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Abstract

Using the language of Riordan arrays, we define a notion of generalized Bernstein
polynomials which are defined as elements of certain Riordan arrays. We characterize
the general elements of these arrays, and examine the Hankel transform of the row
sums and the first columns of these arrays. We propose conditions under which these
Hankel transforms possess the Somos-4 property. We use the generalized Bernstein
polynomials to define generalized Bézier curves which can provide a visualization of
the effect of the defining Riordan array.

1 Introduction

Given a sequence an, we denote by hn the general term of the sequence with hn = |ai+j|0≤i,j≤n.
The sequence hn is called the Hankel transform of an [21, 22]. A well known example of
Hankel transform is that of the Catalan numbers, Cn = 1

n+1

(

2n
n

)

, where we find that hn = 1
for all n. Hankel determinants occur naturally in many branches of mathematics, from
combinatorics [8] to number theory [24] and to mathematical physics [35].

In this note, we shall look at the Hankel transforms of certain sequences of polynomials.
In order to define these polynomials, we combine elements of the theory of Riordan arrays
[28] with the theory of Bernstein polynomials. Bernstein polynomials can be used in the
proof of the Weierstrass approximation theorem [27], for instance, as well as having practical
applications in the construction of Bézier curves [2, 26].

The n+1 Bernstein polynomials of degree n are the polynomials Bn,k(s) =
(

n

k

)

sk(1−s)n−k.
We shall call the coefficient array Bn,k(s) the (standard) Bernstein array. The fact that this
is a lower triangular array inspires us to look at a broader framework, involving the group
of Riordan arrays. The Bernstein array, written in matrix form, begins

















1 0 0 0 0 0 · · ·
1− s s 0 0 0 0 · · ·

(1− s)2 2s(1− s) s
2 0 0 0 · · ·

(1− s)3 3s(1− s)2 3s2(1− s) s
3 0 0 · · ·

(1− s)4 4s(1− s)3 6s2(1− s)2 4s3(1− s) s
4 0 · · ·

· · · · · · · · · · · · · · · · · · · · ·
...

...
...

...
...

...
. . .

















.
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If Pi = (xi, yi) is a sequence of n+ 1 points in the plane (i = 0 . . . n), then

P (s) =
n
∑

k=0

Bn,k(s)Pk

defines a smooth curve in the plane, with P (0) = P0 and P (1) = Pn. This curve is called the
Bernstein Bézier curve defined by the control points Pi. Often the simpler term of Bézier
curve is used.

In order to develop a theory of Riordan-array-derived generalized Bernstein polynomials,
we first review some notations associated with integer sequences and then we review the
concept of Riordan array. We also look at some information pertinent to the calculation of
special Hankel transforms. Readers familiar with these notions may skip the next section.

2 Preliminaries on integer sequences, Riordan arrays

and Hankel transforms

For an integer sequence an, that is, an element of ZN, the power series f(x) =
∑∞

k=0 anx
n

is called the ordinary generating function or g.f. of the sequence. an is thus the coefficient
of xn in this series. We denote this by an = [xn]f(x). For instance, Fn = [xn] x

1−x−x2 is

the n-th Fibonacci number A000045, while Cn = [xn]1−
√
1−4x
2x

is the n-th Catalan number
A000108. We use the notation 0n = [xn]1 for the sequence 1, 0, 0, 0, . . . , A000007. Thus
0n = [n = 0] = δn,0 =

(

0
n

)

. Here, we have used the Iverson bracket notation [17], defined by
[P ] = 1 if the proposition P is true, and [P ] = 0 if P is false.

A sequence en is called a (α, β) Somos-4 sequence if

αen−1en−3 + βe2n−2 = enen−4.

Somos-4 sequences are associated with elliptic curves [15, 19, 29, 34, 36] and Hankel trans-
forms [10, 39]. An example of such a sequence is given in the On-Line Encyclopedia of
Integer Sequences as A006720. It begins

1, 1, 1, 1, 2, 3, 7, 23, 59, 314, 1529, 8209, 83313, 620297, . . . .

This sequence has α = β = 1 and it is associated with rational points on the cubic

y2 = 4x3 − 4x+ 1.

For a power series f(x) =
∑∞

n=0 anx
n with f(0) = 0 we define the reversion or composi-

tional inverse of f to be the power series f̄(x) such that f(f̄(x)) = x. We sometimes write
f̄ = Revf .

For a lower triangular matrix (an,k)n,k≥0 the row sums give the sequence with general term
∑n

k=0 an,k.
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The Riordan group [28, 32], is a set of infinite lower-triangular integer matrices, where
each matrix is defined by a pair of generating functions g(x) = 1 + g1x + g2x

2 + · · · and
f(x) = f1x + f2x

2 + · · · where f1 6= 0 [32]. We often require in addition that f1 = 1, but
this is not the case in this note. The associated matrix is the matrix whose i-th column is
generated by g(x)f(x)i (the first column being indexed by 0). The matrix corresponding to
the pair g, f is denoted by (g, f) or R(g, f). The group law is then given by

(g, f) · (h, l) = (g, f)(h, l) = (g(h ◦ f), l ◦ f).

The identity for this law is I = (1, x) and the inverse of (g, f) is (g, f)−1 = (1/(g ◦ f̄), f̄)
where f̄ is the compositional inverse of f .

Elements of the form (g(x), xg(x)) form a subgroup called the Bell subgroup.

If M is the matrix (g, f), and a = (a0, a1, . . .)
′ is an integer sequence (expressed as an

infinite column vector) with ordinary generating function A (x), then the sequence Ma has
ordinary generating function g(x)A(f(x)). The (infinite) matrix (g, f) can thus be con-
sidered to act on the ring of integer sequences Z

N by multiplication, where a sequence is
regarded as a (infinite) column vector. We can extend this action to the ring of power series
Z[[x]] by

(g, f) : A(x) 7→ (g, f) · A(x) = g(x)A(f(x)).

Example 1. The so-called binomial matrix B is the element ( 1
1−x

, x
1−x

) of the Riordan

group. It has general element
(

n

k

)

, and hence as an array coincides with Pascal’s triangle.
More generally, Bm is the element ( 1

1−mx
, x
1−mx

) of the Riordan group, with general term
(

n

k

)

mn−k. It is easy to show that the inverse B−m of Bm is given by ( 1
1+mx

, x
1+mx

).

The row sums of the matrix (g, f) have generating function

(g, f) · 1

1− x
=

g(x)

1− f(x)
.

Each Riordan array (g(x), f(x)) has bi-variate generating function given by

g(x)

1− yf(x)
.

For instance, the binomial matrix B has generating function

1
1−x

1− y x
1−x

=
1

1− x(1 + y)
.

Many interesting examples of sequences and Riordan arrays can be found in Neil Sloane’s
On-Line Encyclopedia of Integer Sequences (OEIS), [30, 31]. Sequences are frequently re-
ferred to by their OEIS number. For instance, the binomial matrix B (“Pascal’s triangle”)
is A007318.

There are a number of known ways of calculating Hankel transforms of sequences [9, 20,
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21, 25, 35]. One involves the theory of orthogonal polynomials, whereby we seek to rep-
resent the sequence under study as moments of a density function. Standard techniques
of orthogonal polynomials then allow us to compute the desired Hankel transforms [6, 13].
These techniques are based on the following results (the first is the well-known “Favard’s
Theorem”), which we essentially reproduce from [21].

Theorem 2. [21] (Cf. [37], Théorème 9 on p.I-4, or [38], Theorem 50.1). Let (pn(x))n≥0

be a sequence of monic polynomials, the polynomial pn(x) having degree n = 0, 1, . . . Then
the sequence (pn(x)) is (formally) orthogonal if and only if there exist sequences (αn)n≥0 and
(βn)n≥1 with βn 6= 0 for all n ≥ 1, such that the three-term recurrence

pn+1 = (x− αn)pn(x)− βnpn−1(x), for n ≥ 1,

holds, with initial conditions p0(x) = 1 and p1(x) = x− α0.

Theorem 3. [21] (Cf. [37], Proposition 1, (7), on p. V-5, or [38], Theorem 51.1). Let
(pn(x))n≥0 be a sequence of monic polynomials, which is orthogonal with respect to some
functional L. Let

pn+1 = (x− αn)pn(x)− βnpn−1(x), for n ≥ 1,

be the corresponding three-term recurrence which is guaranteed by Favard’s theorem. Then
the generating function

g(x) =
∞
∑

k=0

µkx
k

for the moments µk = L(xk) satisfies

g(x) =
µ0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·

.

The Hankel transform of µn, which is the sequence with general term hn = |µi+j|0≤i,j≤n, is
then given by

hn = µn+1
0 βn

1 β
n−1
2 · · · β2

n−1βn.

Other methods of proving Hankel transform evaluations include lattice path methods (the
Lindström-Gessel-Viennot theorem) [1, 33] and Dodgson condensation (Desnanot-Jacobi ad-
joint matrix theorem) [1, 7, 14].

The Hankel transform is not an injective mapping. For instance, given a sequence an
then the sequence

∑n

k=0 r
n−k
(

n

k

)

ak [22] will also have the same Hankel transform. Similarly
we have

Lemma 4. Let an (with a0 6= 0) have g.f. f(x) and bn have g.f. g(x) where

g(x) =
f(x)

1− sxf(x)
.

Then an and bn have the same Hankel transform.
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Proof. The proof is a small variation on the proof for the INVERT transform [22]. We have

g(x) = f(x) + sxf(x)g(x),

which implies that

bn = an + s

n−1
∑

k=0

an−1−kbk.

We then have














b0 b1 b2 b3 · · ·
b1 b2 b3 b4 · · ·
b2 b3 b4 b5 · · ·
b3 b4 b5 b6 · · ·
...

...
...

...
. . .















=















1 0 0 0 · · ·
sb0 1 0 0 · · ·
sb1 sb0 1 0 · · ·
sb2 sb1 sb0 1 · · ·
...

...
...

...
. . .





























a0 a1 a2 a3 · · ·
a1 a2 a3 a4 · · ·
a2 a3 a4 a5 · · ·
a3 a4 a5 a6 · · ·
...

...
...

...
. . .





























1 sb0 sb1 sb2 · · ·
0 1 sb0 sb1 · · ·
0 0 1 sb0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .















.

Taking determinants now yields the result, the triangular matrices with 1’s on the diagonal
having determinants equal to 1.

When s = 1, we obtain the so-called “INVERT” transform. Note that the row sums of
elements of the Bell subgroup of Riordan arrays, which are of the form (g(x), xg(x)), have
a g.f. equal to the INVERT transform of the first column generating function. Explicitly,
the row sums have g.f. g(x)

1−xg(x)
. Thus in this case, the Hankel transform of the row sums

sequence is equal to the Hankel transform of the first column sequence.

3 Generalized Bernstein polynomials

We recall that the n + 1 Bernstein polynomials of degree n are the polynomials Bn,k(s) =
(

n

k

)

sk(1− s)n−k.

Lemma 5. The Bernstein array Bn,k is given by the Riordan array product

(

1

1− (1− s)x
,

sx

1− (1− s)x

)

=

(

1

1− x
,

x

1− x

)

· (1, sx) ·
(

1

1− x
,

x

1− x

)−1

. (1)

Proof. We note that the matrices
(

1
1−x

, x
1−x

)

and
(

1
1−x

, x
1−x

)−1
=
(

1
1+x

, x
1+x

)

have (n, k)-th

elements given by
(

n

k

)

and
(

n

k

)

(−1)n−k respectively. A straight-forward evaluation of the
product on the right-hand side establishes the equation. The details are as follows. First,
we have

(

1

1− x
,

x

1− x

)−1

=

(

1

1 + x
,

x

1 + x

)

.
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Thus we obtain
(

1

1− x
,

x

1− x

)

· (1, sx) ·
(

1

1 + x
,

x

1 + x

)

=

(

1

1− x
,

x

1− x

)

·
(

1

1 + sx
,

x

1 + sx

)

=

(

1

1− x

1

1 + sx
1−x

,
sx
1−x

1 + sx
1−x

)

=

(

1

1 + (s− 1)x
,

sx

1 + (s− 1)x

)

=

(

1

1− (1− s)x
,

sx

1− (1− s)x

)

.

We then have, by definition of a Riordan array, that the (n, k)-th term of the Riordan array
(

1
1−(1−s)x

, sx
1−(1−s)x

)

, say tn,k, is given by

tn,k = [xn]
1

1− (1− s)x

(

sx

1− (1− s)x

)k

= [xn]
skxk

(1− (1− s)x)k+1

= sk[xn−k](1− (1− s)x)−k−1

= sk[xn−k]
∞
∑

j=0

(−k − 1

j

)

(−(1− s))jxj

= sk[xn−k]
∞
∑

j=0

(

k + 1 + j − 1

j

)

(−1)j(−(1− s))jxj

= sk[xn−k]
∞
∑

j=0

(

k + j

j

)

(1− s)jxj

= sk
(

k + n− k

n− k

)

(1− s)n−k

=

(

n

k

)

sk(1− s)n−k.

Now let (g, f) be an arbitrary Riordan array. We define the following notion of generalized
Bernstein polynomials. The generalized Bernstein polynomials defined by the Riordan array
(g, f) are the polynomials B

(g,f)
n,k (s) defined by the Riordan array

B
(g,f) = (g, f) · (1, sx) · (g, f)−1. (2)

In other words, B
(g,f)
n,k (s) is the (n, k)-th element of the triple matrix product (2). When we

use these polynomials along with a set of control points to draw a curve, we shall call such a
curve a generalized Bernstein-Bézier curve. Some examples of such curves are given in what
follows.
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Example 6. We let (g, f) = (g, xg) with g(x) = 1
1+x+x2 . We find that (g, f)−1 = (m(x), xm(x))

where

m(x) =
1− x−

√
1− 2x− 3x2

2x2

is the generating function of the Motzkin numbers Mn =
∑⌊n

2
⌋

k=0

(

n

2k

)

Ck A001006. With the
sequel in mind, we note that the row sums bn of the inverse matrix (g, f)−1 in this case have
generating function

(m(x), xm(x)) · 1

1− x
=

m(x)

1− xm(x)
=

√
1− 2x− 3x2 + 3x− 1

2x(1− 3x)
.

We have

bn =
n
∑

k=0

(

n

k

)

(−1)k3n−kCk.

This is A005773(n+ 1) (the number of directed animals of size n+ 1).

We note that the expression m(x)
1−xm(x)

corresponds to the so-called “INVERT transform”

of m(x).

Figure 1: Three generalized Bernstein-Bézier curves

The matrix of polynomials B
(g,f)
n,k (s) in this case begins























1 0 0 0 0 0 · · ·
s− 1 s 0 0 0 0 · · ·

2s(s− 1) 2s(s− 1) s2 0 0 0 · · ·
4s3 − 6s2 + s+ 1 5s3 − 6s2 + s 3s2 − 3s2 s3 0 0 · · ·

9s4 − 16s3 + 6s2 + 2s− 1 12s4 − 20s3 + 6s2 + 2s 9s4 − 12s3 + 3s2 4s4 − 4s3 s4 0 · · ·
· · · · · · · · · · · · · · · s5 · · ·
...

...
...

...
...

...
. . .
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Returning to the general case, we recall that

(g(x), f(x))−1 =

(

1

g(f̄(x))
, f̄(x)

)

,

where f̄(x) is the compositional inverse of f(x) (that is, it is the solution u(x) of the equation
f(u) = x for which u(0) = 0). Thus we have

B
(g,f) = (g(x), f(x)) · (1, sx) ·

(

1

g(f̄(x))
, f̄(x)

)

= (g(x), f(x)) ·
(

1

g(f̄(sx))
, f̄(sx)

)

=

(

g(x)

g(f̄(sf(x)))
, f̄(sf(x))

)

.

The first column of B(g,f) thus has generating function

g(x)

g(f̄(sf(x)))
= (g(x), f(x)) · 1

g(f̄(sx))
. (3)

The row sums of B(g,f) are seen to have generating function
(

g(x)

g(f̄(sf(x)))
, f̄(sf(x))

)

· 1

1− x
=

g(x)

g(f̄(sf(x)))

1

1− f̄(sf(x))
.

Proposition 7. Let the elements of the Riordan array (g(x), f(x)) be denoted by dn,k, and
let the first column of (g(x), f(x))−1 have elements an. Then the elements of the first column
of B(g,f) are given by

n
∑

k=0

dn,kaks
k.

Proof. The an have generating function 1
g(f̄(x))

. Thus 1
g(f̄(sx))

generates the sequence snan.

Since (g(x), f(x)) has general term dn,k, the result follows from the expression in Eq. (3).

Thus the first column elements of B(g,f), which we denote by ãn(s),

ãn(s) =
n
∑

k=0

dn,kaks
k

are polynomials in s of degree at most n.
In similar manner, we have

Proposition 8. Let bn denote the row sums of the inverse matrix (g(x), f(x))−1. Then the
row sums of the Bernstein array B

(g,f) are given by the expression

n
∑

k=0

dn,kbks
k.
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Proof. The row sums of B have generating function given by

B · 1

1− x
= (g(x), f(x)) ·

(

1

g(f̄(sx))
, f̄(sx)

)

1

1− x

= (g(x), f(x)) · 1

g(f̄(sx))

1

1− f̄(sx)
.

The result follows by observing that the sequence bn has g.f. given by 1
g(f̄(x))

1
1−f̄x

.

We conclude that the row sum elements of B(g,f),

b̃n(s) =
n
∑

k=0

dn,kbks
k

are polynomials in s of degree at most n.

Proposition 9. When g(x) = 1
1−x

, the row sum sequence of B(g,f) is the sequence of all 1s:
1, 1, 1, . . . .

Proof. By the above, the row sums of B are generated in this case by

(g(x), f(x)) · 1

g(f̄(sx))

1

1− f̄(sx)
=

(

1

1− x
, f(x)

)

· (1− f̄(sx))
1

1− f̄(sx)

=

(

1

1− x
, f(x)

)

· 1

=
1

1− x
.

We note that this is true independently of the nature of f .

Lemma 10. When (g(x), f(x)) = (g(x), xg(x)) is an element of the Bell subgroup of the
Riordan group, the sequences an and bn have the same Hankel transform.

Proof. The inverse of a Bell matrix is again a Bell matrix, so that bn is the INVERT transform
of an.

Proposition 11. If (g, f) = (g, xg) is an element of the Bell subgroup, then ãn(s) and b̃n(s)
have the same Hankel transforms.

Proof. In this case, we have (g, f)−1 =
(

f̄

x
, f̄
)

. Then

B = (g, f) · (1, sx) ·
(

f̄

x
, f̄

)

= (g, f) ·
(

f̄(sx)

sx
, f̄(sx)

)

=

(

g(x)
f̄(sf(x))

sf(x)
, f̄(sf(x))

)

=

(

f̄(sf(x))

sx
, f̄(sf(x))

)

.
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Thus the g.f. for ãn(s) is given by G = f̄(sf(x))
sx

. The g.f. of b̃n(s) is given by

B · 1

1− x
=

(

f̄(sf(x))

sx
, f̄(sf(x))

)

· 1

1− x
=

G

1− sxG
.

But for any g.f. G (with G(0) 6= 0, which is the case here), G and G
1−sxG

generate sequences
with the same Hankel transform.

Example 12. We consider the first column of the matrix B defined by
(

1
1+x+x2 ,

x
1+x+x2

)

(this
array is A104562). The elements of this sequence begin

1, s− 1, 2s2 − 2s, 4s3 − 6s2 + s+ 1, 9s4 − 16s3 + 6s2 + 2s− 1, . . .

We have, in fact,

ãn(s) =
n
∑

k=0

dn,kMks
k,

where Mn is the n-th Motzkin number and

dn,k =
n
∑

j=0

(−1)
n−j

2

(n+j

2

j

)

1 + (−1)n−j

2
(−1)j−k

(

j

k

)

.

The Hankel transform of ãn(s) begins

1, s2 − 1, s3(s3 − 3s+ 2), s4(s8 − 5s6 + 4s5 + 4s3 − 5s2 + 1),

s8(s12 − 8s10 + 4s9 + 18s8 − 57s6 + 54s5 + 6s4 − 28s3 + 9s2 + 2s− 1), . . .

We can express this sequence of polynomials in s of degree n(n+ 1) as

hn(s) = (s− 1)⌊
(n+1)2

4
⌋s⌊

n2

2
⌋Pn(s),

where Pn(s) is a polynomial in s of degree ⌊ (n+1)2

4
⌋. We can conjecture that this sequence is

a
(s4(s− 1)2, s4(s− 1)(2s2 − s− 1))

Somos-4 sequence.
By the result above, the Hankel transform of b̃n(s) is the same as that of ã(s). We have

in this case that

b̃n(s) =
n
∑

k=0

dn,kbks
k,

where

bn =
n
∑

k=0

(−1)k3n−k

(

n

k

)

Ck.
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Example 13. We consider (g, f) =
(

1
1+x

, x
(1+x)2

)

. The (n, k)-th element of this array is
(

n+k

2k

)

(−1)n−k. The first column elements of the inverse (g, f)−1 are the Catalan numbers

Cn, and the row sums of the inverse are the central binomial numbers
(

2n
n

)

A000984. Thus
we have

ãn(s) =
n
∑

k=0

(

n+ k

2k

)

Ck(−1)n−ksk,

and

b̃n(s) =
n
∑

k=0

(

n+ k

2k

)(

2k

k

)

(−1)n−ksk.

The g.f. of ãn(s) is

1 + x−
√

1 + 2x(1− 2s) + x2

2sx
,

from which we deduce (via the Stieltjes-Perron transform [11, 18]) the moment representation

ãn(s) =
1

2π

∫ 2s−1+2
√

s(s−1)

2s−1−2
√

s(s−1)

xn

√

−x2 + 2x(2s− 1)− 1

sx
dx+

0n

s
, (s 6= 0).

The g.f. of b̃n(s) reduces to
1

√

1− 2x(2s− 1) + x2
.

In this instance, the polynomials b̃n(s) coincide with the shifted Legendre polynomials [5]

b̃n(s) = Pn(2s− 1).

The Hankel transforms of the polynomials ãn(s) and b̃n(s) have been studied by several

authors [5, 12]. They are (s(s − 1))(
n+1
2 ) and 2n(s(s − 1))(

n+1
2 ), respectively. An immediate

calculation shows that these sequences are both (s3(s− 1)3, 0) Somos-4 sequences. We have
the following continued fraction expressions for the g.f. of ãn(s),

1

1− (s− 1)x−
s(s− 1)x2

1− (2s− 1)x−
s(s− 1)x2

1− (2s− 1)x− · · ·

,

and for the g.f. of b̃n(s),

1

1− (2s− 1)x−
2s(s− 1)x2

1− (2s− 1)x−
s(s− 1)x2

1− (2s− 1)x− · · ·

,

from which we can deduce the form of their Hankel transforms.
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Example 14. We consider the Pascal-like triangle (g, f) =
(

1
1−x

, x(1+x)
1−x

)

. This is called the

Delannoy triangle A008288. This triangle [3] begins























1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 3 1 0 0 0 · · ·
1 5 5 1 0 0 · · ·
1 7 13 7 1 0 · · ·
1 9 25 25 9 1 · · ·
...

...
...

...
...

...
. . .























.

The general term of this matrix is given by

k
∑

j=0

(

k

j

)(

n− j

n− k − j

)

=
k
∑

j=0

(

k

j

)(

n− k

n− k − j

)

2j .

The first column of (g, f)−1 has generating function 1 − xS(−x), where S(x) is the g.f. of
the large Schroeder numbers Sn =

∑n

k=0

(

n+k

2k

)

Ck A006318. This sequence can be expressed
as

S̃n = (−1)n(0n +
n−1
∑

k=0

(

n− 1 + k

2k

)

Ck).

We therefore have

ãn(s) =
n
∑

k=0

k
∑

j=0

(

k

j

)(

n− j

n− k − j

)

S̃ks
k.

The Hankel transform of this polynomial sequence is given by a product of the form

hn(s) = s(
n+1
2 )(s− 1)⌊

(n+1)2

4
⌋2

∑n
k=0 ⌊ 5k

7
⌋Pn(s),

where Pn(s) is a polynomial in s of degree ⌊n2

4
⌋. Numerical evidence suggests that hn(s) is

a (36s4(s− 1)2,−8s4(7s4 − 18s3 + 13s2 − 2)) Somos-4 sequence.

4 Some Somos-4 conjectures

Motivated by examples from the last section we continue to explore links between generalized
Bernstein arrays and Somos-4 sequences. In this section, we shall posit two conjectures
concerning different families of Riordan arrays (g, f), the Hankel transform of the first column
elements of B(g,f), and Somos-4 sequences. We are currently not in a position to prove these
conjectures. The resolution of similar conjectures is an active area of research [10].

We consider for example the Bernstein array B generated by the Riordan array

(g(x), f(x)) = (1− x, x(1− x)),
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with general element
(

k+1
n−k

)

(−1)n−k whose inverse array (g(x), f(x))−1 = (c(x), xc(x)) is often
called the Catalan array A033184 [23]. As we have seen, the generating function for the first
column elements

ãn(s) =
n
∑

k=0

(

k + 1

n− k

)

(−1)n−kCks
k

of B is given by
g(x)

g(f̄(sf(x)))
=

1−
√

1− 4sx(1− x)

2sx
,

from which we deduce (via the Stieltjes-Perron transform) the moment representation

ãn(s) =
1

2π

∫ 2(s+
√

s(s−1))

2(s−
√

s(s−1))

xn

√

4s(x− 1)− x2

2sx
dx+

0n√
s
, (s 6= 0).

We have

hn(s) = (s− 1)(
n+1
2 )s⌊

n2

2
⌋

n
∑

k=0

(

n+ 1

2k + 1+(−1)n

2

)

sk,

where
n
∑

k=0

(

n+ 1

2k + 1+(−1)n

2

)

sk = [xn]
1 + (s+ 1)x− (s− 1)x2 − (s− 1)2x2

1− 2(s+ 1)x2 + (s− 1)2x4
.

We can then conjecture that the Hankel transform of ãn is a (4s4(s−1)2,−s4(s−1)3(3s+1))
Somos-4 sequence.

We next consider the Bernstein array generated by the Pascal-like [2] Riordan array

(g, f) =

(

1

1− x
,
x(1 + rx)

1− x

)

.

The first column of this array can be shown to have generating function

1 + 2r − (2r − s+ 1)x+ rsx2

2(1− x)2

−
√

1 + (2rs+ s− 1)x+ ((s− 1)2 − 2rs(1− 2r))x2 − 2rs(2r − s+ 1)x3 + r2s2x4

2(1− x)2
.

The quartic within the square root suggests that the Hankel transform of this sequence could
be a candidate for a Somos-4 sequence. Numerical evidence suggests the following.

Conjecture 15. The Hankel transform of the first column elements of the generalized Bern-

stein array generated by
(

1
1−x

, x(1+rx)
1−x

)

is a

(r2s4(s− 1)2(r + 1)2(2r + 1)2,−s4(s− 1)2(r(r + 1))3(r(r + 1)(3s2 − 2s− 1) + s2))

Somos-4 sequence.

We can generalize this as follows.
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Conjecture 16. The Hankel transform of the first column elements of the generalized Bern-

stein array generated by
(

1
1+ax

, x(1+bx)
1+ax

)

is a

(b2s4(s− 1)2(a− b)2(a− 2b)2,−s4b3(s− 1)2(a− b)3(a2s2 + (b− ab)(3s2 − 2s− 1))

Somos-4 sequence.

We next consider the generalized Bernstein array defined by the Riordan array

(g(x), f(x)) =

(

1

1 + ax+ bx2
,

x

1 + ax+ bx2

)

.

Thus we let hn(s) denote the Hankel transform of ãn(s). This sequence has g.f. given by

1 + a(1− s)x+ bx2 −
√

1 + 2a(1− s)x+ (a2(1− s)2 + 2b(1− 2s2))x2 + 2a(1− s)bx3 + b2x4

2bs2x2
.

For the case a = 0, this reduces to

1 + bx2 −
√

1 + 2b(1− 2s2)x2 + b2x4

2bs2x2
.

In this case, we can conjecture that

hn(s) = b(
n+1
2 )s⌊

n2

2
⌋(s2 − 1)⌊

(n+1)2

4
⌋.

In the general case, we have

Conjecture 17. The Hankel transform of the first column elements of the generalized Bern-
stein array generated by

(

1
1+ax+bx2 ,

x
1+ax+bx2

)

is a

(a2b2s4(s− 1)2,−b3s4(s− 1)2(s2(a2 − b)− 2bs− b))

Somos-4 sequence.

When a = 0, it is easy to verify this conjecture by direct evaluation. We must show that

hn(s) = b(
n+1
2 )s⌊

n2

2
⌋(s2 − 1)⌊

(n+1)2

4
⌋

is a (0, b4s4(s2 − 1)2) Somos-4 sequence. Thus we must show that

hn+4(s) = b4s4(s2 − 1)2
hn+2(s)

2

hn(s)
,

that is, we wish to show that

b(
n+5
2 )s⌊

(n+4)2

2
⌋(s2 − 1)⌊

(n+5)2

4
⌋ =

b4s4(s2 − 1)2b2(
n+3
2 )s2⌊

(n+2)2

2
⌋(s2 − 1)2⌊

(n+3)2

4
⌋

b(
n+1
2 )s⌊

n2

2
⌋(s2 − 1)⌊

(n+1)2

4
⌋

.
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Now this is so, since

⌊(n+ 5)2

4
⌋ = 2 + 2⌊(n+ 3)2

4
⌋ − ⌊(n+ 1)2

4
⌋,

⌊(n+ 4)2

2
⌋ = 2⌊(n+ 2)2

2
⌋ − ⌊n

2

2
⌋+ 4,

and
(

n+ 5

2

)

= 4 + 2

(

n+ 3

2

)

−
(

n+ 1

2

)

.

Returning to the general case, we note that since in this case the defining array is a member
of the Bell subgroup, the same conjecture holds for the Hankel transform of b̃n(s).

5 Drawing generalized Bernstein-Bézier curves

Although Riordan arrays are algebraic entities, it is interesting to use the mechanism of gener-
alized Bernstein-Bezier curves to provide a geometric visualization of their effect. To do this,
we select a common set of control points to produce a curve that in some way reflects proper-
ties of the array. For our example, we select the set of control points 〈(−1, 0), (−1, 1), (1, 1), (1, 0)〉.

Example 18. Figure 1 shows points on three generalized Bernstein-Bézier curves, corre-
sponding to the Riordan array

(

1

1− x
,

1

1− rx− rx2

)

,

for r = 1, 2, 3, respectively, with the lowest curve corresponding to r = 1. The control points
are 〈(−1, 0), (−1, 1), (1, 1), (1, 0)〉.

When r = 2, the B matrix begins

















1 0 0 0 0 0 · · ·
−s+ 1 s 0 0 0 0 · · ·

2s2 − 3s+ 1 3s− 3s2 s
2 0 0 0 · · ·

−2s3 + 10s2 − 9s+ 1 6s3 − 15s2 + 9s 5s2 − 5s3 s
3 0 0 · · ·

−4s4 − 14s3 + 42s2 − 25s+ 1 −4s4 + 42s2 − 63s2 + 25s 14s4 − 35s3 + 21s2 7s3 − 7s4 s
4 0 · · ·

· · · · · · · · · · · · · · · s
5 · · ·

...
...

...
...

...
...

. . .

















and hence the x coordinate function is given by

x(s) = (−2s3+10s2−9s+1)(−1)+(6s3−15s2+9s)(−1)+(5s2−5s3)(1)+s3(1) = −8s3+10s2−1,

while the y-coordinate function is given by

y(s) = (−2s3+10s2−9s+1)(0)+(6s3−15s2+9s)(1)+(5s2−5s3)(1)+s3(0) = s3−10s2+9s.
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Example 19. We take the case of (g, f) =
(

1+x
1−x

, x√
1−4x2

)

. The corresponding Bernstein

matrix B begins






















1 0 0 0 0 0 · · ·
−2s+ 2 s 0 0 0 0 · · ·

2s2 − 4s+ 2 2s− 2s2 s2 0 0 0 · · ·
2s3 + 4s2 − 8s+ 2 4s− 4s2 2s2 − 2s3 s3 0 0 · · ·

−6s4 + 4s3 + 12s2 − 12s+ 2 6s4 − 12s2 + 6s −2s4 − 4s3 + 6s2 2s3 − 2s4 s4 0 · · ·
· · · · · · · · · · · · · · · s5 · · ·
...

...
...

...
...

...
. . .























We note that 1+x
1−x

generates the sequence 1, 2, 2, 2, . . . apparent in the first column of B.
Using the same control points as before, we obtain the following coordinate functions:

(x(s), y(s)) = (−3s3 + 2s2 + 4s− 2,−2s3 − 2s2 + 4s).

Figure 2: Curve for
(

1+x
1−x

, x√
1−4x2

)

Example 20. We take the case of (g, f) =
(

1
1−x

, x(1+x)
(1−2x)2

)

. We leave it as an exercise for the

reader to verify that

(x(s), y(s)) = (−20s3 + 22s2 − 1, 33s3 − 55s2 + 22s).
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Figure 3: Curve for
(

1
1−x

, x(1+x)
(1−2x)2

)
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