
23 11

Article 12.8.7
Journal of Integer Sequences, Vol. 15 (2012),2

3

6

1

47

On the Hurwitz Transform of Sequences

Paul Barry
School of Science

Waterford Institute of Technology
Ireland

pbarry@wit.ie

Abstract

Based on classical concepts, we introduce and study the Hurwitz transform of se-

quences, relating this transform to the Hankel transform of sequences. We also define

and study associated polynomials, including links to related families of orthogonal

polynomials. Examples of these associated polynomials are given within the context

of Riordan arrays.

1 Introduction

Given a sequence an, we denote by hn the general term of the sequence with hn = |ai+j|0≤i,j≤n.
The sequence hn is called the Hankel transform of an [19, 20, 21]. This sequence of Hankel
determinants has attracted much attention of late amongst those working in the area of
integer and polynomial sequences in particular [7, 18, 24, 32]. In this note we shall introduce
the notion of a related Hurwitz transform, and we shall study some of its properties. As
with the Hankel transform, this transform is based on classical results which have a rich
literature. Part of this literature is captured in the review article by Holtz and Tyaglov
[17], which forms a good background to this note. Our Hurwitz transform will give rise to a
sequence of determinant values, which can be related to the Hankel transform.

In the sequel, we shall be mainly concerned with integer sequences. Known integer
sequences are often referred to by their OEIS number [26, 27]. For instance, the sequence of
Catalan numbers Cn = 1

n+1

(

2n
n

)

is A000108. Its generating function, defined by
∑∞

n=0 Cnx
n,

is equal to c(x) = 1−
√
1−4x
2x

. Its first elements are

1, 1, 2, 5, 14, 42, 132, . . . .

This sequence finds many applications in combinatorics [29, 30]. It is the unique sequence
whose Hankel transform, along with that of its first shift Cn+1, is the all 1’s sequence [4, 22].
We use it in many of our examples, partly because of these properties.
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We recall the following notational elements. For an integer sequence an, that is, an
element of ZN, the power series f(x) =

∑∞
k=0 anx

n is called the ordinary generating function
or g.f. of the sequence. an is thus the coefficient of xn in this series. We denote this by
an = [xn]f(x) [23]. For instance, Fn = [xn] x

1−x−x2 is the n-th Fibonacci number A000045,

while Cn = [xn]1−
√
1−4x
2x

. We use the notation 0n = [xn]1 for the sequence 1, 0, 0, 0, . . . ,

A000007. Thus 0n = [n = 0] = δn,0 =
(

0
n

)

. Here, we have used the Iverson bracket notation
[13], defined by [P ] = 1 if the proposition P is true, and [P ] = 0 if P is false.

For a power series f(x) =
∑∞

n=0 anx
n with f(0) = 0 we define the reversion or composi-

tional inverse of f to be the power series f̄(x) such that f(f̄(x)) = x.

2 Definition of the Hurwitz transform

We consider two sequences an and bn, and define the Hurwitz matrix of order n defined by
these sequences as follows. If n is even, n = 2m, then the Hurwitz matrix of order n is
defined to be the matrix

Hn =



















a0 a1 a2 · · · am · · · a2m
b0 b1 b2 · · · bm · · · b2m
0 a0 a1 · · · am−1 · · · a2m−1

0 b0 b1 · · · bm−1 · · · b2m−1
...

...
...

...
...

...
...

0 0 0 · · · a0 · · · am



















.

If n is odd, n = 2m+ 1, then the Hurwitz matrix of order n is defined to be the matrix

Hn =























a0 a1 a2 · · · am · · · a2m+1

b0 b1 b2 · · · bm · · · b2m+1

0 a0 a1 · · · am−1 · · · a2m
0 b0 b1 · · · bm−1 · · · b2m
...

...
...

...
...

...
...

0 0 0 · · · a0 · · · am+1

0 0 0 · · · b0 · · · bm+1























.

We shall call the sequence of determinants Hn = |Hn| the Hurwitz transform of the sequences
an and bn (in that order). We shall sometimes write Hn(an, bn) or Hn(a, b) for the transform
of an and bn, to make the dependence on an and bn more explicit. By the definition, it is
clear that if an and bn are integer sequences, then Hn is an integer sequence. We have

Hn(a, a) = a00
n =

{

a0, if n = 0;

0, n > 0.

Note that we can express the general term Hi,j of the Hurwitz matrix in the following
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manner.

Hi,j =











0, if 2j + 2 ≤ i;

aj− i
2
, if 2|i;

bj− i−1
2
, otherwise.

(1)

We can associate a sequence sn with the two sequences an and bn in the following manner.
We can define sn implicity by the relations

an =
n
∑

k=0

skbn−k,

which is a convolution equation for sn. If b0 6= 0 (which we will assume henceforth), we have

sn = [xn]

∑∞
j=0 ajx

j

∑∞
j=0 bjx

j
.

That is, sn is the sequence whose generating function is the quotient of the generating
function f(x) =

∑∞
n=0 anx

n of an and of the generating function g(x) =
∑∞

n=0 bnx
n of bn.

Using generating functions allows us to express the elements of the Hurwitz matrix as follows.

Hj,i =











[xi]x
j

2f(x), if 2|j;

[xi]x
j−1
2 g(x), otherwise.

(2)

We let hn denote the Hankel transform of sn and we let h∗
n denote the Hankel transform

of the shifted sequence s∗n = sn+1. Then we have the following proposition characterizing
Hn.

Proposition 1. We have

H2n = b2n+1
0 hn, H2n+1 = (−1)n+1b2n+2

0 h∗
n.

Proof. We take the case n = 2m. Beginning with the original matrix, we carry out the
following steps.

1. Factor b0 out of column 0.

2. Subtract bj times column 0 from column j for 1 ≤ j ≤ 2m.

3. Factor b0 out of column 1.

4. Subtract bj−1 times column 1 from column j for 2 ≤ j ≤ 2m.

5. Factor b0 out of column 2.

6. Subtract bj−2 times column 2 from column j for 3 ≤ j ≤ 2m.
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7. etc.

One has now factored b0 out 2m+ 1 times, and the resulting matrix is































s0 s1 s2 · · · sm−1 sm · · · s2m
1 0 0 · · · 0 0 · · · 0
0 s0 s1 · · · sm−2 sm−1 · · · s2m−1

0 1 0 · · · 0 0 · · · 0
0 0 s0 · · · sm−3 sm−2 · · · s2m−2

0 0 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 0 · · · 1 0 · · · 0
0 0 0 · · · 0 s0 · · · sm































.

Expanding iteratively along the rows with a single 1 we get an “upside-down” Hankel deter-
minant

∣

∣

∣

∣

∣

∣

∣

∣

∣

sm · · · s2m
sm−1 · · · s2m−1
...

...
...

s0 · · · sm

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Now looking at the case n = 2m+ 1, we get the matrix































s0 s1 s2 · · · sm−1 sm sm+1 · · · s2m+1

1 0 0 · · · 0 0 0 · · · 0
0 s0 s1 · · · sm−2 sm−1 sm · · · s2m
0 1 0 · · · 0 0 0 · · · 0
0 0 s0 · · · sm−3 sm−2 sm−1 · · · s2m−1

0 0 1 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

0 0 0 · · · 0 s0 s1 · · · sm+1

0 0 0 · · · 0 1 0 · · · 0































.

Again, expanding iteratively along the rows with a single 1 we get an “upside-down” Hankel
determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

sm+1 · · · s2m+1

sm · · · s2m
...

...
...

s1 · · · sm+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Keeping track of signs now yields the result.
By looking at the transposed matrix, (Hi,j)

T , we can interpret the above operations as
follows, where we use the notation of Riordan arrays (see the section on Riordan arrays).
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We have

(g(x), x)−1 · (Hi,j)
T =

(

1

g(x)
, x

)

· (Hj,i)

=

(

1

g(x)
, x

)

·

















[xi]x
j

2f(x), if 2|j;

[xi]x
j−1
2 g(x), otherwise.







=

















[xi]x
j

2
f(x)
g(x)

, if 2|j;

[xi]x
j−1
2

g(x)
g(x)

, otherwise.







=

















[xi]x
j

2
f(x)
g(x)

, if 2|j;

[xi]x
j−1
2 , otherwise.







=

















[xi]x
j

2 s(x), if 2|j;

[xi]x
j−1
2 , otherwise.






.

Transposing and taking the first n + 1 rows and columns (for n = 2m and n = 2m + 1)
brings us back to the above cases. Note that the determinant of (g(x), x)−1

n is 1
bn+1
0

.

We thus have















b0 · · ·
b1 b0 · · ·
b2 b1 b0 · · ·
b3 b2 b1 b0 · · ·
...

...
...

...
. . .















−1

·















a0 b0 0 0 · · ·
a1 b1 a0 b0 · · ·
a2 b2 a1 b1 · · ·
a3 b3 a2 b2 · · ·
...

...
...

...
. . .















=















s0 1 0 0 · · ·
s1 0 s0 1 · · ·
s2 0 s1 0 · · ·
s3 0 s2 0 · · ·
...

...
...

...
. . .















and hence














a0 b0 0 0 · · ·
a1 b1 a0 b0 · · ·
a2 b2 a1 b1 · · ·
a3 b3 a2 b2 · · ·
...

...
...

...
. . .















=















b0 · · ·
b1 b0 · · ·
b2 b1 b0 · · ·
b3 b2 b1 b0 · · ·
...

...
...

...
. . .















·















s0 1 0 0 · · ·
s1 0 s0 1 · · ·
s2 0 s1 0 · · ·
s3 0 s2 0 · · ·
...

...
...

...
. . .















.

Example 2. It is possible to gain further insight into this result by using Gaussian elimi-
nation in the following way. Let s(x) be the g.f. of sn. Then we have

s(x) =
f(x)

g(x)
⇒ f(x) = s(x)g(x).
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That is
∞
∑

n=0

anx
n =

( ∞
∑

n=0

snx
n

)( ∞
∑

n=0

bnx
n

)

=
∞
∑

n=0

n
∑

k=0

skbn−kx
n,

or

an =
n
∑

k=0

skbn−k.

We now substitute for an in the definitions of Hn. For instance, we get

Hn =



















s0b0 s0b1 + s1b0 s0b2 + s1b1 + s2b0 · · · s0bm + . . . · · · s0b2m + . . .
b0 b1 b2 · · · bm · · · b2m
0 s0b0 s0b1 + s1b0 · · · s0bm−1 + . . . · · · s0b2m−1 + . . .
0 b0 b1 · · · bm−1 · · · b2m−1
...

...
...

...
...

...
...

0 0 0 · · · s0b0 · · · s0bm+1 + . . .



















for n = 2m.
For instance, assuming that s0 6= 0, s1 6= 0, we have

H2 =

∣

∣

∣

∣

∣

∣

s0b0 s0b1 + s1b0 s0b2 + s1b1 + s2b0
b0 b1 b2
0 s0b0 s0b1 + s1b0

∣

∣

∣

∣

∣

∣

=
1

s0

∣

∣

∣

∣

∣

∣

s0b0 s0b1 + s1b0 s0b2 + s1b1 + s2b0
s0b0 s0b1 s0b2
0 s0b0 s0b1 + s1b0

∣

∣

∣

∣

∣

∣

=
1

s0

∣

∣

∣

∣

∣

∣

s0b0 s0b1 + s1b0 s0b2 + s1b1 + s2b0
0 −s1b0 −s1b1 − s2b0
0 s0b0 s0b1 + s1b0

∣

∣

∣

∣

∣

∣

=
1

s20s1

∣

∣

∣

∣

∣

∣

s0b0 s0b1 + s1b0 s0b2 + s1b1 + s2b0
0 −s0s1b0 −s0s1b1 − s0s2b0
0 0 (s21 − s0s2)b0

∣

∣

∣

∣

∣

∣

= b30(s0s2 − s21)

= b30

∣

∣

∣

∣

s0 s1
s1 s2

∣

∣

∣

∣

.

Similarly, we obtain

H3 =
1

s40s
2
1(s

2
1 − s0s2)

∣

∣

∣

∣

∣

∣

∣

∣

s0b0 . . . . . . . . .
0 −s0s1b0 . . . . . .
0 0 s0s1(s

2
1 − s0s2)b0 . . .

0 0 0 s0s1(s
2
2 − s1s3)b0

∣

∣

∣

∣

∣

∣

∣

∣

,
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and hence we have

H3 = b40(s
2
2 − s1s3) = b40

∣

∣

∣

∣

s1 s2
s2 s3

∣

∣

∣

∣

.

Finally we note that

Hn(αan, βbn) = α⌊n+2
2

⌋β⌊n+1
2

⌋Hn(an, bn).

Example 3. It is well-known that the Hankel transform of the Catalan numbers Cn, along
with that of the shifted sequence Cn+1, is given by the all 1’s sequence. We thus turn to the
Catalan numbers to provide an example of a pair of sequences whose Hurwitz transform is
the all 1’s sequence. We recall that the sequence Cn has generating function

c(x) =
1−

√
1− 4x

2x
.

We define C−1 = 0. Then the Hurwitz transform of the pair

an = (−1)n(Cn + Cn−1), bn = (−1)n
(

1

n

)

is such that
Hn = 1 for all n.

This follows since in this case,

f(x) = (1− x)c(−x), g(x) = 1− x.

Then
f(x)

g(x)
=

(1− x)c(−x)

1− x
= c(−x),

which is the generating function of (−1)nCn. The Hankel transform of (−1)nCn is 1, 1, 1, . . .
while that of (−1)n+1Cn+1 is (−1)n+1, hence the result.

It is clear that any pair of sequences an, bn such that f(x)
g(x)

= c(−x) will furnish a Hurwitz
transform consisting of the all 1’s sequence. Thus, as with the Hankel transform, the Hurwitz
transform is not injective.

Example 4. We now look at an example where b0 6= 1. Thus we take

an = Cn, bn = Cn + Cn+1,

with

f(x) = c(x), g(x) = c(x) + c(x)2, s(x) =
1

1 + c(x)
=

1 + 2x+
√
1− 4x

2(x+ 2)
.

We have b0 = 2. In this case, we find that

sn =
1

2n+1

n−1
∑

k=0

n− k

n

(

n+ k − 1

k

)

2k,
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which begins
1

2
,−1

4
,−3

8
,−13

16
,−67

32
,−381

64
, . . . .

We find that
22n+1hn = (−1)n(n+ 1), 22n+2(−1)n+1h∗

n = 1,

and so the Hurwitz transform Hn(Cn, Cn + Cn+1) is given by

1, 1,−2, 1, 3, 1,−4, 1, 5, 1,−6, . . . .

Example 5. This example uses the Motzkin numbers A001006

Mn =

⌊n
2
⌋

∑

k=0

(

n

2k

)

Ck,

with generating function
1− x−

√
1− 2x− 3x2

2x2
.

We let
an = Mn, bn = Mn +Mn+1.

We find that sn has the generating function

1 + 3x+
√
1− 2x− 3x2

6x+ 4
,

and begins
1

2
,−1

4
,−1

8
,− 5

16
,−17

32
,−77

64
, . . . .

We find that 22n+1hn is the periodic sequence that begins

1,−1, 0, 1,−1, 0, 1,−1, 0, . . . ,

while 22n+2(−1)n+1h∗
n is the all 1’s sequence. Thus we find that Hn(Mn,Mn +Mn+1) is the

periodic sequence

1, 1,−1, 1, 0, 1, 1, 1,−1, 1, 0, 1, 1, 1,−1, 1, 0, 1, 1, 1,−1, . . . ,

with generating function
1 + x− x2 + x3 + x5

1− x6
.

Example 6. We define the Hurwitz transform of a single sequence an to be the Hurwitz
transform of the pair (an, 0

n). In this example, we take an to be the sequence A025262(n+1),
which begins

1, 1, 3, 8, 23, 68, 207, 644, 2040, 6558, 21343, . . . .
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This sequence has generating function

f(x) =
1− 2x−

√
1− 4x+ 4x3

2x2
.

Its Hankel transform hn is an example of a Somos-4 [8, 12, 33] sequence. This means that it
satisfies the recurrence

hn−1hn−3 + h2
n−2 = hnhn−4, n ≥ 3.

In this case, hn begins

1, 2, 3, 7, 23, 59, 314, 1529, 8209, 83313, 620297, . . . .

This is A006720(n+ 3).
More generally, we say that a sequence en is a (α, β) Somos-4 sequence if we have

αhn−1hn−3 + βh2
n−2 = hnhn−4, n ≥ 4.

Now h∗
n begins

1,−1,−5,−4, 29, 129,−65,−3689,−16264, 113689, 2382785, . . . ,

and hence Hn begins

1,−1, 2,−1, 3, 5, 7,−4, 23,−29, 59, 129, 314, . . . .

Numerical evidence suggests that Hn is then a (−1, 1) Somos-4 sequence.

Example 7. We let an be the sequence A160702(n+ 1). This sequence begins

1, 1, 5, 19, 79, 333, 1441, 6351, 28451, 129185, . . . ,

and its Hankel transform hn is a (4, 24) Somos-4 sequence, as is the Hankel transform h∗
n

of an+1. We can then conjecture that the Hurwitz transform of an is a (−2, 2) Somos-4
sequence. Hn begins

1,−1, 4,−6, 20, 88, 464, 512, 17024,−173568, 1632256, . . . ,

and our claim is that

(−2)Hn−1Hn−3 + 2H2
n−2 = HnHn−4, n ≥ 4.

We are not at present able to prove this assertion.

Example 8. We finish this section with an example which recalls the use of the Hurwitz
matrix to determine if a polynomial is stable. We let en =

(

n
n
2

)

, and we set

an = e2n+1 =

(

2n+ 1

n+ 1

)

, bn = e2n =

(

2n

n

)

.

We find that the Hurwitz transform Hn(e2n+1, e2n) in this case is given by

1,−1, 1, 1, 1,−1, 1, 1, 1,−1, 1, . . . .
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3 Hurwitz associated polynomials

One important application of Hankel determinants is in the construction of orthogonal poly-
nomials [10, 31], where the Hankel determinants in question have elements that are the
moments of the density associated with the orthogonal polynomials. We now use the Hur-
witz matrix to construct families of polynomials, which we then relate to the polynomials
defined by sn and s∗n by the Hankel construction.

We let

P (s)
n (x) = ∆(s)

n (1, x, x2, · · · , xn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s0 s1 s2 · · · sn
s1 s2 s3 · · · sn+1
...

...
... · · · ...

sn−1 sn−2 sn−3 · · · s2n−1

1 x x2 · · · xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

respectively

P (s∗)
n (x) = ∆(s∗)

n (1, x, x2, · · · , xn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s1 s2 s3 · · · sn+1

s2 s3 s4 · · · sn+2
...

...
... · · · ...

sn sn−1 sn−2 · · · s2n
1 x x2 · · · xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and let L(s) (respectively L(s∗)) be the coefficient array of the family of orthogonal polyno-

mials P
(s)
n (x) (respectively P

(s∗)
n (x)).

If n is even, n = 2m, we set

Dn(1, x, . . . , x
m) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 a2 · · · am · · · a2m
b0 b1 b2 · · · bm · · · b2m
0 a0 a1 · · · am−1 · · · a2m−1

0 b0 b1 · · · bm−1 · · · b2m−1
...

...
...

...
...

...
...

0 0 0 · · · 1 · · · xm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

If n is odd, n = 2m+ 1, then we let

Dn(1, x, . . . , x
m+1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 a2 · · · am · · · a2m+1

b0 b1 b2 · · · bm · · · b2m+1

0 a0 a1 · · · am−1 · · · a2m
0 b0 b1 · · · bm−1 · · · b2m
...

...
...

...
...

...
...

0 0 0 · · · a0 · · · am+1

0 0 0 · · · 1 · · · xm+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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We can gain insight into this construction again by looking at the transpose of the underlying
matrix. Using an obvious notation [23], we have

Hj,i(x) =































[ti]t
j

2f(t), if 2|j and j < n;

[ti]t
j−1
2 g(t), if 2 ∤ j and j < n;

[ti] t
⌊
j
2 ⌋

1−xt
, if j = n.

(3)

Finally we let M = (bi−j[j ≤ i]) be the sequence (or renewal) array of the sequence bn, and
Mn represent the matrix composed of the first n+ 1 rows and columns of M (where we use
a similar subscript notation to denote the first n + 1 rows and columns of other matrices).
We have M = (g(x), x) as a Riordan array.

Proposition 9. We have

D2n(1, x, . . . , x
n) = (−1)nb2n+1

0 ∆(s∗)
n (1, φ1(x), φ2(x), . . . , φn(x))

where
(1, φ1(x), φ2(x), . . . , φn(x))

t = M−1
n (1, x, x2, . . . , xn)t,

and we have

D2n+1(1, x, . . . , x
n+1) = b2n+2

0 ∆
(s)
n+1(1, φ1(x), φ2(x), . . . , φn(x), φn+1(x))

where
(1, φ1(x), φ2(x), . . . , φn(x), φn+1(x))

t = M−1
n+1(1, x, x

2, . . . , xn)t.

Equivalently, if L̃ is the coefficient array of the family of polynomials Qn(x) = D2n(1, x, . . . , x
n)

(respectively L̃∗ is the coefficient array of the polynomials Rn+1(x) = D2n+1(1, x, . . . , x
n+1),

R0(x) = 1) then we have
L̃ = S · L(s) ·M−1

(respectively
L̃∗ = L(s∗) ·M−1),

where S = diag(1,−1, 1,−1, . . .).

Proof. Carrying out the eliminations on D2m that we have used in the first proposition, we
get, for n = 2m,



































s0 s1 s2 · · · sm−1 sm · · · s2m
1 0 0 · · · 0 0 · · · 0
0 s0 s1 · · · sm−2 sm−1 · · · s2m−1

0 1 0 · · · 0 0 · · · 0
0 0 s0 · · · sm−3 sm−2 · · · s2m−2

0 0 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 0 · · · s0 s1 · · · sm+1

0 0 0 · · · 1 0 · · · 0
0 0 0 · · · 0 1 · · · φm(x)



































.
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Expanding iteratively along the rows with a single 1 we get an “upside-down” augmented
Hankel determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

sm+1 · · · s2m
...

...
...

s1 · · · sm+1

1 · · · φm(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Similarly for n = 2m+ 1, we obtain in D2m+1 upon elimination the following matrix.



































s0 s1 s2 · · · sm−1 sm · · · s2m+1

1 0 0 · · · 0 0 · · · 0
0 s0 s1 · · · sm−2 sm−1 · · · s2m
0 1 0 · · · 0 0 · · · 0
0 0 s0 · · · sm−3 sm−2 · · · s2m−1

0 0 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
0 0 0 · · · 1 0 · · · 0
0 0 0 · · · 0 s0 · · · sm+1

0 0 0 · · · 0 1 · · · φm+1(x)



































.

Expanding iteratively along the rows with a single 1 we get an “upside-down” augmented
Hankel determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

sm · · · s2m+1
...

...
...

s0 · · · sm+1

1 · · · φm+1(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The result follows from this. Note that in terms of the matrix elements Hi,j(x), we can
interpret the above as

M−1
n · (Hj,i(x))n =

(

1

g(t)
, t

)

n

· (Hj,i(x))n

=















































[ti]t
j

2f(t)/g(t), if 2|j and j < n;

[ti]t
j−1
2 g(t)/g(t), if 2 ∤ j and j < n;

[ti]t⌊
j

2
⌋ 1
g(t)

1
1−xt

, if j = n.

















=















































[ti]t
j

2 s(t), if 2|j and j < n;

[ti]t
j−1
2 , if 2 ∤ j and j < n;

[ti]t⌊
j

2
⌋ 1
g(t)

1
1−xt

, if j = n.

















,
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where

φn(x) = [tn]
1

g(t)

1

1− xt
.

Note that we have



























b0
b1 b0
...

...
...

bm bm−1 bm−2
...

bm+1 bm bm−1
...

...
...

...
...

...
b2m b2m−1 b2m−2 b2m−3 · · · b0



























−1

·























a0 b0 0 0 · · · 0
a1 b1 a0 b0 · · · 0
...

...
...

... · · · ...
am bm am−1 bm−1 · · · 1
am+1 bm+1 am bm · · · x
...

...
...

...
...

...
a2m b2m a2m−1 b2m−1 · · · xm























=























s0 1 0 0 · · · 0
s1 0 s0 1 · · · 0
...

...
...

... · · · ...
sm 0 sm−1 0 · · · 1
sm+1 0 sm 0 · · · φ1(x)
...

...
...

...
...

...
s2m 0 s2m−1 0 · · · φm(x)























with a corresponding matrix equation for the case n = 2m+ 1.

4 The Riordan array case

We recall elements of the theory of Riordan arrays before giving examples of Hurwitz as-
sociated polynomials, where the relevant coefficient matrices happen to be Riordan arrays.
For a power series f(x) =

∑∞
n=0 anx

n with f(0) = 0 we define the reversion or compositional
inverse of f to be the power series f̄(x) such that f(f̄(x)) = x.

For a lower triangular matrix (an,k)n,k≥0 the row sums give the sequence with general term
∑n

k=0 an,k. More generally, a lower triangular matrix (an,k)n,k≥0 is the coefficient array of the
polynomials

Pn(x) =
n
∑

k=0

an,kx
k.

The Riordan group [25, 28], is a set of infinite lower-triangular integer matrices, where
each matrix is defined by a pair of generating functions g(x) = 1 + g1x + g2x

2 + · · · and
f(x) = f1x + f2x

2 + · · · where f1 6= 0 [28]. We often require in addition that f1 = 1, but
this is not the case in this note. The associated matrix is the matrix whose i-th column is

13



generated by g(x)f(x)i (the first column being indexed by 0). The matrix corresponding to
the pair g, f is denoted by (g, f) or R(g, f). The group law is then given by

(g, f) · (h, l) = (g, f)(h, l) = (g(h ◦ f), l ◦ f).

The identity for this law is I = (1, x) and the inverse of (g, f) is (g, f)−1 = (1/(g ◦ f̄), f̄)
where f̄ is the compositional inverse of f .

Elements of the form (g(x), x) form a subgroup called the Appell subgroup.

If M is the matrix (g, f), and a = (a0, a1, . . .)
t is an integer sequence (expressed as an

infinite column vector) with ordinary generating function A (x), then the sequence Ma has
ordinary generating function g(x)A(f(x)). The (infinite) matrix (g, f) can thus be con-
sidered to act on the ring of integer sequences ZN by multiplication, where a sequence is
regarded as a (infinite) column vector. We can extend this action to the ring of power series
Z[[x]] by

(g, f) : A(x) 7→ (g, f) · A(x) = g(x)A(f(x)).

This action is often referred to as the fundamental theorem of Riordan arrays.

Example 10. The so-called binomial matrix B is the element ( 1
1−x

, x
1−x

) of the Riordan

group. It has general element
(

n

k

)

, and hence as an array coincides with Pascal’s triangle.
More generally, Bm is the element ( 1

1−mx
, x
1−mx

) of the Riordan group, with general term
(

n

k

)

mn−k. It is easy to show that the inverse B−m of Bm is given by ( 1
1+mx

, x
1+mx

).

Example 11. The Riordan array
(

1
1+x

, x
(1+x)2

)

has inverse (c(x), xc(x)2). It is the coefficient

array of the unique family of orthogonal polynomials

Pn(x) = (x− 2)Pn−1(x)− Pn−2(x)

for which the Catalan numbers Cn are the moments.

The row sums of the matrix (g, f) have generating function

(g, f) · 1

1− x
=

g(x)

1− f(x)
,

while the polynomial sequence Pn(t) for which (g, f) is the coefficient array will have g.f.

g(x)

1− tf(x)
.

For an invertible matrix M , its production matrix (also called its Stieltjes matrix) [14, 15]
is the matrix

PM = M−1M̂,

where M̂ is the matrix M with its first row removed. A Riordan array M is the inverse of the
coefficient array of a family of orthogonal polynomials [10, 31] if and only if PM is tri-diagonal
[2, 3]. Necessarily, the Jacobi coefficients (i.e., the coefficients of the three-term recurrence
[10] that defines the polynomials) of these orthogonal polynomials are then constant.
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Example 12. The production matrix of (c(x), xc(x)2) is given by























1 1 0 0 0 0 · · ·
1 2 1 0 0 0 · · ·
0 1 2 1 0 0 · · ·
0 0 1 2 1 0 · · ·
0 0 0 1 2 1 · · ·
0 0 0 0 1 2 · · ·
...

...
...

...
...

...
. . .























.

An important feature of Riordan arrays is that they have a number of sequence charac-
terizations [9, 16]. The simplest of these is as follows.

Proposition 13. [16, Theorem 2.1, Theorem 2.2]. Let D = [dn,k] be an infinite triangular
matrix. Then D is a Riordan array if and only if there exist two sequences A = [α0, α1, α2, . . .]
and Z = [z0, z1, z2, . . .] with α0 6= 0, z0 6= 0 such that

• dn+1,k+1 =
∑∞

j=0 αjdn,k+j, (k, n = 0, 1, . . .)

• dn+1,0 =
∑∞

j=0 zjdn,j, (n = 0, 1, . . .).

The coefficients α0, α1, α2, . . . and z0, z1, z2, . . . are called the A-sequence and the Z-
sequence of the Riordan arrayM = (g(x), f(x)), respectively. Letting A(x) be the generating
function of the A-sequence and Z(x) be the generating function of the Z-sequence, we have

A(x) =
x

f̄(x)
, Z(x) =

1

f̄(x)

(

1− d0,0
g(f̄(x))

)

. (4)

The first column of PM is then generated by Z(x), while the k-th column is generated
by xk−1A(x) (taking the first column to be indexed by 0). There is a close link between
orthogonal polynomials whose defining three term recurrences have constant coefficients and
Riordan arrays whose inverses have tri-diagonal production matrices [2, 3]. We devote this
section to examples where the coefficient array L(s) is a Riordan array

L(s) = (u(x), v(x)).

We shall also assume that a0 = b0 = 1 for the rest of this section. Note that we have, in this
case,

L(s)−1
= (u(x), v(x))−1 =

(

1

u(v̄(x))
, v̄(x)

)

= (s(x), v̄(x)).

In particular,

s(x) =
1

u(v̄(x))
⇒ u(x) =

1

s(v(x))
.

We have

L(s) ·M−1 = L(s) · (g(x), x)−1 = L(s) ·
(

1

g(x)
, x

)

=

(

u(x)

g(x)
, v(x)

)

.
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Looking at inverses, we get

(L(s) ·M−1)−1 = M · (L(s))−1 =

(

g(x)

u(v̄(x))
, v̄(x)

)

.

We wish to compare the production array of the matrix (L(s))−1 with that of the matrix

(L(s) ·M−1)−1. For the matrix (L(s))−1 = (u, v)−1 =
(

1
u(v̄(x))

, v̄(x)
)

, we have

A(x) =
x

v(x)
, Z(x) =

1

v
(1− u(x)), (5)

since by assumption d0,0 = 1. For (L(s) ·M−1)−1 =
(

g(x)
u(v̄(x))

, v̄(x)
)

we find that

Ã(x) =
x

v(x)
, Z̃(x) =

1

v(x)

(

1− u(x)

g(v(x))

)

. (6)

In our case (that of L(s) being the coefficient array of a family of orthogonal polynomials),
we have

L(s) =

(

1 + α′x+ β′x2

1 + αx+ βx2
,

x

1 + αx+ βx2

)

,

for suitable values of α, β, α′, β′. Then

A(x) = Ã(x) = 1 + αx+ βx2,

and

Z(x) =
1 + αx+ βx2

x

(

1− 1 + α′x+ β′x2

1 + αx+ βx2

)

= (α− α′) + (β − β′)x,

along with

Z̃(x) =
1

x



1 + αx+ βx2 − (1 + α′x+ β′x2) · 1

g
(

x
1+αx+βx2

)



 .

Thus as expected, (L(s))−1 has a tri-diagonal production matrix, which begins






















α− α′ 1 0 0 0 0 · · ·
β − β′ α 1 0 0 0 · · ·

0 β α 1 0 0 · · ·
0 0 β α 1 0 · · ·
0 0 0 β α 1 · · ·
0 0 0 0 β α · · ·
...

...
...

...
...

...
. . .























.

However, given the form of Z̃(x), only in the exceptional case when

Z̃(x) =
1

x



1 + αx+ βx2 − 1 + α′x+ β′x2

g
(

x
1+αx+βx2

)




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is of the form γ + δx will the production matrix of (L(s) ·M−1)−1 be tri-diagonal. Only in
this case are the polynomials Qn(x) orthogonal.

In the case when
L(s∗) = (u∗(x), v∗(x)) = (s∗(x), v̄∗(x))−1

is a Riordan array, a similar analysis is valid.

Example 14. We look at the case where an =
∑n

k=0

(

2k
k

)

Cn−k =
(

2n+1
n+1

)

and bn =
(

2n
n

)

. In
this case, we have

f(x) =
c(x)√
1− 4x

, g(x) =
1√

1− 4x
, s(x) =

f(x)

g(x)
= c(x),

and hence sn = Cn.
We find that the coefficient array L̃ of the polynomials Qn(x) is the array

(

1− x

(1 + x)2
,

x

(1 + x)2

)

,

which begins






















1 0 0 0 0 0 · · ·
−3 1 0 0 0 0 · · ·
5 −5 1 0 0 0 · · ·
−7 14 −7 1 0 0 · · ·
9 −30 27 −9 1 0 · · ·

−11 55 −77 44 −11 1 · · ·
...

...
...

...
...

...
. . .























.

We have

Qn(x) =
n
∑

k=0

2n+ 1

2k + 1

(

n+ k

2k

)

(−1)n−kxk.

The inverse array L̃−1 begins






















1 0 0 0 0 0 · · ·
3 1 0 0 0 0 · · ·
10 5 1 0 0 0 · · ·
35 21 7 1 0 0 · · ·
126 84 36 9 1 0 · · ·
462 330 165 55 11 1 · · ·
...

...
...

...
...

...
. . .























(A111418).

By its form, we see that
(

1−x
(1+x)2

, x
(1+x)2

)

is in this case the coefficient array of a family of

orthogonal polynomials. This is verified by noting that

Z̃(x) =
(1 + x)2

x






1−

1
1+x

1
√

1− 4x
(1+x)2






= 3 + x.
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In fact, the production matrix of
(

1−x
(1+x)2

, x
(1+x)2

)−1

is given by























3 1 0 0 0 0 · · ·
1 2 1 0 0 0 · · ·
0 1 2 1 0 0 · · ·
0 0 1 2 1 0 · · ·
0 0 0 1 2 1 · · ·
0 0 0 0 1 2 · · ·
...

...
...

...
...

...
. . .























,

and so we have

Qn(x) = (x− 2)Qn−1(x)−Qn−2(x), Q0(x) = 1, Q1(x) = x− 3.

Looking at M−1L̃−1, we have























1 0 0 0 0 0 · · ·
2 1 0 0 0 0 · · ·
6 2 1 0 0 0 · · ·
20 6 2 1 0 0 · · ·
70 20 6 2 1 0 · · ·
252 70 20 6 2 1 · · ·
...

...
...

...
...

...
. . .























−1

·























1 0 0 0 0 0 · · ·
3 1 0 0 0 0 · · ·
10 5 1 0 0 0 · · ·
35 21 7 1 0 0 · · ·
126 84 36 9 1 0 · · ·
462 330 165 55 11 1 · · ·
...

...
...

...
...

...
. . .























=























1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
2 3 1 0 0 0 · · ·
5 9 5 1 0 0 · · ·
14 28 20 7 1 0 · · ·
42 90 75 35 9 1 · · ·
...

...
...

...
...

...
. . .























(A039599).

This latter array is the inverse of
(

1
1+x

, x
(1+x)2

)−1

. The array
(

1
1+x

, x
(1+x)2

)

is the coefficient

array of the orthogonal polynomials whose moments are the Catalan numbers Cn.
Turning now to s∗n, we have s∗n = Cn+1. In this case, we find that

L̃∗ = L(s∗) ·M−1 = (u∗(x), v∗(x)) =

(

1− x

(1 + x)3
,

x

(1 + x)2

)

.

This array represents the coefficients of a family of polynomials Rn(x) that are “almost
orthogonal”, in the sense that the production matrix of the inverse of this matrix is of the
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form






















4 1 0 0 0 0 · · ·
−1 2 1 0 0 0 · · ·
2 1 2 1 0 0 · · ·
−2 0 1 2 1 0 · · ·
2 0 0 1 2 1 · · ·
−2 0 0 0 1 2 · · ·
...

...
...

...
...

...
. . .























.

Thus we have

Rn(x) = (x− 2)Rn−1(x)−Rn−2(x)− z̃n−1, R0(x) = 1, R1(x) = x− 4,

where z̃n is the sequence 0, 0, 2,−2, 2,−2, 2, . . ..
The inverse matrix (u∗(x), v∗(x))−1, which begins























1 0 0 0 0 0 · · ·
4 1 0 0 0 0 · · ·
15 6 1 0 0 0 · · ·
56 28 8 1 0 0 · · ·
210 120 45 10 1 0 · · ·
792 495 220 66 12 1 · · ·
...

...
...

...
...

...
. . .























,

has general term
(

2n+2
n+k+2

)

, and satisfies























1 0 0 0 0 0 · · ·
2 1 0 0 0 0 · · ·
6 2 1 0 0 0 · · ·
20 6 2 1 0 0 · · ·
70 20 6 2 1 0 · · ·
252 70 20 6 2 1 · · ·
...

...
...

...
...

...
. . .























−1

·























1 0 0 0 0 0 · · ·
4 1 0 0 0 0 · · ·
15 6 1 0 0 0 · · ·
56 28 8 1 0 0 · · ·
210 120 45 10 1 0 · · ·
792 495 220 66 12 1 · · ·
...

...
...

...
...

...
. . .























=























1 0 0 0 0 0 · · ·
2 1 0 0 0 0 · · ·
5 4 1 0 0 0 · · ·
14 14 6 1 0 0 · · ·
42 48 27 8 1 0 · · ·
132 165 110 44 10 1 · · ·
...

...
...

...
...

...
. . .























=
(

c(x)2, xc(x)2
)

,

where the first column of this last matrix (which is A039598) is given by s∗n = Cn+1. Note
that the first column elements of (u∗(x), v∗(x))−1 are given by

n
∑

k=0

(

2k

k

)

Cn−k+1 =
n
∑

k=0

(

2n− 2k

n− k

)

Ck+1 =

(

2n+ 2

n+ 2

)

, (A001791).
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The inverse of this last matrix is the coefficient array

L(s∗) =

(

1

(1 + x)2
,

x

(1 + x)2

)

= (c(x)2, xc(x)2)−1

for the family of orthogonal polynomials

R̃n(x) = (x− 2)R̃n−1(x)− R̃n−2(x), R̃0(x) = 1, R̃1(x) = x− 2.

These polynomials have moments given by Cn+1. We note that we have

Z̃∗(x) =
(1 + x)2

x






1−

1
(1+x)2

1
√

1− 4x
(1+x)2






=

4 + 3x+ x2

1 + x
,

where 4+3x+x2

1+x
expands to give 4,−1, 2,−2, 2,−2, 2, . . ..

Example 15. In the last example, it happened that the family of polynomials Qn(x) con-
stituted a family of orthogonal polynomials. This is not true in general. In this example, we
let

an =
n
∑

k=0

Fk+1Cn−k, bn = Fk+1,

where Fn A000045 denotes the n-th Fibonacci number. Then we have

f(x) =
c(x)

1− x− x2
, g(x) =

1

1− x− x2
, s(x) =

f(x)

g(x)

and sn = Cn. Thus again, L
(s) =

(

1
1+x

, x
(1+x)2

)

and hence

L̃ =

(

1

1 + x
,

x

(1 + x)2

)

·
(

1

1− x− x2
, x

)−1

=

(

1

1 + x
,

x

(1 + x)2

)

· (1− x− x2, x).

Thus

L̃ =

(

1 + 3x+ 3x2 + 3x3 + x4

(1 + x)5
,

x

(1 + x)2

)

,

whose inverse has production matrix























2 1 0 0 0 0 · · ·
1 2 1 0 0 0 · · ·
−2 1 2 1 0 0 · · ·
5 0 1 2 1 0 · · ·
−9 0 0 1 2 1 · · ·
14 0 0 0 1 2 · · ·
...

...
...

...
...

...
. . .























.
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This follows since

Z̃(x) =
1

x



(1 + x)2 − 1 + x

g
(

x
(1+x)2

)



 =
2 + 7x+ 7x2 + 4x3 + x4

(1 + x)3
,

which expands to
2, 1,−2, 5,−9, 14,−20, 27,−35, . . . .

This means that L̃ is the coefficient array of the “almost-orthogonal” polynomials Qn(x)
that satisfy

Qn(x) = (x− 2)Qn−1 −Qn−2(x)− z̃n−1,

where z̃n is the sequence 0, 0,−2, 5,−9, 14,−20, 27,−35, . . ..
Looking now at s∗, we have

L̃∗ =

(

1

(1 + x)2
,

x

(1 + x)2

)

· (1− x− x2, x) =

(

1 + 3x+ 3x2 + 3x3 + x4

(1 + x)6
,

x

(1 + x)2

)

.

The inverse of L̃∗ then has production array























3 1 0 0 0 0 · · ·
0 2 1 0 0 0 · · ·
−1 1 2 1 0 0 · · ·
6 0 1 2 1 0 · · ·

−15 0 0 1 2 1 · · ·
29 0 0 0 1 2 · · ·
...

...
...

...
...

...
. . .























.

We have

Z̃∗(x) =
1

x



(1 + x)2 − 1

g
(

x
(1+x)2

)



 =
3 + 12x+ 17x2 + 14x3 + 6x4 + x5

(1 + x)3
,

which expands to 3, 0,−1, 6,−15, 29, . . .. Thus in this case we have

Rn(x) = (x− 2)Rn−1(x)−Rn−2(x)− z̃∗n−1, R0(x) = 1, R1(x) = x− 3.

Example 16. For any element T = (u(x), x) of the Appell subgroup of Riordan arrays [25],
it is clear that

Hn(Ta, T b) = Hn(a, b).

This is so because for the pair Ta, Tb, we have

s(x) =
u(x)f(x)

u(x)g(x)
=

f(x)

g(x)
,
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by the fundamental theorem of Riordan arrays. Thus for instance we have

Hn(an, bn) = Hn(
n
∑

k=0

ak,
n
∑

k=0

bk),

since the partial sum operator is equal to the Riordan array
(

1
1−x

, x
)

.
Similarly we have

Hn(an, bn) = Hn(

⌊n
2
⌋

∑

k=0

an−2k,

⌊n
2
⌋

∑

k=0

bn−2k),

where in this case the Riordan array is
(

1
1−x2 , x

)

.

5 Further examples

We list below a table showing a small sample of Hurwitz transforms for the pairs of sequences
shown.

an bn s(x) Hurwitz transform
(−1)nCn+1 (−1)nCn c(−x) 1, 1, 1, 1, 1, 1, . . .

Cn Cn+1
1

c(x)
1, 1,−2, 1, 3, 1,−4, 1, 5, 1, . . .

Cn+1 Cn c(x) 1,−1, 1, 1, 1,−1, 1, 1, 1,−1, 1, . . .

(−1)n
(

1
n

)

(−1)n(Cn + Cn−1)
1

c(−x)
1,−1,−2, 1, 3,−1,−4, 1, 5, . . .

Cn 0n c(x) 1,−1, 1, 1, 1,−1, 1, 1, 1,−1, 1, . . .

Cn (−1)n
(

1
n

)

c(x)
1−x

1,−2, 0, 2,−1, 1,−1,−5, 0, 5, 1, . . .

Cn 1 (1− x)c(x) 1, 0, 1,−1,−1, 1,−4, 0,−4,−1, 1, . . .

Cn
1

1−2n

(

2n
n

)

c(x)√
1−4x

1,−3, 1, 5, 1,−7, 1, 9, 1,−11, 1, . . .

Cn + Cn+1 Cn 1 + c(x) 2,−1, 3, 1, 4,−1, 5, 1, 6,−1, 7, . . .

Cn
2

1+(−1)n

2
2n (1− 2x)c(x2) 1, 2,−3, 3,−3, 4, 5, 5, 5, 6,−7, . . .

Tn =
∑⌊n

2
⌋

k=0

(

n

2k

)(

2k
k

)

Tn+1

√
1−2x−3x2+3x−1

x(1−3x)
1, 2,−2, 4, 0, 8, 8, 16,−16, 32, 0, . . .

6 Conclusion

Since the notion of Hurwitz transform proposed here has been linked to the Hankel transform
in an easily understood way, it may be said that this notion does not add much to what
is already known. What it does add, however, is a fresh perspective, both on the Hankel
transform, and on the applications of the Hurwitz matrix. Some natural questions arise in
this context. What known sequences are the Hurwitz transforms of pairs of sequences? Are
there sequences which cannot be the Hurwitz transform of a sequence? Given that many
pairs of sequences may have the same Hurwitz transform, what notion of inverse transform
can we formulate?
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With regard to new perspectives, the Hurwitz transform makes us look at the pair (hn, h
∗
n)

whenever we wish to study hn. An interesting example of this is the case of the Narayana
polynomials,

sn =
n
∑

k=0

1

k + 1

(

n+ 1

k

)(

n

k

)

xk.

It is well known that in this case, we have

hn = x(
n+1
2 ).

In looking at the pair (hn, h
∗
n), we discover that

h∗
n = x(

n+1
2 ) 1− xn+2

1− x
.

Other examples of the pairing (hn, h
∗
n) have been studied in different contexts [1, 5, 6, 20].
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[5] R. Bojičić, M. D. Petković, and P. Barry, The Hankel transform of a sequence obtained
by series reversion, Integral Transforms Spec. Funct., to appear.
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