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Abstract

In this paper we consider a class of functions U of arithmetical functions which
include P(n)/n, where P(n) := n[[,, (2 - %) For any given U € U, we obtain the

asymptotic formula for anx U(n), which improves a result of De Koninck and Kétai.

1 Introduction

In 1933, Pillai [10] introduced the function

P(n) = 3" ged(k, ),
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and proved that

Pn) = > do(n/d), and " Pld) = nd(n) = 3" o(d)p(n/d),

dn dln dn

where ¢ is Euler’s function, d(n) and o(n) denote the number of divisors of n and the
sum of the divisors of n respectively. Many authors investigated the properties of P(n),
see [2, 3, 4, 5, 6, 10, 13]; it is Sloane’s sequence A018804. Chidambaraswamy and Sitara-
machandrarao [6] showed that, given an arbitrary € > 0,

Z P(n) = e;a®logx + epa® + O(z'101),

n<x

where eq, e5 are computable constants and 0 < 6 < 1/2 is some exponent contained in

Z d(n) = xlogx + (2y — 1)z + O(2"). (1)

n<x

The asymptotic formula (1) is the well-known Dirichlet divisor problem. The latest value of
6 is § = 131/416 proved by Huxley [8].
T6th [12] first defined the ged-sum function over regular integers modulo n by the relation

Py = 3 ged(k.n), (2)

keReg,,

where Reg,, = {k: 1 < k <n and k is regular (mod n)}, and proved that P(n) is multi-
plicative and for every n > 1,

Pn) =n ]2 - ]§>. (3)

pln

It is sequence A176345 in Sloane’s Encyclopedia. He also obtained the following asymptotic
formula

2

> P(n) = m(Kl log 4+ Ka) + O(z*/?5(x)), (4)

n<x
where K7 and K, are certain constants and d(z) is given by

6(z) = exp(—A(log 2)*° (loglog ) ~/%).
Zhang and Zhai [15] showed that the estimate of 3" _ P(n) is closely related to the square-
free divisor problem and improved the error term of (4) under RH.
De Koninck and Kétai [7] introduced two wide classes of arithmetical functions R and
U, the first of which includes the function P(n)/n, and the second of which includes P(n)/n.
More precisely, the class R is made of the following functions R. Firstly let «(n) denote the
kernel of n > 2, that is y(n) =[], p (with v(1) = 1). Then, given an arbitrary positive

pln
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constant ¢, an arbitrary real number o« > 0 and a multiplicative function k(n) satisfying

| £(n) |< 55 for alln > 2, let R € R be defined by

Rmpﬂ%wmy:am§:m@:amII@+Mw» (5)

d||n pln

W, then the corresponding function R(n) is

It is easily seen that if we let k(p?) = —
precisely P(n)/n.

De Koninck and Kétai [7] showed that

= Z R(n) = Agzlogx + Box + O(z77°), (6)

n<x

0, if a>1-0,
L

with

l—a, if a<1-0;

where 6 is the exponent in (1), Ag, By are certain constants.
As for the class of functions U, it is made of the functions

U(n) = Upea(n) =2 " h(d),

dn

where w(n) stands for the number of distinct prime factors of n, and A is a multiplicative

function satisfying |h(n)| < =5z for all n > 2. It is easily seen that by taking h(p) = ﬁ

and h(p*) = 0, for a > 2, we obtaln the particular case U(n) = P(n)/n. De Koninck and
Kétai [7] proved that

:ZU( _tla:log:v+t2x+0( ) (7)

n<az logz
where £, ty are certain constants.
In this paper, we shall prove the following
Theorem 1. Suppose 0 < o < 1. Then we have
S(z) = tizlogz + tyx + O(xt =0T 4 2V/2Fe), (8)

Remark 2. (i) From our proof we see that the evaluation of S(x) is closely related to the
distribution of the zeros of the Riemann zeta function. The exponent 1/2 can be reduced to
4/11 if RH is true.

(ii) The exponent 1—« in the error term of Theorem 1 is best possible when « is small. For
example, if we take h(n) = n~ with 0 < a < 1/2, then our proof with slight modifications
yields

Z U(n) = tizlog x + tox + tsz'~*logz + tyz' ™ + O(z'/?+e).

n<x



We are also interested in the short interval case. In this case, the restrictions on o and
RH can be removed. Actually, we have the following Theorem 3.

Theorem 3. Suppose (1) holds for 1/4 < 0 < 1/3. Then for 2972 < y < x, we have
Z Un) = H(z +vy) — H(z) + O(yz~2 + 27%°), (9)

r<n<z+y

where H(x) = tyxlogx + tax.

2 Preliminary Lemmas

Lemma 4. Let s be a complex number with Rs > 1. Then

= U() _ )
; ns _C(QS)G( )7

o0

where G(s) can be written as a Dirichlet series G(s) = 3. 4%

ns ’

which is absolutely convergent
for s > 1 — a. Moreover g(n) satisfies |g(n)| < n—a+6__

Proof. For Rs > 1, by Euler product representation we have

F(s) :zZ%zH(l-i-ZU;TpS))a

n=1 p B=1
where U(p”) = 2(1 4 h(p) +--- + h(p”)), 3 > 1. Thus
o0 o0 o0 6
U(pﬁ) 2 —Bs
1+) <z :1—1-21%4—221) > " h(p)
B=1 B=1 B=1 =1
—25 > B
_p —ﬂs
(l_p—s)2+22p Zh@])
B=1 j=1
1— 2s 21 —p—* 2 > B
A (1 RS e S ) ).
(1—p9) 1 = i

hence we get

where

o)~ TT (14 2022 S~ e
() =11 +1_—sz 2_hw) |

D p=1 j=1
From the above formula, it is easy to see that G(s) can be expanded to a Dirichlet series

G(s) = Z gln - ) which is absolutely convergent for Rs > 1 — v, if we notice that |h(p)| < -
Therefore |g( )| < nmete O



Lemma 5. Let

= 100 _ )
Z ns  ((2s)’ fs > 1,

where d®(n) denote the number of square-free divisors of n. Then for any real numbers
x > 1, we have

n=1

DO (z) := Z dP(n) = eyzlogx + cx + AP (2)

n<x

with A® (x) = O(x'/?log x), where

1 2y —1  20'(2)
Cl = —F Co = — 5 .
¢(2) €2 ¢
Moreover, if RH is true, then A®(z) = O(2%/11+).

Proof. The first result is due to Mertens [9] and the second one is due to Baker [1]. O
Lemma 6.

> lg(n)] < atmere.

n<x
Proof. Tt follows from |g(n)| < n=**<. O

Lemma 7. Let k > 2 be a fized integer , 1 <y < x be large real numbers and

Az, y; k€)= Z 1.
z<nmk§1+y

m>zx€

Then we have
Az, y; kye) < yz= + 24,

Proof. This is Lemma 3 of Zhai [14]. ]

3 Proof of Theorem 1

Notice that

¢(2 2

By the Dirichlet convolution, we have

DY UM =) gmyd®@)=3 g(m) Y d?(),

n<lx ml<x m<x (<z/m

Co)_ f? 100 Gy =5 8lm) 0

and Lemma 5 applied to the inner sum gives

S Um) =Y glm) {Ehog(5) + 251 0 (%)) }

n<lx m<x



C2 g(m) g(m)logm L2+
= 1 J— -~ 7 zN 7 = €
C1T { ( og T + 61) Z m T; m1/2+€

m
m<x
= log x + “ N M — f: M + O(x_o‘+€) pl/2+e Z
C1 f— m o m =~ m1/2+€ ’
if we notice by Lemma 6 that both of the infinite series Zm ! Tm)a Z:: . —9(m)rrllogm are
absolutely convergent, and
g(m) —ote g(m log m e
— < ; . 11
> T we YT < (1)

Then we have

ZU(n):tlxlog$+t2x+O( 1mote) +O< 1/2+€Zm1/2+€>, (12)

n<lx m<x

where
1 —gm) G
@M @
1 2{’ = g(m) = g(m logm
tQ_@{m— o z () _ 5~ dlologm }
1 B _2C’()
‘<<2>{(2” e }

By Lemma 6, we have

€ > .
S i < 3 e < {neone, w2 172
m1/2+e m1/2+a+e $1/2_a+6, a < 1/27

m<x

Theorem 1 follows from the above estimates and Eq. (12).

4 Proof of Theorem 3

By Lemma 4, we have

where d(n) is the divisor function. Then

Y. Umy= > d(m)g(no)u(ng) = 51+ O (L2 + Xa), (13)

z<n<z+y x<n1n2n§§$+y



where

no<z€ x z+y
ng<z€ nzng <m< nzng
2= ) d(n1)lg(n2)l;
z<n1n2n§§Z+y
ng>wx

Sa= ) d(m)lg(na)l.

z<n1n2n§§z+y
ng>wx

Recalling (1), the inner sum in ¥ is

(x+y) (x+y) x x y i
1 — I 2v — 1 O —=
non? o8 non?2 non?2 8 =D+ On320

non3 nanj n$n3

non?2 non? non?2 On320

_ (x +y)log(x +y) —zlogx _ylog(mn%) 2y 1) Y Lo (n:LZ ) |
213

Inserting the above expression into >; and after some easy calculations, we get
Y. =H(x+y)—H(z)+ 0O (y:p_e oyt 4 a:9+6> . (14)
For X5, we have
2
|g(n2)| < n2—a+e < I—ae-{—e ’
if we notice that ny > x¢, and hence
St Y ) =2 Y du(n),
z<ningni<z+y z<n<z+y

where

d(n)= > dln)<n"

n=njingnj

Therefore we have

DY e (15)
r<nlz+y

Since d(n) < n, g(ny) < 1, by Lemma 7 we have

Syt Y 1<t Y d(n)

z<n1n2n§§z+y z<nn§§z+y
ng>x¢ ng>x¢
2€2 1 = 262./4 9
<L =x (xaya 76)
z<nn§§z+y
ng>x¢
_ 2 2
< ym e+2¢ T $1/4+€ ) (16)

Then Theorem 3 follows from Egs. (13)—(16).
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