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Abstract

A positive integer n is called a Nicol number if n | ¢(n)+o(n), and a t-Nicol number
if o(n) + o(n) = tn. In this paper, we show that if n is a 4-Nicol number that has five
different prime divisors, then n = 2% - 3. 5% . p¥ . ¢¥ or n = 291 . 3.7 . p* . g5
with p < 29.

1 Introduction

For any positive integer n, let ¢(n), w(n) and o(n) be the Euler function of n, the number of
prime divisors of n and the sum of divisors of n, respectively. We call n is a Nicol number if
n | ¢(n) 4+ o(n), and a t-Nicol number if ¢(n) + o(n) = tn. It is well-known that ¢t > 2, and
n is prime if and only if ¢(n) +o(n) = 2n. In 1966, Nicol [4] conjectured that Nicol numbers
are all even, and proved that if « is such that p = 2272 .7 — 1 is prime, then n = 2% -3 - p
is 3-Nicol number. In 1995, Ming-Zhi Zhang [6] showed that if n = p®q then n cannot be a
Nicol number, where p and ¢ are distinct primes and « is a positive integer. In 1997, Lin
and Zhang [2] showed that if w(n) = 2, then n cannot be a Nicol number. In 2008, Luca and
Sandor [3] showed that if n is a Nicol number and w(n) = 3, then either n € {560, 588, 1400}
orn =2%-3-p with p=2%2.7—1 prime. In 2008, Wang [5] studied the Nicol numbers
that have four different prime divisors. In 2009, Harris [1] showed that the Nicol numbers
that have four different prime divisors must be one of the following forms:
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1. n=2%.33.52.11,24.3%.5.11, 27-5-11-79, 23.3%.5%.132, 22.32.17 . 241,
22.32.172.2243;

72072 1 9.2072 1
2. n € {2a -3 - p3 -p4|p4 — ( . (7)p32j2 ) , where p3, py are distinct

primes.

Moriover, Harris [1] proved that all but finitely many Nicol numbers that have 5 different
prime divisors are divisible by 6 and not 9.

In this paper, we study the 4-Nicol numbers that have five different prime divisors and
obtain the following result:

Theorem 1. If n is a 4-Nicol number with w(n) = 5, then either n = 2*13%25%p*4q*  or
n = 24132274 q% with p < 29, where p, q are distinct primes, and o;(i = 1,2,--- ,5) are
positive integers.

By the Harris result and Theorem 1, we have the following result:

Corollary 2. All but finitely many 4-Nicol numbers with 5 different prime divisors have the
formmn =2 .3.5% .p* . g% orn=2%.3.7%.p%.q% with p < 29.

Throughout this paper, let a and m be relatively prime positive integers, the least positive
integer = such that ¢* =1 (mod m) is called the order of @ modulo m. We denote the order
of a modulo m by ord,,(a). Let V,(m) be the exponent of the highest power of p that divides
m.

2 Lemmas

The following three lemmas are motivated by the work of Luca and Sandor [3]. Here we
make some minor revisions.

Lemma 3. Let a, b be two natural numbers and p be an odd prime. If V,(a — 1) > 1, then
Vp(a® = 1) =V, (b) + Vy(a — 1).

Proof. Let V,(b) = m and V,(a — 1) = n. We may assume that b = p™t with p 1 ¢ and
a =1+ p"ap with p 1t a.
Since n > 1, we have

a' = (1+pap) =1+ Clptag + -+ CH(p"ap)! = 1 +pc, pic

Thus
a? = (L4+p'e)) =1+ Cplc+ -+ CP(p"c)’ =1+ p"ar, ptar

b= " =1+ p™ta,, with pta,,. Hence

By induction on m, for all m > 0 we have a
Vp(a" = 1) =m+n=V,(b) + Vp(a—1).

This completes the proof of Lemma 3. O



Lemma 4. Let t be a natural number and p, q be two primes. We have
Vold' = 1) < Vil(d = 1) + V(1)

where f =ord,(q), ifp#2; and f =2, if p=2.

Proof. (i) p = 2. By [3, Lemma 1], we have
Valg' — 1) < Valg® — 1) + Va(t).

(ii) p > 2. Now consider the following two cases:

Case 1. ¢' # 1 (mod p). The above inequality is obvious.

Case 2. ¢ =1 (mod p). Then ord,(q) | t and ord,(q) | p — 1. Let V,(t) = m. We may
assume that t = ord,(q) - p™ - k with p { k. Thus

Vil 1) = V(@ @y -
= V(¢ — 1) + V,(p™ - k)
—= %(qordP(Q) — 1) _|_ m
=V, (¢ @ — 1) + V,(t)

This completes the proof of Lemma 4. O

Lemma 5. Let n = p{'p5?---pp* be the standard factorization of n and X = max{a; | j =
1,2,-+- Jk}. We fixi e {1,--- k} such that X = «;. If n is a Nicol number, then we have

k
X-1< > Vi(pfj—1)+l log(X + 1),

j=1j o8P

where f; = ordy,(p;), if pi # 2; and f; =2, if pi = 2.
Proof. Since n | ¢(n) + o(n) and p* ' | ¢(n), we have

pi | o(n) = H (pjpj—_1>

Hence

The above relation implies that
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By Lemma 4

k k
X=1 <3 V! =1+ Y Vplay+1)
]flkﬁéi J=L1,j#
log(a; +1
< Y wp -y Y R
j=1,5#i j=1,j#i &P
< Z Vi(pj]—l)—l—l -log(X +1)
=1, &P
This completes the proof of Lemma 5. O]

Lemma 6. Ifn is a 4-Nicol number and w(n) =5, then n must be one of the following three
forms:

1. n=2%.3%.5%.p%.q% p.q are distinct primes and 7 < p < q.

2. nm=2%.3%.7%.p% . g% p < q are distinct primes and p < 29.

3. n=2%.3%.119.13% . p*, p < 23 is prime.

Proof. Let n = p{'p3*ps®py*ps® be the standard factorization of n. Put [ = A

n
Noting that n is a 4-Nicol number and ¢(n)o(n) < n?, we have 4 = M—i-@ < I+,
n n
hence [ > 2 + /3. ByL > w:l, we have
e(n)  n
n P P2 P3 P4 Ps
_ >1>2+/3.
on) pr—1pp—1p3—1ps—1ps—1
If py > 5 then
5 7 11 13
n_ _ _n D2 b3 P4 Ds <9.2.1. 2. _<2+\/§7
e(n) pr—lpo—1lps—1ps—1ps—1 46 10 12
a contradiction. Thus py = 3 and p; = 2.
If p3 > 13 then
3 13 17 19
A S R T G R VA = <243,
o(n) pr—1py—1ps—1ps—1ps—1 2 12 16 18
a contradiction, thus ps < 11.
Case 1. p3 = 7. Then py < 29. In fact, if p, > 31 then
3 7 31 37
n _ _Pn P2 P3 Pa Ps <9.2. L. 22, LA \/§’
p(n) pr—1lpa—1ps—1ps—1ps—1 2 6 30 36
a contradiction.
Case 2. p3 = 11. Then py = 13 and p; < 23. In fact, if py > 17 then
11 17 1
n P P2 P3 P4 Ps <2§__7_9 24_\/5’

= <
on)  pr—1ps—1ps—1pi—1ps—1—" 2 10 16 18

4



a contradiction.
If p5s > 29 then

n y2i P2 P3 P4 D5 <9 3 11 13 29 243

= — <<
on) pr—1lpy—1ps—1ps—1ps—1 =" 2 10 12 28

a contradiction.
This completes the proof of Lemma 6. O

3 Proof of Theorem 1

By Lemma 6, it is enough to show that there is no 4-Nicol numbers n = 291.3%2.1143.13% .p*5
with p < 23.

Assume that n = 2% - 3% . 119 . 13% . p* with p < 23 be a 4-Nicol number, then by
o) , aln)

—— + —— =4 we have:
n n

20146 . goatl 5. 10—l 130a- 1. 05—l (133p +10) - (p — 1)
= (2971 — 1)+ (3% — 1) (119971 — 1) - (13%0F1 — 1) - (post! — 1),

Case 1. p=17,n =2% -39 . 119 . 13* - 17%. Then

2o +10 gaxt2 5 qjas—l. jga-l. j7yas=1. 757
= (2 —1)(3%2t — 1)(11e T — 1) (13t — )17t — 1), (1)

By Lemma 5 we have X < 35. Noting that
OI‘d757(2) = 756, Ol"d757(3) = 97 OI‘d757(11) = ord757(13) = ord757(17) = 189,

thus
TET 20 = 1 T5TH 11— 1 75T 137 — 1, 757 170 1,

By (1) we have 757 | 3°2*1 — 1, thus ap + 1 = 9k, k € Z. By X < 35, we have k = 1,2, 3.
Subcase 1: k=1, as +1=19. Then

2a1+9 . 310 . 5. 11(13—1 . 13a4—2 . 17&5—1
— (201 —1)(1108+! — 1)(13% L — 1)(1795H — 1),

(i) ay = 2. By ordg;(13) = 3 we have 61 | 13% — 1, this is impossible.

(i1) g > 2. Then 13 | (227! — 1)(11%F! — 1)(17**"1 — 1). On the other hand, we have
the following facts: If 13 | 211 — 1, by ord3(2) = 12, thus 12 | a; + 1, and noting that
ord;(2) = 3 we have 7 | 227! — 1, which is impossible. If 13 | 113! — 1, by ord;3(11) = 12,
thus 12 | az + 1, and noting that ord;(11) = 3 we have 7 | 112371 — 1, which is impossible.
If 13 | 17%*1 — 1, by ordy3(17) = 6, thus 6 | as + 1, and noting that ord;(17) = 6 we
have 7 | 17%*! — 1, which is impossible. Thus 13 ¢ (2**™! — 1)(11%+ — 1)(17*t — 1), a
contradiction.



Subcase 2: k=2, ay + 1 =18. By ord;(3) = 6, we have 7| 3'® — 1, thus 7| 3°2*! — 1,
which contradicts (1).

Subcase 3: k = 3, as + 1 = 27. By ordss7(3) = 9, we have 757 | 3*7 — 1, thus
757 | 3921 — 1, which contradicts (1).

Case 2. p=19, n=2%.3%2.11% .13* .19 Then

20HT. 302t 5 et 13T 190 43 59
= (20 —1)(3%2 ! — )(11ee ! — 1)(13*F — 1)(19%T —1). (2)

By Lemma 5 we have X < 33. Noting that
ordsg(2) = ordsg(11) = ordsg(13) = 58, ordsg(3) = ordsg(19) = 29,

we have
59 200t — 1,594 119! — 1,59 § 13%4+1 — 1.

By (2) we have 59 | 3°2T!1 — 1 or 59 | 192t — 1. If 59 | 32! — 1, then 29 | ap + 1. Since
ordagss7(3) = 29, we have 28537 | 327! — 1, which contradicts with (2), thus 59 322! — 1 .
If 59 | 19%5%1 — 1, then 29 | a5 + 1. Since ordasz(19) = 29, we have 233 | 192! — 1, which
contradicts with (2), thus 594 19251 — 1.

Case 3. p=23, n=2%.3%.11%.13% .23%. Then

DAL LR B e R B 2 S |
= (20T —1)(3%2 ! — 1)(11e T — 1)(13*F — 1)(23% T —1). (3)

By Lemma 5 we have X < 34. Noting that
ord31(2) = 5, Ol"dgl (3) = Ord31(11> = Ol"d31<13> = 30, ord31 (23) = 10,

by ords; (3) = ords; (11) = ords; (13) = 30, we know that 30 | a; + 1,7 = 2,3,4. Noting that
ordg; (3) = 10, 0rd;g(11) = orde; (13) = 3, we have 61 | 3271 —1,19 | 11231 —1,61 | 13>+ -1,
Which contradicts with (3), then we have

3143%th 1,31 4112 — 1,31 § 134+ — 1.

By (3) we know that 31 | 23*™! — 1 or 31 | 227! — 1.
If 31 | 232571 — 1, then by ords (23) = 10, we know that 10 | a5 + 1. Noting that
ordy;(23) = 5 we have 41 | 23**! — 1, which contradicts (3).
I£ 31 2091 — 1, then ay + 1 = 5k, k € Z. By X < 34, we have k = 1,2,3,4,5,6.
Subcase 1: k=1, a;+1=5,n=2%3%2.11%.13%.23%_ Put m = 3%2.1193.13%.23%5,

Then (m) 3 11 13 23 299
o\m m
- oL R Y 86875,
m p(m) 2 10 12 22 160

On the other hand, noting that ¢(n) 4+ o(n) = 4n, then 8p(m) + 31lo(m) = 64m, thus

o(m)

> 1.9264 > 1.86875,
m



a contradiction.
Subcase 2: k=2, a; + 1 = 10. Thus

216 302H2. 5. 1103 . 13041 . 93051
= (302F1 — 1)(1198F! — 1)(13%+1 — 1)(23%+1 — 1),

Noting that the following facts:
(i) If 2 | 3°2*1 — 1, then @ < 4. In fact, if @ > 5, then by ordsy(3) = 8, we have
ay + 1 =8s,5 € Z. Noting that ordy;(3) = 8, thus 41 | 3921 — 1, this is impossible.
(i) If 2% | 1193%1 — 1, then a < 3. In fact, if @ > 4, then by ord;s(11) = 4, we have
as + 1 =4s,s € Z. Noting that ordg; (11) = 4, thus 61 | 11%**! — 1, this is impossible.
(dd) If 2 | 1341 — 1, then o < 3. In fact, if @ > 4, then by ord;(13) = 4, thus
ay + 1 =4s,s € Z. Noting that ord;(13) = 2, thus 7 | 13*+*! — 1, this is impossible.
(iv) If 2 | 232571 — 1) then a < 4. In fact, if @ > 5, then by ords;(23) = 4, we have
as + 1 =4s,s € Z. Noting that ords3(23) = 4, thus 53 | 23*"! — 1, this is impossible.
Let
A = (3%t —1)(119F — 1)(1324FL — 1)(2325FL — 1),
B =216.302+2. 5. 7] .13%~1. 93051

We have V,(A) < 14 and V,(B) = 16, this is impossible.

Subcase 3: k=3, a; +1 = 15. By ord;(2) = 3, we have 7 | 2°*™! — 1, which contradicts
(3).

Subcase 4: k = 4, a; + 1 = 20. By ordy(2) = 20, we have 41 | 22! — 1 which
contradicts (3).

Subcase 5: k = 5,a; + 1 = 25. By ordge(2) = 25, we have 601 | 2*1*! — 1, which
contradicts (3).

Subcase 6: k = 6,a; + 1 = 30. By ord;s(2) = 15, we have 151 | 221" — 1, which

contradicts (3).
This completes the proof of Theorem 1.
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