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Abstract

For a given set M of positive integers, a problem of Motzkin asks to determine the
maximal density µ(M) among sets of nonnegative integers in which no two elements
differ by an element of M . The problem is completely settled when |M | ≤ 2, and some
partial results are known for several families of M when |M | ≥ 3. In 1985 Rabinowitz
& Proulx provided a lower bound for µ({a, b, a + b}) and conjectured that their bound
was sharp. Liu & Zhu proved this conjecture in 2004. For each n ≥ 1, we determine
κ({a, b, n(a + b)}), which is a lower bound for µ({a, b, n(a + b)}), and conjecture this
to be the exact value of µ({a, b, n(a + b)}).

1 Introduction

For x ∈ R and a set S of nonnegative integers, let S(x) denote the number of elements n ∈ S
such that n ≤ x. The upper and lower densities of S, denoted by δ(S) and δ(S) respectively,
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are given by

δ(S) := lim sup
x→∞

S(x)

x
, δ(S) := lim inf

x→∞

S(x)

x
.

If δ(S) = δ(S), we denote the common value by δ(S), and say that S has density δ(S).
Given a set of positive integers M , S is said to be an M -set if a ∈ S, b ∈ S imply a− b /∈ M .
Motzkin [15] asked to determine µ(M) given by

µ(M) := sup
S

δ(S)

where S varies over all M -sets. Cantor & Gordon [3] showed the existence of µ(M) for any
M , determined µ(M) when |M | ≤ 2, and gave the following lower bound for µ(M):

µ(M) ≥ κ(M) := sup
gcd(c,m)=1

1

m
min

i
|cmi|m, (1)

where mi are the elements of M , and |x|m denotes the absolute value of the absolutely least
remainder of x modulo m. We use the following equivalent form for the lower bound for
µ(M), due to Haralambis [11]:

κ(M) = max
m=mi+mj

1≤k≤m
2

1

m
min

mi∈M
|kmi|m, (2)

where mi,mj represent distinct elements of M . The following useful upper bound for µ(M)
is due to Haralambis [11]:

µ(M) ≤ α (3)

provided there exists a positive integer k such that S(k) ≤ (k + 1)α for every M -set S with
0 ∈ S and for some α ∈ [0, 1]. The problem of Motzkin has a rich and diverse history but
little progress towards the general problem has been made so far. Exact results for µ(M)
have been few, and computation of µ(M) has only been completely possible when |M | ≤ 2.
Cantor & Gordon [3] showed that

µ({m}) =
1

2
, µ({m1,m2}) =

⌊(m1 + m2)/2⌋

m1 + m2

.

There have, however, been a number of results that give the exact value or bounds for µ(M)
in other cases; see [13] for an exhaustive bibliography.

Connections with coloring problems in graph theory have been found useful in solving the
Motzkin problem. One such connection, introduced by Hale [10] and shown to be equivalent
to the Motzkin problem by Griggs & Liu [9], is the T -coloring problem. Another connection
with colorings of graphs involves the fractional chromatic number of distance graphs.

The lower bound for µ(M), denoted by κ(M) in (1), is itself at the heart of a longstanding
conjecture. The Lonely Runner Conjecture (LRC) stated independently by Wills [17] in the
context of diophantine approximations and by Cusick [7] while studying view obstructions
problems in n-dimensional geometry, was actually given this apt name by Bienia et al [1].
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Chen [6] characterized 3-sets M for which 1/κ(M) is an integer and also obtained general
bounds.

We consider the problem of determining µ(M) for the family M = {a, b, n(a+b)}, n ≥ 1.
By a result of Cantor & Gordon [3], we know that µ(kM) = µ(M). Thus, it is no loss of
generality to assume that gcd(a, b) = 1, and that a < b. We determine the value of κ(M),
which is the lower bound for µ(M) and conjecturally equal to it. This extends a result of
Liu & Zhu [[13], Theorem 5.1], wherein they determined µ(M) in the case M = {a, b, a+ b}.
Rabinowitz & Proulx [16] provided a lower bound for µ(M) in this case and conjectured that
their bound was sharp. An extensive list of work related to the Motzkin problem may be
found in [13].

2 Main Result

For the set M = {a, b, a + b}, Rabinowitz & Proulx [16] conjectured the exact value of
µ(M) in 1985, and Liu & Zhu [13] proved this conjecture in 2004. We determine κ(M) for
M = {a, b, n(a + b)} where n is a fixed positive integer. If the conjecture of Haralambis [11]
is true, then κ(M) = µ(M) in this case, thus providing a generalization of the result of Liu
& Zhu.

Theorem 1. Let M = {a, b, n(a + b)}, where a < b, gcd(a, b) = 1 and n ≥ 1. Then

κ(M) =











n(a+b−λ)

2
(

a+n(a+b)
) , if λ ≡ a + b (mod 2);

n(a+b+λ−1)

2
(

b+n(a+b)
) , if λ 6≡ a + b (mod 2),

where λ = 1 +
⌊

b−a
2n+1

⌋

.

Proof. We use (2) to compute κ(M). The choice m = a+b trivially yields min
{

|ax|m, |bx|m, |n(a+
b)x|m

}

= 0 for each x. There are two choices remaining for m, and we determine κ(M) by
comparing the two rational numbers corresponding to these cases. In each of the two cases
we need to compute κ(M) with m = a + n(a + b) and m = b + n(a + b), and compare the
two. Note that the definition of λ implies

b − a < (2n + 1)λ ≤ b − a + 2n + 1.

Case I:
(

λ ≡ a + b (mod 2)
)

Subcase (i):
(

m = a + n(a + b)
)

Choose x such that

(a + b)x ≡ a+b−λ
2

(mod m).

Then
−ax ≡ n(a + b)x ≡ na+b−λ

2
≡ m−(a+nλ)

2
(mod m),

and
bx = (a + b)x − ax ≡ m+{b−(n+1)λ}

2
(mod m).
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Therefore
min

{

|ax|m, |bx|m, |n(a + b)x|m
}

= m−(a+nλ)
2

(4)

since b − (n + 1)λ < a + nλ if and only if (2n + 1)λ > b − a.

Write ℓ := a + nλ. We show that

min
{

|ay|m, |by|m, |n(a + b)y|m
}

≤ m−(a+nλ)
2

= m
2
− ℓ

2

for each y, 1 ≤ y ≤ m
2
. Let I :=

(

m
2
− ℓ

2
, m

2
+ ℓ

2

)

. We show that −ay mod m ∈ I and
by mod m ∈ I is simultaneously impossible for 1 ≤ y ≤ m

2
. Suppose

(a + b)y ≡ a+b−λ
2

+ i (mod m),

with 1 ≤ i ≤ m − 1. Then

− ay ≡ n(a + b)y ≡ m
2
− ℓ

2
+ ni (mod m), (5)

by ≡ (a + b)y − ay ≡ m
2
− ℓ

2
+ a+b−λ

2
+ (n + 1)i (mod m)

Thus −ay mod m ∈ I if and only if

km + m
2
− ℓ

2
< m

2
− ℓ

2
+ ni < km + m

2
+ ℓ

2

for some integer k, with 0 ≤ k ≤ n − 1. This is equivalent to

km
n

< i < km
n

+ ℓ
n
,

so that
k(a + b) + 1 ≤ i ≤ k(a + b) + a + λ − 1. (6)

For k(a + b) + 1 ≤ i ≤ k(a + b) + a + λ − 1, we show that

km + m
2

+ ℓ
2

< m
2
− ℓ

2
+ a+b−λ

2
+ (n + 1)

{

k(a + b) + 1
}

and

m
2
− ℓ

2
+ a+b−λ

2
+ (n + 1)

{

k(a + b) + a + λ − 1
}

< (k + 1)m + m
2
− ℓ

2
.

This will prove that
km + m

2
+ ℓ

2
< by < (k + 1)m + m

2
− ℓ

2
,

so that by mod m /∈ I , as claimed. Each of the above two inequalities is easy to prove. Using
the fact that (n + 1)(a + b) = m + b, each inequality can be shown to hold if (2n + 1)λ <
(b − a) + 2(n + 1), which is true by the definition of λ. This completes the subcase when
m = a + n(a + b).

Subcase (ii): (m = b + n(a + b)) The argument in this subcase is similar to the one in
subcase (i). We omit the calculation and state only the significant parts. Choose x such
that

(a + b)x ≡ a+b+λ
2

(mod m).
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Then
−bx ≡ n(a + b)x ≡ m−(b−nλ)

2
(mod m),

and
ax = (a + b)x − bx ≡ −m−{a+(n+1)λ}

2
(mod m).

Therefore
min

{

|ax|m, |bx|m, |n(a + b)x|m
}

= m−{(a+(n+1)λ}
2

(7)

since b − nλ < a + (n + 1)λ if and only if (2n + 1)λ > b − a.

As in subcase (i), we may show that

min
{

|ay|m, |by|m, |n(a + b)y|m
}

≤ m−{a+(n+1)λ}
2

for each y, 1 ≤ y ≤ m
2
. The argument is similar and we omit the proof. This completes

subcase (ii).

To compute κ(M) in Case I, we need to compare the expressions in (4) and (7). If we let
m1 = a + n(a + b) and m2 = b + n(a + b), then a lengthy but easy computation shows that

m2−{(a+(n+1)λ}
2m2

= 1
2
− 1

2
a+(n+1)λ
b+n(a+b)

< 1
2
− 1

2
a+nλ

a+n(a+b)
= m1−(a+nλ)

2m1

if and only if (2n + 1)λ > b − a. This completes the proof of Case I.

Case II:
(

λ 6≡ a + b (mod 2)
)

Subcase (i): (m = a + n(a + b)) Choose x such that

(a + b)x ≡ a+b−λ+1
2

(mod m).

Then
−ax ≡ n(a + b)x ≡ m−{a+n(λ−1)}

2
(mod m),

and
bx = (a + b)x − ax ≡ m+{b−(n+1)(λ−1)}

2
(mod m).

Therefore
min

{

|ax|m, |bx|m, |n(a + b)x|m
}

= m−{b−(n+1)(λ−1)}
2

(8)

since a + n(λ − 1) ≤ b − (n + 1)(λ − 1) if and only if (2n + 1)(λ − 1) ≤ b − a.

As in subcase (i) of Case I, we may show that

min
{

|ay|m, |by|m, |n(a + b)y|m
}

≤ m−{b−(n+1)(λ−1)}
2

for each y, 1 ≤ y ≤ m
2
. This completes subcase (i).

Subcase (ii): (m = b + n(a + b)) Choose x such that

(a + b)x ≡ a+b+λ−1
2

(mod m).
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Then
−bx ≡ n(a + b)x ≡ m−{b−n(λ−1)}

2
(mod m),

and
ax = (a + b)x − bx ≡ m+{a+(n+1)(λ−1)}

2
(mod m).

Therefore
min

{

|ax|m, |bx|m, |n(a + b)x|m
}

= m−{b−n(λ−1)}
2

(9)

since a + (n + 1)(λ − 1) ≤ b − n(λ − 1) if and only if (2n + 1)(λ − 1) ≤ b − a.

As in subcase (i) of Case I, we may show that

min
{

|ay|m, |by|m, |n(a + b)y|m
}

≤ m−{b−n(λ−1)}
2

for each y, 1 ≤ y ≤ m
2
. This completes subcase (ii).

To compute κ(M) in Case II, we need to compare the expressions in (8) and (9). If we let
m1 = a + n(a + b) and m2 = b + n(a + b), then a lengthy but easy computation shows that

m1−{b−(n+1)(λ−1)}
2m1

= 1
2
− 1

2
b−(n+1)(λ−1)

a+n(a+b)
≤ 1

2
− 1

2
b−n(λ−1)
b+n(a+b)

= m2−{b−n(λ−1)}
2m2

if and only if (2n + 1)(λ − 1) ≤ b − a. This completes the proof of Case II, and of the
theorem.

Corollary 2. (Liu & Zhu [13])

Let M = {a, b, a + b}, where a < b and gcd(a, b) = 1. Then

κ(M) =











1
3
, if b ≡ a (mod 3);

2a+b−1
3(2a+b)

, if b ≡ a + 1 (mod 3);
a+2b−1
3(a+2b)

, if b ≡ a + 2 (mod 3).

Proof. This is a direct consequence of Theorem 1. Set b − a = 3k + r, where 0 ≤ r ≤ 2.
Then λ = k + 1, so that we are in Case I when b ≡ a + 1 (mod 3) and Case II otherwise.
The calculation is routine, and the details are omitted.

Remark 3. Haralambis [11] conjectured that µ(M) = κ(M) when |M | = 3. If this is true,
Theorem 1 actually determines µ({a, b, n(a+b)}). Observe that, if a, b are of opposite parity
and if n ≥ (b − a)/2, Theorem 1 reduces to

κ({a, b, n(a + b)}) =
a + b − 1

2(a + b) + (2a/n)
,

which is asymptotic to µ({a, b}). This may be an indication that the conjecture of Haralambis
may hold, at least for the special case M = {a, b, n(a + b)} when n is large enough, and
perhaps even for M = {a, b, c} when c is sufficiently large even if not of the form n(a + b).
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and the lonely runner, J. Combin. Theory Ser. B 72 (1998), 1–9.

[2] J. Barajas and O. Serra, The lonely runner with seven runners, Electron. J. Combin.

15 (2008), Research paper 48, 18 pages.

[3] D. G. Cantor and B. Gordon, Sequences of integers with missing differences, J. Combin.

Theory Ser. A 14 (1973), 281–287.

[4] G. J. Chang, L. Huang, and X. Zhu, The circular chromatic numbers and the fractional
chromatic numbers of distance graphs, European J. Combin. 19 (1998), 423–431.

[5] G. Chang, D. Liu, and X. Zhu, Distance graphs and T -colorings, J. Combin. Theory

Ser. B 75 (1999), 159–169.

[6] Y. G. Chen, On a conjecture about diophantine approximations III, J. Number Theory

37 (1991), 181–198.

[7] T. W. Cusick, View-obstruction problems in n-dimensional geometry, J. Combin. The-

ory Ser. A 16 (1974), 1–11.
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