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Abstract
The multiple zeta values are generalizations of the values of the Riemann zeta
function at positive integers. They are known to satisfy a number of relations, among
which are the cyclic sum formula. The cyclic sum formula can be stratified via linear
operators defined by the second and third authors. We give the number of relations
belonging to each stratum by combinatorial arguments.

1 Introduction

The Riemann zeta function
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is one of the most important functions in mathematics, and its values ((k) at k € Z>, are
among the most interesting real numbers. The multiple zeta values (MZVs for short) are
defined as generalizations of the values ((k):

Definition 1. For ky,...,k € Z>, with k; > 2, the multiple zeta value ((ky,..., k) is a
real number defined by
1
Chyyo k)= Y

kp°
ny>>m>1 T nl

Little is known about the irrationality or transcendentality of MZVs; we however know
that MZVs abound with relations among themselves, the simplest example being ((2,1) =

((3).

The cyclic sum formula (CSF for short), described in Section 3, is a class of Q-linear
relations among MZVs, established by Hoffman-Ohno [3]. Their proof appealed to partial
fraction decomposition, whereas another proof given by the second and third authors [5] of
the present article proceeded by showing that the CSF is included in Kawashima’s relation,
which is believed to be rich enough to yield all relations among MZVs.

This present paper is aimed at providing combinatorial arguments to find the ranks
of linear operators defined in [5]. In order to facilitate access for both algebraists and
combinatorists, we strive to make the exposition as self-contained as possible.

Sets of multi-indices

The study of MZVs inevitably requires frequent use of multi-indices. We here summarize
the sets of multi-indices used in this paper. For k,[ € Z>;, put

Ili,l:{(kl""’kl)ezlzl|k1+"'—|-k‘l:kj}7
I](C),l = {<k17 . ‘Jkl> S I}il | ]{51 Z 2}7
It = {(ky,... . k) € IL, | not all of ki, ...,k are 1};

for k € ZZh put
]li = Ulli,lv Il(c) = UII(c),lu Ivii = UE,I%
I=1 I=1 I=1
put

I' = G L, I'= G L, I'= O I

k=1 k=1 k=1

The elements of I}, are said to have weight k and depth I. For each k = (ky,... k) € I°
the MZV ((k) = ((k1, ..., k;) is defined.

2 Hoffman’s algebra

In the discussion of MZVs, it is convenient to use the algebra introduced by Hoffman. Let
$ = Q(x,y) be the noncommutative polynomial algebra over Q in two indeterminates = and
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y, and put H° = Q + z§Hy, which is a subalgebra of §. Write 2z, = 2* 'y € § for k € Z>,
so that
{1}U{zk1~--zkl ‘ k = (kl,...,kl) € [0}
is a Q-vector space basis for °. It follows that we may define a Q-linear map Z: H° — R
by setting Z(1) =1 and Z(zy, - - 21,) = ((k) for k = (ky,..., k) € I°.
The MZVs are known to fulfill a number of QQ-linear relations, each of which corresponds
to an element of Ker Z C §°. Since Goncharov [1] conjectured that the MZVs ((k) with

k having different weights are QQ-linearly independent, we look at the Q-vector subspaces
defined by

»62 = Span@{zlﬂ T 2Ky ‘ k= (kla SRR kl) € IIS}
= {w € H° | w is a homogeneous polynomial of degree k} U {0} C §°,
Z, = Z(9)) = spang{((k) | k € I}} CR

for each k € Z>;.
Let (di)g>1 be the Padovan sequence (A000931) defined by d; = 0, do = ds = 1, and
dp = dg—2 + dj—3 for k > 4. Zagier [7] conjectured the following:

Conjecture 2 (Zagier [7]). We have dim Z;, = dj, for all k € Z>.

Let k € Z>y. In light of the fact that dim $? = #I) = 252, Conjecture 2 means that
the MZVs must satisfy plenty of Q-linear relations. Note that Conjecture 2 is equivalent to
saying that the restriction Z| E f)g — R of Z to .62 has rank d;., which is also equivalent to

dim Ker Z| g0 = dim(Ker Z N H)) = 2% — dj..

Table 1: Dimensions concerning Z|go

k ‘2 345 6 7 8 9 10 ‘Sequence Number
9F=2(= dim 97) 1 2 4 8 16 32 64 128 256 A000079
di(= rank Z| ) 1112 2 3 4 5 7 A000931

252 _ (= dimKerZ|g) [0 1 3 6 14 29 60 123 249 A038360

Goncharov [2] and Terasoma [6] partially proved Conjecture 2:
Theorem 3 (Goncharov [2], Terasoma [6]). We have dim Z;, < dj, for all k € Z>,.

Since their proofs of Theorem 3 resort to algebraic geometry and fails to give concrete
relations among MZVs, it still lies at the heart of research to find sufficiently many Q-linear
relations. Also, the converse inequality is far from being solved.
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3 Cyclic sum formula

Numerous concrete QQ-linear relations among MZVs have been obtained so far, and our focus
is on the following cyclic sum formula (CSF for short), first proved by Hoffman-Ohno [3]:

Theorem 4 (Cyclic sum formula). If (ky,..., k) € I*, then

I k-1 !
Zzg(kj_i+17kj+17"'7kl7k17~~- J— 17 ng +17kj+17"'7kl7k17'"7kj71)-
j=1 i=1 j=1

Example 5. The cyclic sum formula for [ = 1 and k; = 2 gives ((2,1) = ((3).

In dealing with the CSF, it is convenient to extend the indices of k; to all j € Z by
declaring k; = kj whenever j = j' (mod [). Then the CSF can simply be written as

l kj—1 l
ZZC(@ =i+ L ki, k0 ZC (kj + 1L kjyn, oo k).
=1 i=1 =1

This convention will be used tacitly throughout the paper.
In order to describe the CSF in terms of Hoffman’s algebra, we write

9" =spang{zk, -z, [ k= (k... k) €'}
= spang{w € $ | w is a monomial ending with y but not a power of y} C §

and define a Q-linear map p: ' — zHy C H° by setting

l

/0 Zky Zk?z E , § Rhj—i+1%kj1 """ Fhjp1”i § Rhj+1%kj1 " Rhjya

Jj=1 =1 J=1

for k = (ky,..., k) € I'. Then the CSF is equivalent to saying that Im p C Ker Z.
For each k € Z>,, if we put

9 = spang{ze, -+ - 2, | (k1, ... ki) € I}
= {w € H' | w is a homogeneous polynomial of degree k} U {0},

then p satisfies that p(95) C 97, ,. Therefore, it follows from Theorem 4 that
p(HL_) CKer ZNHY

for all k € Z>s.

In view of Conjecture 2, which is equivalent to dim(Ker Z N §Y) = 282 — dj, for k € Zso,
it is natural to ask for dim p($;_,) because it can be regarded as the number of relations
given by the CSF. The following theorem is known, though the authors have been unable to
find a specific reference:



Theorem 6. For k € Z>2, we have
8 1 k-1
di L [ p— - 2™ 2
im p(Nx-1) = 77 %“90( p- ) :

where ¢ denotes Euler’s totient function.

Although this theorem can be proved rather easily, we omit its proof because it is a
special case of our main theorem (Theorem 15).

Table 2: Dimensions concerning the CSF

k ‘ 2 3 4 5 6 7 8 9 10 ‘ Sequence Number
2k=2 _ d, (; dim(Ker Z N 5’)2)) 0 1 3 6 14 29 60 123 249 A038360
dim p(9}_,) 0 1 2 4 6 12 18 34 58 A052823

4 The operator p, and the statement of our main the-
orem

4.1 The operator p,

The second and third authors [5] of the present article defined linear maps p,,: $ — $ with
the aim of giving an algebraic proof of the CSF by reducing it to Kawashima’s relation. We
will not elaborate on their proof here, but focus on the stratification of the CSF provided
by p,. Note that our usage of indices is different from that in [5]: what we mean by p,, is
denoted by p,+1 in [5].

Let n € Z>o and consider the (n+ 2)nd tensor power 2 +2) of § over Q. We first make
H2+2) an $-bimodule by setting

a0 (W) @+ @ Wpio)Ob=w1b@ws -+ R Wy ® AWy 1o

for a,b,wy, ..., Weio € H. Writing 2 = z + y, we define a Q-linear map C,: $H — H®2 by
setting C,(1) =0, Cp(2) =2 @ 29" @y, C,(y) = —2 ® 2" ® y, and

Co(ww') = Cp(w) 0w + w o Cp(w').
We next define a Q-linear map M, : H®+2) — § by setting
M, (w1 ® -+ @ Wpyo) = Wy -+ Wpto.

Finally, set p, = M, oC,: $H — 9.
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Remark 7. The recurrence relation in the definition of C,, shows that
k

Cn(wl cee wk) = Z(wl Wi <>Cn(wj) SWjqr - ’U)k)

i=1
for wy,...,w € 9.

Proposition 8. We have py(w) = p(w) for all w € H'.

Proof. We may assume that w = z, - - - 2z, for some k = (k1,..., k) € I'. For k € L=y, we
have
k—1
Co(zr) = Co(z"1y) =) (2" o Co(x) o™ y) + 2" o Coly)
=1
k—1

Jj=1
l kj—l
- § E (Zk’l T Zk}j,1 <& <zk‘j—’i+1 ® Z’L) <& ij+1 e Zk‘l)
7j=1 i=1

— Z(Zkf"zqu <>(x®zkj)<>zkj+1---zkl)

l
(ij7i+lzkj+1 Tt Ry ® Ry * ijflzi) - E :(xzkj+l TRy ® Ry " " ij)a
j=1 i=1 j=1

po(w) = My (Co(w))

1 kji—1 l
= E E ij*i‘i’lzijﬁl N Zklzk‘l e ijilzi — g xzijd N Zklzkl e ij
Jj=1

j=1 i=1
1 kj—1 l
- § : § : e e N E :xzkﬁl T Rk
j=1 i=1 j=1
which is equal to p(w) because

l ! !
§ :xzkj-H T Rk = § :xzkj T Rk = § :ij+1zkj+1 T Rk O
=1 j=1 j=1



4.2 Properties of p,
Definition 9. Define sgn: {z,y,2z} — {1,—1,0} by

1 if u=ux;

sgn(u) = ¢ —1 ifu=y;
0 if u=z,
so that C,(u) = sgn(u)(z ® 2*" ®@y) for u € {z,y, z}.
Lemma 10. If w = uy - - - uy, where uy, ..., ux € {z,y,z}, then

k
pn(w) = Z sgn(u;)ruwjiq - - upz"ug - - ujqy.
j=1
Proof. We have
k

Co(w) = Calur ) = Y (ur- i1 0 Coltg) 0 wjy -+ )

=1

k
= ngn(ug‘)(ul"'uj_1<>(:1c®z®"®y)<>uj+1"'uk)

k
— ngn(uj)(xujH coup @ 2% @y uy),

and so

pr(w) = M, (Cn(w)) = Z Sgn (U )Tujqq - - - Up2 Uy -+ - Uj_1Y. O
j=1
Proposition 11. We have
pri1(w) = pn(2w)
for allw € $.

Proof. We may assume that w = wy - --uy for some uy,...,ux € {z,y}. Then Lemma 10
shows that
k
pn(zw) = sgn(z)zuy - - - upz"y + Z Sgn (U )TUjpq - - UR2"2UY - - - Uj_1Y
j=1

n+1

= Z Sgn (U )TUjpq - Up2" T Uy - U1 Y = P (W). O

j=1
Corollary 12. We have

{0} = pe—2(H1) C pr—s(H3) C -+ C po(Hi_1) = p(Hi_1).

fOT ke Zzg.
Proof. For each n € {0,...,k — 3}, we have p,1(95_,,_5) C pu($Hi_,,_1) by Proposition 11
and by the fact that if w € $}_, ,, then zw € 9}, . O



4.3 Statement of our main theorem

Corollary 12 can be interpreted as stratifying the Q-linear relations provided by the CSF.
Since Theorem 6 tells us the dimension of the whole space, we may well wish to find the
dimensions of the subspaces p,($}) in general. Our main theorem (Theorem 15) provides
a complete solution to this problem, and it uses the following generalization of the Lucas
sequence:

Definition 13. For n € Z>1, the n-step Lucas sequence (LI)m>1 is defined by

n — 2" —1, form=1,...,n;
" L +---+L . form>n+1.

We adopt the convention that LY = 0 for all m € Zs.

Table 3: n-step Lucas sequences

n |1 2 3 4 5 6 7 | Sequence Number
L}n 1 1 1 1 1 1 1 A000012
Lfn 1 3 4 7 11 18 29 | A000032, A000204
Lil 1 3 7 11 21 39 71 A001644
L1 3 7 15 26 51 99 | A073817, A001648
Lil 1 3 7 15 31 57 113 | A074048, A023424

Lemma 14. Let n € Z>y.
1. We have L, | = 2" —n —2.
2. We have L}, = 2L | — L _. | form>n+2.
Proof. Since both equations are obvious for n = 0, we assume that n > 1.
1. We have L', =>" _ Lh =>"_ (2™ —1)=2"" —n—2.
2. If m > n + 2, then the recurrence relation shows that

Lo= Loy o+ Ly = Ly + (Lg 4o L) — L

m—n—1 m—n—1

=205 = Ly o

Theorem 15 (Main Theorem). If n € Z and k € Z>, then

dimp,(B}) = —— Y 90( - )<2 -2
mln+k

Remark 16. We may easily see that this theorem is a generalization of Theorem 6.
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5 Proof of our main theorem

5.1 Cyclic equivalence and p,

Definition 17. Let | € Z>;. Set X; = {y, z}!, and let the cyclic group Z/IZ of order [ act
on X; by cyclic shifts, i.e.,

j<u17 ce 7U’l> = (uj+17 BRI 7uj+l)

for j € Z/IZ and (uy,...,u;) € X;. The equivalence relation on X; induced by the action is
called the cyclic equivalence and denoted by ~. Put Y, = X;/~.

Proposition 18. For each | € Z>y, we may define py: Y, — $ by selting
ﬁo([(”la <. ,Ul)]) = po(ul e Uz)

for (uy,...,w) € X.

Proof. Lemma 10 shows that if (uq,...,u;) € X, then

!
po(uy -+ uy) = Z SEN(Uj)TUjy1 -+ WUy - Uj1Y

= Z sgn(vy)xvg - - - VY.

It follows that po(uy---w;) depends only on the equivalence class [(ug,...,u)] € Y], as

required. O]

Example 19. For [ = 4, we have

,50([(2,2, z, z)]) =0,

po([(2,2,2,9)]) = —w222y,

po([(z, 2,4, 9)]) = —a(yzz + 22)y

po([(z, 9, 2,9)]) = —2(2yz + 2y2)y,
po([(z,9,9,9)]) = —x(yyz + yzy + zyy)y,
po([(y v, v, 9)]) = —x(yyy + yyy + yyy + yyy)y.

Proposition 20. The family {po(U) | U € Y\ {[(z,...,2)]}} is Q-linearly independent.
l

Proof. This is because the values po(U) for different equivalence classes U € Y;\{[(z,...,2)]}
are nonzero and consist of different monomials. O]



5.2 Relationship between p,, and p,

Definition 21. For [ € Z>; and n € {0,...,

of all (uy, ...

[}, we write X, for the subset of X; consisting

,u;) € X; that contain at least n consecutive z’s when written cyclically.

Example 22. For [ = 4, we have

X0 ={(z, 22, 2),
(2,2,2,9), (22,9, 2), (2,4, 2, 2), (y, 2, 2, 2),
(z,2,9,9): (29,9, 2), (¥, 9, 2, 2), (y, 2, 2, ),
(2,9, 2,9), (¥, 2,9, 2),
(2,9, 9.9), W, 9,9, 2), v, 9, 2.9), (¥, 2,9, y),
(v, 9,9, 9)}
= [(z,2,2,2)| U (2,2, 2,9)] U [(z, 2,4, 9)| U [(2,9, 2, )] U [(2, 9,9, )] U [(¥, 9, ¥, Y)]
= Xy,

 2)s
(2 z,% y%(z 2,9, 2), (2,9, 2,2), (Y, 2, 2, 2),
(2,2,9,9), (2,9,9, 2), (4,9, 2, 2), (¥, 2, 2, 9),
(2,9, 2,9), (¥, 2,9, 2),
(2.9, 9.9), W, 9, 9. 2), (4,9, 2, 9), (v, 2,9, 9) }
=[(2,2,2,2)] U (2,2, 2,9)] U [(2, 2,9, 9)] U
X2 ={(z, 22, 2),

(2,2,2,9), (22,9, 2), (2,4, 2, 2), (y, 2, 2, 2),

(2,2,9,9), (2:9,9, 2), (4,9, 2, 2), (¥, 2, 2,9) }

= [(2,2,2,2)] U (2,2, 2,9)] U [(2, 2,9, )],

Xus={(z, 22, 2),

(2,2,2,9), (2, 2,9, 2), (2,9, 2, 2), (y, 2, 2, 2) }
(2,2, 2,2)] U [(2, 2, 2,9)],
Xua={(z,2,2,2)}

=1[(z2,22)].

Remark 23. Each X, is invariant under the action of Z/IZ, which allows us to make the

following definition.

Definition 24. For | € Z>, and n € {0,... 1}, we write

Yi.n=X./~=1l(z...,
L In/ {[(

2, Un+1, - -

n

Proposition 25. Forn € Z>o and k € Z>,, we have
dim pn(5}) = #Yn k0 =

10

[(z,y,2,y)] U

'7ul)} EYE | Un1y---

2.

[(z, 9,9, 9)],

U € {y,z}}.



Proof. Since
D = spang{zr, - - 2k, | (ki ..., ki) € I}

= spang{u - wp—1y | (w1, .. upm) € {z g N\ {(y, .. y)}}

= Span@{ul U1l — yk ’ (u1,...,u—1) € {y, Z}kfl},
Proposition 11 shows that
pn(ﬁi) = Span@{ﬂn(ul S U Y) — Pn(yk) } (u1,...,up—1) € {y, Z}kfl}
= spang{po(z"ur - - up_1y) — po(2"y") | (ua, ... up_1) € {y,2}" '}
= spa oo(U) — p ey 2 Yy UeYiikn R, ,
pang{po(U) = po([(z:-- -, 2.y, y)]) | e \ (2 2]}

n k n+k

which implies that dim pn(jv’_),lg) = #Y, 1 kn — 2 because of Proposition 20. m

5.3 Calculation of #Y,

Proposition 25 reduces our main theorem (Theorem 15) to the following proposition:
Proposition 26. Forl € Zs, and n € {0,... 1}, we have
1 l " "
We first invoke the Cauchy-Frobenius lemma:

Proposition 27 (Cauchy-Frobenius lemma). If a finite group G acts on a finite set X, then

we have
b
#G

Lemma 28. Forl € Z>, and n € {0,...,l}, we have

1 [
#Yl,n - 7 zll:sp(a)#{u € Xl,n | mu = 'U,}

H(X/G) = o= 3 #{w € X | gz =},

geG

Proof. Applying the Cauchy-Frobenius lemma with G = Z/IZ and X = X, gives

1 .
#}/l,nzj Z #{ueXl,n |]UZU}

JeZ/IZ
1
=7 > #Hue Xy, | ged(f, u = u}
JEL)IZ
1 ] .
= TS (#U € 21T ged(j,1) = m} - #H{u € Xiy | mu = u})
mll

:%ng(%)#{ue){l,n\mu:u}. O

mil

11



Lemma 29. Ifl € Z>y, n € {0,...,l}, and m is a positive divisor of I, then
#{ue X, |mu=u}=2"-L7.
Proof. The map f,,;: X,, — X, defined by

fmi(v) = (v,...,v)

l/m
is injective and has image {u € X | mu = u}. Therefore it suffices to show that
# LX) = 2™ — L.

Observe that for each (m,n) € Zs1 X Z>, the set fn_l}l (Xin) is the same for all multiples [ of
m with [ > n. Therefore, we may put Zn,, = X \ f,.}(Xin) = f,,5(X{,,), aiming to show
that #2,,, = L}, for all m € Z>, and n € Z>,.

If m < n, then

H# Zmn = #{v € X,,, | at least one component of v is y} =2" —1= L7 .
If m =n-+1, then

HLmn = #{v € X,,, | at least two components of v are y}
=2"—m—-1=2""—n-2=1L"

by Lemma 14 (1). Suppose that m > n + 2. If we put
L = {(v1,...,um) € Zmn |y = =v_1=2, v =y}
fori=1,...,n,then {Z,,,,;|i=1,...,n} is a partition of Z,,,. Set

annz - {<U1’ cee >Um) S Zm,n,i ’ Vit1 = y},
Z7Zrz,n,i = {(Ulj cee 7Um) S Zm,n,i ’ Viy1 = Z}

Then removing the (i + 1)st component gives a bijection from Z7 . to Z,,_1,; and an

m,mn,t
C . . S Zezy
injection from Z i Y0 Zm1 with image Z,;,_1.n \ Lo Amis where
e B B B B
Zm—l,n,i - {(Uh s 7Um—1) S Zm—l,n,i | Vi1 = - = Vjgn—-1 = 2y Vjpn = y}

Moreover removing components from the (i + 1)st to the (i + n)th gives a bijection from
Z2 10 Z—p—1 - 1t follows that

m—1,n,i
#Zm,n,i - #Zg%nﬂ; + #anm,i = #Zm—l,n,i + #(Zm—l,n,z‘ \ an_szn,l)
- 2#Zm—1,n,i - #Zm—n—l,n,i-

Summing up for ¢ = 1,...,n gives #Z,,, = 2#Z—1n — #Zm-n-1,,- Hence the lemma
follows from Lemma 14 (2). O

Lemmas 28 and 29 imply Proposition 26, thereby establishing our main theorem.
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6 Multiple zeta-star values

6.1 Multiple zeta-star values and Hoffman’s algebra

The multiple zeta-star values (MZSVs for short) are defined as the MZVs with equality
allowed in the index of summation:

Definition 30. For k = (ky, ..., k) € I°, the multiple zeta-star value (*(ki, ..., k) is a real
number defined by

Ck) = C b k)= Y

s L R L
Example 31. We have

1
SCER Iy

ny
ni>na>nz>1

1 1 1 1
- Z nin3ns * Z nin3ns * Z nin * Z nin3ns

2
n
ni>na>n3z>1 ni=nz>nz>1 ni>ng=n3z>1 2143 ni=ngs=nz>1
1

1 1 1
= 2 mmet Xomet Xoaat i

n1>na>ng>1 ni>nz>1 U3 pispe>1 12 >

=((4,2,1) +¢(6,1) + ((4,3) + ¢(7).

As the above example indicates, each MZSV can be expressed as a Z-linear combination
of MZVs. Hoffman’s algebra is useful for describing this relationship between MZVs and
MZSVs.

Definition 32. Define a Q-linear map Z: $° — R by setting Z(1) = 1 and Z(zy, - - 21,) =
(k) for k= (ki ... k) € I

Definition 33. Let v denote the algebra automorphism on $) satisfying v(x) = z and y(y) =
z. Define a Q-linear transformation d on Q + $y by setting d(1) = 1 and d(wy) = y(w)y for
wE 9.

Proposition 34. We have Z = Z od: $° — R.

Proof. Easy and well known. m

6.2 Cyclic sum formula for multiple zeta-star values

Ohno and the third author [4] proved the following analog of the CSF for MZSVs:

Theorem 35 (Cyclic sum formula for multiple zeta-star values). If (ki,..., k) € I', then

l kj—l

SN k=it Lk, ki) = (k4 k)C(ky 4+ by + 1),

j=1 i=1

13



The second and third authors [5] defined operators p,, for MZSVs as well as p,, for MZVs:

Definition 36. Let n € Z>(. Define a Q-linear map Co: $ — 9H%+2) by setting C,(1) = 0,
Co(z) = 2@ y*" ), Co(y) = —x @ y®* Y, and

Co(ww') = Cp(w) oy H(w') + 7 Hw) o Cp(w).
Write p,, = M, o C,,.
Proposition 37. We have the following commutative diagram:

29 @ H" @ Hy = 9°

~ | y@y®"®d d

9
L 4
xﬁ@ﬁm®ﬁyﬂ$ﬁ°
N

\_,__/

pn
Proof. Straightforward. m

Proposition 38. If k..., k € Z>,, then

l 1 kji—1
E 0 oo d 7+l 1 = E E Zk._H_lszH . J-H 1< (k‘l + -+ kl)2k1+~~+kl+1-
j=1 J=1 =1

Here a: Hy — Hy denotes the Q-linear map representing the division by depth, i.e.,

a(zk,l o e Zk;,) fry ?Zk/ . . Z]C;,
Jor all monomials z - - - 2k, € Y.
Proof. For simplicity, let A and B respectively denote the left- and right-hand sides of the

desired identity. By the injectivity of d, it suffices to show that d(A) = d(B); setting
A" =d(A) and B’ = d(B), we have

! !
A = Z(doﬁo oqo d)(zk]. . ~zkj+l_1) Z(po oqo d)(zk]. . "ij+z_1)7

=1 j=1
[ k;j—l
= E : E : d(zkj*iJrlzij T Rk R ) (kl +ooet kl)zk1+--~+kz+1'
j=1 i=1

14



For a € Z>4, let 6,: $Hy — Hy be the Q-linear map that extracts the depth-a part, i.e.,

2z, A = a;
5(1(2]{:/1"'2](3;,) — 1 1 .
0 otherwise

for all monomials zy -z, € $Hy. Then it is enough to prove that 6,(A’) = d4(B’) for
a=1,...,14+ 1. Note that

(040 po 0 04)(w) + (84 © po 0 0a_1)(w) if a>2;

(oo po)l) = {<5aopoo6a><w> ifa=1,

1
(04 0 @) (w) = —4(w)
a
for all w € Hy.
For a = 1, we have

l l

(51(A/) _ Z<51 O pPypOxo d)(zkj . .ij+l71) = 2(51 O pp © 61 oo d)(ZkJ . .ij+l—1>

j—l J=1
l
= Z (51 © po © 010 d)( C Rk 1) = 2(51 © po)(zk?j+“'+kj+lfl)
Jj=1 j=1

l
= E (610 o) (Zhy - 1hy) E — 2y othy 1) = 2k k1

Jj=1 7j=1
kj—1
E E (51 e} d Zk'—Z-l—leJ.H . J+l 1% ) (/{31 + -+ kl)zk1+~~-+kl+1
j=1 i=1
l kj—l
= Syt hyatethy i — (B R 2 kg
j=1 i=1

= Z(ka — Dz rokgrr — (b4 -+ k) 2k by
j=1

= 12k et 41,

as required.
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For a =1+ 1, we have

MN

5l+1 (A/) = (5l+1 Oppoao d) (ij e ij+l—1)

1

.
Il

(5l+1 ©po© 5l+1 oo d)(zk] T Rk 1) + (5l+1 © po© doao d)(zk] K2 1)

M-

1

<
Il
-

I
\M“

J

(\|)_|

l
1
= —12 0110 po © 6rp1 0 d) (2, -+ 20y, )
kg -
Z 011 po)( ki)
k-1

l l
Z Z Z Pk g =i Ry T Rl o %
j=1j'=1 i=1
I R
- E E ij—i+1zk}j+1 c Bk G+l— 1 6l+1( )

=1 i=1

l

Z 5l+1op006l0d)(zk’j T Rk 1)
=1
—1

’

:\‘|)—l
:\.“_.

as required.
Now let 2 < a < [. We first compute 6,(A"). It is easy to see that d,(A") = P+ Q, where

l
1
P = 5 Zl((;a 0 Py 0 dg 0 d)(ij o 'Zk‘j+z—1)7
j=
!

a—10© d)(zkj e ij+l71).

For b € Z>4, set
Mb:]llvb:{m:<m1""7mb>GZbZl|m1+"'+mb:l}.

For each m = (my,...,my) € M,, we extend the indices of m, to all p € Z by declaring
m, = m,y whenever p = p (modb). For j = 1,....1, m = (my,...,my) € M,, and
p=1,...,b, write

Jt+mi+-t+mp—1

Kjmp = E : ki = Ejtmytetmps 0+ Kjgmy opmy,—1-
i=j+mi+-+mp_1

Then we have

l
P = éZ(da o po) ( Z Zhyma " ij,m,a)
j=1

meM,

- Z sz]m P+lszmP+1 e k] m,pt+a—1"

Lop=1
meMa

16



Note here that

Z ij’m7p+1zkj,m,p+l U ij¢m7p+a71
does not depend on p = 1, ..., a, because the bijection from {1,... I} x M, to itself defined
by
(j7 m) = (j? (m17 s Jma)) = (.j/7 m/> = (] +my 4+ mp—1, (mp7 cee 7mp+a—1))
has the property that

Zk:j,m,p+1zk‘j’m’p+1 : Zk;] m,pta—1 - Zk’]/ ’ 1+lzk m! e Zk’jl,ml’a'

It follows that
E Rhjm,at1%kima1 " Fkjm,a—1"

mEMa

Similar reasoning shows that

l
1
Q - a— 1 2(5(1 © po) Z ij,m,l T ij,m,a—l

j=1 meMq 1
1 a—1 kjm p—1
- a—1 Z . Zkjmop—i+1%kjm pt1 " “jm pra—2i
7312}\,4&,7[1 p=1 i=1

We next compute §,(B’). Observe that d,(B’) = R+ S, where

R E E ij m, 1_Z+1zk] m,2 e k],m,a,flzi7

7=1,. l i=1
meMa
: : z : Zk] m 1_'L+1Zk5],m 2 T k],m,a—lzkj,m,a"ri'
Li=1
meMa

Since the bijection from {1,... 1} x M,_; to itself defined by

(,m) = (j,(ma,...,ma1)) — (5, m') = (j 4+ ma, (ma, ..., ma_1,m1))

has the property that

E ijym,17i+1zk:jﬁmyz T ijym,aflzi - ij’,m/,a 1 ’L+1zk‘]/ m/,1 e ij’,m/,a—QZi’



we have

kj+m1+»-»+ma_271

R= § : E : Phjm a1 =412k m 1 " Pk m a2 %0

J=1,...,1 i=1
m:(mlv---amafl)eMafl

Similar reasoning shows that

k:j+m1+"‘+ma—l —1

S = : : : : ij,m,a7i+1zkj,m,1 e ij,m,a72zkj,m,a—l+i'

=1, i=1
m=(mi,....,ma)EM,

What needs to be shown is that P + Q) = R+ S. Note that

kj+m1+”'+ma—l —1

S - P = z : z : Zk'j,m,a*'i‘i’lzkj,m,l T ij,m,a72zk‘j,m,a71+i

J=1,...1 =0
m=(m1,...,mq)EMq

kjymyﬂ*1+kj+m1+“-+ma_1 -1

- : : E : ij,m,a—l+kj,m,a_i+lzkj,m,l e ij,m,a—QZi'

7=1,...,1 i:kj’myafl
m=(mi,....,mq)EM,

Fix 7 =1,...,1 and consider the map : M, — M,_; defined by
d}(ml? B 7ma) = (mla cee s Mg—2,Mg—1 + ma>~

If Y(m) =m/, then kjma1 + kjma = kjmva—1 a0d kjmyp = kjpyp for p=1,...,a — 2.
Moreover, for each m' = (m/,...,m,_,) € M,_4, the sets

a—1
{i € Z | kjma—1 <@ < kjma-1+ Kjrmi+otme — 1}
for m = (my,...,m,) € ¥ (m') are disjoint with union

{Z € Z | kfj+m’1+..,+m;72 S Z S k’j7m/7a_1 - 1}

It follows that

K/ a—1—1
S—P= Z Z N R ST L
(o My T
We therefore conclude that
kjm,a—1—

1
S - P + R = z : z : ij,m,aflf’i“rlzkj,m,l U Zk‘j,m,u,72zi = Q?
j=1 i=1

seensl
meM,—1

as required. H
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Proposition 39. We have po($') C Ker Z and po(9}_,) C Ker ZN HY for k € Zy.
Proof. If w € $*, then Proposition 37, Proposition 8, and Theorem 4 show that
Z(plw)) = Z(polw)) = Z(p(w)) =0,

from which the first assertion follows. The second assertion is now obvious.
Proof of Theorem 35. Immediate from Propositions 38 and 39. [
Proposition 40. We have

{0} = pr—2(H1) C pr-3(H3) C -+ C po(H}_,) C Ker Z N H),
for all k € Z>s.
Proof. Observe that p,1(w) = p,(zw) for all n € Zsy and w € §; indeed, we have

s () = A7 (prsa(w)) = 4™ (pu(2w)) = pu(ew).

This finishes the proof. O
Theorem 41. If n € Z>y and k € Z>,, then
dim p,(HL) = dim po (9E) = — > s@(

n+k min+k

n+k

)(Qm —Lh) -2,

Proof. The Q-vector spaces fp,($9}) and p,($H}) are isomorphic as given by d, and the theorem
follows from Theorem 15. O
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