2 =
y(y + 1)

2
for some positive integers x and y if and only if x = Bn

and y = yn for some natural number n. Now we prove the following lemma given in [9].

Lemma 4. The sequence (yn) satisfies the recurrence relation yn+1 = 6yn − yn−1 + 2 for

n > 1 where y0 = 0 and y1 = 1.

Proof. Using the fact that yn =
vn − 2

4
, we get

6yn − yn−1 + 2 = 6(vn − 2)/4− (vn−1 − 2)/4 + 2

= (6vn − vn−1 − 2)/4 = (vn+1 − 2)/4

= yn+1.

The first few terms of the sequence (yn) are 0, 1, 8, 49, 288,. . . (sequence A001108 in [20]).
For n = 1, 2,. . ., let bn be n−th cobalancing number and so let (bn) denote the cobalancing
number sequence. Then, the cobalancing numbers satisfy the similar recurrence relation
given in Lemma 4. That is, bn+1 = 6bn − bn−1 + 2 for n ≥ 1 where b0 = 0 and b1 = 2 (see
[7, p. 1191]). The first few terms of the cobalancing number sequence are 0, 2, 14, 84, 492,. . .
(sequence A053141 in [20]). Moreover, there is a close relation between cobalancing numbers,
balancing numbers and the sequence (yn). In order to see this relation, we can give the
following lemma without proof.
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Lemma 5. For every n > 1, bn = yn + Bn and bn = yn+1 −Bn+1.

Lemma 6. For every n > 1, y2n = 8B2
n and y2n+1 = 8BnBn+1 + 1.

Proof. By identities (10) and (15), we get

B2
n = (v2n − 4)/32 = (v2n − 2)/32 = y2n/8.

Thus it follows that y2n = 8B2
n. Also since yn+1 = 6yn − yn−1 + 2, it is easy to see that

yn = (yn+1 + yn−1 − 2)/6. By using y2n = 8B2
n, we find that

y2n+1 = (y2n+2 + y2n − 2)/6 = (8B2
n+1 + 8B2

n − 2)/6 = (8(B2
n+1 + B2

n)− 2)/6

Since B2
n+1 + B2

n = 6BnBn+1 + 1 by identity (11), it follows that

y2n+1 = (8(B2
n+1 + B2

n)− 2)/6 = (8(6BnBn+1 + 1)− 2) /6 = 8BnBn+1 + 1.

This completes the proof.

Now we can give the following theorem. Since its proof is easy, we omit it.

Theorem 7. If n is an odd natural number, then yn = Q2
n/4 and if n is an even natural

number, then yn = Q2
n/4− 1.

Since y2n+1 = 8BnBn+1 + 1 and y2n+1 = Q2
2n+1/4, it follows that BnBn+1 is a triangular

number. Moreover, it follows from Lemma 6 that yn is odd if and only if n is odd and yn is
even if and only if n is even.

3 Main Theorems

In the previous sections, we mentioned the well known elementary properties about trian-
gular, square triangular, balancing and cobalancing numbers. In this chapter, by using the
previous theorems, lemmas and identities we prove some new properties concerning bal-
ancing numbers and square triangular numbers. The principal question of our interest is
whether the product of two balancing numbers greater than 1 is another balancing number.
We will show that the answer to this question is negative. Similarly, we will show that the
product of two square triangular numbers greater than 1 is not a triangular number. The
product of two oblong numbers may be another oblong number and similarly, the product of
two triangular numbers may be another one. For a simple example, 2 and 6 are two oblong
numbers. The product of them is 2 × 6 = 12 and 12 = 3(3 + 1) is another oblong number.
Similarly, 3 and 15 are two triangular numbers. The product of 3 and 15 is 3 × 15 = 45

and 45 =
9(9 + 1)

2
is another triangular number. Also it is obvious that the product of two

consecutive oblong numbers is another oblong:

[(x− 1)x] [x(x+ 1)] = (x2 − 1)x2.
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For solving the general problem, we need to solve the Diophantine equation

x(x+ 1)y(y + 1) = z(z + 1). (16)

In [2], Breiteig gave recursion formulae for the solutions x, y, and z satisfying the equation
(16). For more information about the product of two oblong numbers, one can consult [2].

The question of when the product of two oblong numbers is another one suggests an
analogous question for balancing numbers. When is the product of two balancing numbers
another balancing number? Now before giving these properties concerning balancing num-
bers and square triangular numbers, we present some theorems which will be needed in the
proof of the main theorems. Since the following two theorems are given in [19], we omit their
proofs.

Theorem 8. Let n ∈ N ∪ {0} and m, r ∈ Z. Then

P2mn+r ≡ (−1)(m+1)nPr (mod Qm), (17)

Q2mn+r ≡ (−1)(m+1)nQr (mod Qm), (18)

P2mn+r ≡ (−1)mnPr (mod Pm), (19)

and

Q2mn+r ≡ (−1)mnQr (mod Pm). (20)

Theorem 9. Let n ∈ N ∪ {0} and m, r ∈ Z. Then

B2mn+r ≡ Br (mod Bm), (21)

v2mn+r ≡ vr (mod um), (22)

B2mn+r ≡ (−1)nBr (mod vm), (23)

and

v2mn+r ≡ (−1)nvr (mod vm). (24)

The proofs of the following theorems can be given by using the above two theorems. Also,
we can find some of their proofs in [3]. Moreover, some of them are given in [12] without
proof.

Theorem 10. Let m,n ∈ N and m > 2. Then Pm | Pn if and only if m | n.

Theorem 11. Let m,n ∈ N and m > 2. Then Qm | Qn if and only if m | n and
n

m
is an

odd integer.
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Theorem 12. Let m,n ∈ N and m > 2. Then Qm | Pn if and only if m | n and
n

m
is an

even integer.

Since Bn = P2n/2 and vn = Q2n, the proofs of the following theorems can be given by
using the above theorems and identity (23).

Theorem 13. Let m,n ∈ N and m > 2. Then Bm | Bn if and only if m | n.

Theorem 14. Let m,n ∈ N and m > 1. Then vm | vn if and only if m | n and
n

m
is an odd

integer.

Theorem 15. Let m,n ∈ N and m > 1. Then vm | un if and only if m | n and
n

m
is an

even integer.

The following theorem is a well known theorem (see [8, 12]).

Theorem 16. Let m > 1 and n > 1. Then (Bm, Bn) = B(m,n).

Corollary 17. Let m > 1 and n > 1. Then (B2
m, B

2
n) = B2

(m,n).

Theorem 16 says that the greatest common divisor of any two balancing numbers is again
a balancing number. As a conclusion of this theorem, Corollary 17 says that the greatest
common divisor of any two square triangular numbers is again a square triangular number.
Now we will discuss the least common multiple of any two balancing numbers. The least com-
mon multiple of any two triangular numbers may be a triangular number. For instance, 15
and 21 are two triangular numbers and [15, 21] = 105 is again a triangular number. Note that
15 ∤ 21. Similarly, the least common multiple of any two oblong numbers may be an oblong
number. For a simple example, 6 and 15 are two oblong numbers and [6, 15] = 30 is again an
oblong number. But this is not true in general for any two balancing numbers. This can be
seen from the following theorem.

Theorem 18. Let Bn > 1, Bm > 1 and Bn < Bm. Then [Bn, Bm] is a balancing number if

and only if Bn | Bm.

Proof. Assume that Bn | Bm. Then [Bn, Bm] = Bm is again a balancing number. Conversely,
assume that Bn > 1, Bm > 1 and Bn ∤ Bm. Then by Theorem 13, n ∤ m. Let d = (m,n).
Then by Theorem 16, we get (Bn, Bm) = Bd. Therefore

[Bn, Bm] =
BnBm

(Bn, Bm)
=

BnBm

Bd

. (25)

Assume that [Bn, Bm] is a balancing number. Thus [Bn, Bm] = Br for some natural number

r. Then by (25), we have BnBm/Bd = Br. That is, BnBm = BdBr. Thus
Bn

Bd

Bm = Br

and therefore Bm | Br. This implies that r = mt for some natural number t by Theorem
13. Assume that t is an odd integer. Then t = 4q ∓ 1 for some q > 1. Thus Br = Bmt =
B4qm∓m = B2(2qm)∓m ≡ B∓m (mod B2m) by (21). This shows that Br ≡ ∓Bm (mod B2m).

Since B2m = Bmvm by (13), we see that
Bn

Bd

Bm = Br ≡ ∓Bm (mod Bmvm). Then it follows
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that
Bn

Bd

= ∓1 (modvm). We assert that Bn 6= Bd. On the contrary, assume that Bn = Bd.

Then n = d and this implies that n | m, which is impossible since n ∤ m. Since
Bn

Bd

6= 1 and

Bn

Bd

≡ ∓1 (mod vm), it follows that vm 6
Bn

Bd

∓ 1 6
Bn

Bd

+ 1 6 Bn + 1. Since Bn < Bm,

we get n < m. This shows that vn < vm 6 Bn + 1. On the other hand, by identity (10),
we get vn > 2Bn. Therefore 2Bn < vn < Bn + 1, which implies that Bn < 1. But this
is a contradiction since Bn > 1. Now assume that t is an even integer. Then t = 2k and

thus r = mt = 2mk. Therefore
Bn

Bd

Bm = Br = B2km = Bkmvkm > Bmvm. This shows that

Bn

Bd

> vm and thus vm 6
Bn

Bd

6 Bn. Since n < m, we get vn < vm 6 Bn. That is, vn < Bn,

which is impossible by identity (10). This completes the proof.

Now as a result of the above theorem, we can give the following corollary which says
something about the least common multiple of any two square triangular numbers. The
proof of the following corollary is straightforward, using the fact that

[

a2, b2
]

=
a2b2

(a2, b2)
=

a2b2

(a, b)2
=

(

ab

(a, b)

)2

= [a, b]2

where a and b are positive integers.

Corollary 19. Let Bn > 1, Bm > 1 and Bn < Bm. Then [B2
n, B

2
m] is a triangular number if

and only if B2
n | B2

m.

In order to answer the main question which is about the product of two balancing num-
bers, we give the following theorem. This theorem says something more than the above
theorem.

Theorem 20. Let n > 1,m > 1 and m > n. Then there is no integer r such that BnBm =
Br.

Proof. Assume that m > 1, n > 1 and BnBm = Br for some r > 1. Then Bm | Br and
therefore m | r by Theorem 13. Thus r = mt for some positive integer t. Assume that t is
an even integer. Then t = 2k and therefore r = mt = 2mk. Thus

BnBm = Br = B2km = Bkmvkm

by identity (13). This shows that Bn =
Bkm

Bm

vkm and therefore vkm | Bn. By Theorem 15,

we get km | n and n/km = 2s for some integer s. Then n = 2kms. Since n = 2kms and
r = 2km, we get n = rs. Thus r | n. On the other hand, since BnBm = Br, it follows that
Bn | Br and therefore n | r by Theorem 13. This implies that n = r and Bn = Br. Since
BnBm = Br, we get Bm = 1, which is a contradiction. Now assume that t is an odd integer.
Then t = 4q ∓ 1 for some positive integer q. Thus r = mt = 4qm∓m and therefore

Br = B4qm∓m = B2(2qm)∓m ≡ B∓m (mod B2m)
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by (21). This shows that BmBn ≡ ∓Bm (mod B2m). Since B2m = Bmvm, we get BmBn ≡
∓Bm (mod Bmvm), which implies that Bn ≡ ∓1 (mod vm). Therefore vm | Bn ∓ 1 and thus
vm 6 Bn ∓ 1. Since vn > 2Bn and m ≥ n, we get Bn + 1 > Bn ∓ 1 > vm > vn > 2Bn.
This implies that Bn+1 > 2Bn. Then Bn < 1, which is a contradiction. This completes the
proof.

Since square triangular numbers are square of the balancing numbers, the above theorem
says that the product of two square triangular numbers greater than one is not a triangular
number. Now we can give the following corollary easily.

Corollary 21. The only positive integer solution of the system of Diophantine equations

2u2 = x(x+1), 2v2 = y(y+1) and 2u2v2 = z(z +1) is given by (x, y, u, v, z) = (1, 1, 1, 1, 1).

The following theorem gives a new property of the sequence (yn). It is about the product
of any two elements of the sequence (yn) greater than 1.

Theorem 22. Let n > 1 and m > 1. Then there is no integer r such that ynym = yr.

Proof. Assume that ynym = yr. Since yk is odd if and only if k is odd and yk is even if and
only if k is even, we see that m,n, and r are odd or r and at least one of the numbers n
and m are even. Assume that n and r are even. Then n = 2k and r = 2t for some positive
integers k and t. By Lemma 6, we have yn = y2k = 8B2

k and yr = y2t = 8B2
t . Therefore

ym =
yr
yn

=
8B2

t

8B2
k

=

(

Bt

Bk

)2

.

If m is even, then m = 2l for some positive integer l. This implies that ym = y2l = 8B2
l

and therefore

(

Bt

Bu

)2

= 8B2
l , which is impossible. So m is odd. Then, by Theorem 7, it

follows that ym =
Q2

m

4
. Thus, we get

Qm

2
=

Bt

Bk

=
P2t/2

P2k/2
=

P2t

P2k

=
Pr

Pn

. This shows that

2Pr = PnQm. Since n is even, Pn is even. Also, since Pr = Pn

Qm

2
, we see that Pn | Pr and

Qm | Pr. By Theorem 10 and Theorem 12, we get r = nu and r = 2ms for some natural
numbers u and s. Since 2Pr = PnQm, we have

PnQm = 2Pr = 2P2ms = 2PmsQms > PmsQms > PmsQm.

Therefore Pn > Pms and this implies that n > ms. Then 2n > 2ms and thus 2n > r = nu.
This shows that u < 2. That is, u = 1. Since u = 1, we get r = nu = n, which is impossible.

Assume that m,n and r are odd integers. Since ynym = yr, we get
Q2

n

4

Q2
m

4
=

Q2
r

4
by Theorem

7. Therefore QnQm = 2Qr. This shows that Qn | Qr and Qm | Qr. Then r = nt and r = mk
for some odd natural numbers t and k by Theorem 11. Since t is an odd integer, t = 4q ∓ 1
for some q > 1. Thus

Qr = Qnt = Q4qn∓n = Q2(2qn)∓n ≡ ∓Qn (mod Q2n)
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by the congruence (18). That is, Qr ≡ ∓Qn (mod Q2n). This implies that 2Qr ≡
∓2Qn (mod Q2n) and thus QnQm ≡ ∓2Qn (mod Q2n). Since Q2n = Q2

n + 2, when n is
odd, by identity (12), we clearly have that (Qn, Q2n) = 2. Then the congruence

QnQm ≡ ∓2Qn (mod Q2n)

implies that
Qn

2
Qm ≡ ∓2

Qn

2

(

mod
Q2n

2

)

.

This shows that Qm ≡ ∓2 (mod Q2n/2). Since m ≥ 2, we get Qm > 2 and therefore
Q2n/2 6 Qm ∓ 2. Therefore Q2n 6 2Qm ∓ 4 < 2Qm + 4. Similarly, by using r = mk, it is
seen that Q2m < 2Qn + 4. Then it follows that Q2n + Q2m < 2Qm + 2Qn + 8. Since n and
m are odd integers, Q2n = Q2

n + 2 and Q2m = Q2
m + 2 by identity (12). Thus, we get

Q2
n + 2 +Q2

m + 2 < 2Qm + 2Qn + 8.

Since Q2
n + 2 +Q2

m + 2 < 2Qm + 2Qn + 8, it follows that Q2
n +Q2

m < 2Qm + 2Qn + 4. This
implies that Q2

n − 2Qn +Q2
m − 2Qm < 4. Then we get

Qn(Qn − 2) +Qm(Qm − 2) < 4,

which implies that Qn + Qm < 4. This is a contradiction since m > 1 and n > 1. This
completes the proof.

We easily obtain the following corollary.

Corollary 23. The only positive integer solution of the system of Diophantine equations

x(x+1) = 2u2, y(y+1) = 2v2, and xy(xy+1) = 2z2 is given by (x, y, u, v, z) = (1, 1, 1, 1, 1).

Balancing numbers and cobalancing numbers are related to the solutions of some Dio-
phantine equations. Solutions of some of the Diophantine equations are given in [5]. Now
we give four of them from [5].

Theorem 24. All positive integer solutions of the equation x2 = y(y + 1)/2 are given by

(x, y) = (Bn, yn) with n ≥ 1.

Theorem 25. All positive integer solutions of the equation (x+ y − 1)2 = 8xy are given by

(x, y) = (yn, yn+1) with n ≥ 1.

Theorem 26. All positive integer solutions of the equation x2 − 6xy + y2 − 1 = 0 are given

by (x, y) = (Bn, Bn+1) with n ≥ 1.

Theorem 27. All positive integer solutions of the equation (x+ y− 1)2 = 8xy+1 are given

by (x, y) = (bn, bn+1) with n ≥ 1.

From Theorem 27, it follows that bnbn+1 is a triangular number for every natural number
n.

Moreover, we can easily state the following theorems.

Theorem 28. All positive integer solutions of the equation x2 − y2 + 2xy + x − y = 0 are

given by (x, y) = (Bn, bn) with n ≥ 1.

Theorem 29. All positive integer solutions of the equation x2+2y2− 4xy−x = 0 are given

by (x, y) = (yn, bn) with n ≥ 1 or (x, y) = (yn, bn−1) with n ≥ 2.
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4 Concluding Remarks

The sum of two triangular numbers may be a triangular number. For instance, 6 and 15
are triangular numbers and 6 + 15 = 21 is again a triangular number. Similarly, the sum
of two oblong numbers may be another oblong number. For instance, 12 and 30 are oblong
numbers and 12 + 30 = 42 is again an oblong number. But we think that the sum of two
square triangular numbers is not a square triangular number. That is, B2

n+B2
m = B2

r has no
solution if n > 1 and m > 1. We also think that there is no integer r such that Bn+Bm = Br

and bn + bm = br for n > 1 and m > 1. On the other hand, we think that the product of
any two cobalancing numbers greater than 1 is not a cobalancing number. That is, there is
no integer r such that bnbm = br for n > 1 and m > 1. Moreover, we think that there is no
solution of the equation yn + ym = yr if n > 1 and m > 1.
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