Overpseudoprimes, and Mersenne and Fermat Numbers as Primover Numbers
Vladimir Shevelev
Department of Mathematics
Ben-Gurion University of the Negev
Beer-Sheva 84105
Israel
Gilberto García-Pulgarín
Universidad de Antioquia
Calle 67 No. 53-108
Medellín, Antioquia
Colombia
Juan Miguel Velásquez-Soto
Departamento de Matemáticas
Universidad del Valle
Calle 13 No. 100-00
Cali, Valle del Cauca
Colombia
John H. Castillo
Departamento de Matemáticas y Estadística
Universidad de Nariño
Calle 18 Carrera 50
San Juan de Pasto, Nariño
Colombia
Abstract:
We introduce a new class of pseudoprimes, that we call
"overpseudoprimes to base b", which is a subclass of the strong
pseudoprimes to base b. Letting |b|n
denote the multiplicative
order of b modulo n, we show that a composite
number n is
an overpseudoprime if and only if |b|d
is invariant for all divisors
d > 1 of n. In particular, we prove that all composite
Mersenne
numbers 2p - 1, where p is prime,
are overpseudoprimes to base
2 and squares of Wieferich primes are overpseudoprimes to base
2. Finally, we show that some kinds of well-known numbers are
"primover to base b"; i.e., they are primes or overpseudoprimes
to base b.
Full version: pdf,
dvi,
ps,
latex
(Concerned with sequences
A002326
A141232
A141350
A141390
A178997.)
Received June 4 2012;
revised version received September 6 2012.
Published in Journal of Integer Sequences, September 8 2012.
Return to
Journal of Integer Sequences home page