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Abstract

Define a quasi-amicable pair as a pair of distinct natural numbers each of which is
the sum of the nontrivial divisors of the other, e.g., {48,75}. Here nontrivial excludes
both 1 and the number itself. Quasi-amicable pairs have been studied (primarily
empirically) by Garcia, Beck and Najar, Lal and Forbes, and Hagis and Lord. We
prove that the set of n belonging to a quasi-amicable pair has asymptotic density zero.

1 Introduction

Let s(n) := dedm d be the sum of the proper divisors of n. Given a natural number n, what
can one say about the aliquot sequence at n defined as n, s(n),s(s(n)),...? From ancient
times, there has been considerable interest in the case when this sequence is purely periodic.
(In this case, n is called a sociable number; see Kobayashi et al. [11] for some recent results
on such numbers.) An n for which the period is 1 is called perfect (see sequence A000396),
and an n for which the period is 2 is called amicable (see sequence A063990). In the latter
case, we call {n, s(n)} an amicable pair.

Let s™(n) := 34, 1<4<n d De the sum of the nontrivial divisors of the natural number n,
where nontrivial excludes both 1 and n. According to Lal and Forbes [12], it was Chowla
who suggested studying quasi-aliquot sequences of the form n, s (n),s (s~ (n)),.... Call n
quasi-amicable if the quasi-aliquot sequence starting from n is purely periodic of period 2
(see sequence A005276). Thus, a quasi-amicable pair is a pair of distinct natural numbers
n and m with s~(n) = m and s~ (m) = n (e.g., n = 48 and m = 75). The numerical data,
reproduced in Table 2 from sequence A126160, suggests that the number of such pairs with
a member < N tends to infinity with N, albeit very slowly.
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N ‘ # of quasi-amicable pairs with least member < N

10° 9
10° 17
107 46
108 79
107 180
10" 404
104 882
10* 1946

While quasi-amicable pairs have been studied empirically (see [8, 12, 1, 10, 2], and cf.
[14, 13], ]9, section B5]), it appears that very little theoretical work has been done. In this
paper, we prove the following modest theorem, which is a quasi-amicable analogue of Erdos’s
1955 result [4] concerning amicable pairs:

Theorem 1.1. The set of quasi-amicable numbers has asymptotic density zero. In fact, as
€ | 0, the upper density of the set of n satisfying
RCR()

l—e< 22 T 14 e (1)
n

tends to zero.

Remark. With s replacing s—, Theorem 1.1 follows from work of Erdds [4] and Erdés et al.
[7, Theorem 5.1].

Notation

Throughout, p and ¢ always denote prime numbers. We use o(n) := 3 din d for the sum of
all positive divisors of n, and we let w(n) := 3
factors of n. We write P(n) for the largest prime divisor of n, with the understanding that
P(1) = 1. We say that n is y-smooth if P(n) <y. For each n, its y-smooth part is defined
as the largest y-smooth divisor of n.

The Landau—Bachmann o and O-symbols, as well as Vinogradov’s < notation, are em-
ployed with their usual meanings. Implied constants are absolute unless otherwise specified.

1 stand for the number of distinct prime

2 Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1, assuming two preliminary results whose
proofs are deferred to §3 and §4.

Proposition 2.1. For each € > 0, the set of natural numbers n with

oln+1) __ols=(m) o+l 2)

n+1 s7(n) n+1

has asymptotic density 1.



Remark. If n is prime, then s~ (n) = 0, and the expression o(s™(n))/s (n) is undefined.
This does not contradict Proposition 2.1, since the set of primes has asymptotic density zero.

Proposition 2.2. As € | 0, the upper density of the set of natural numbers n for which

e (T ) (D ) o

Proof of Theorem 1.1. It suffices to prove the upper density assertion of the theorem. Let
0 > 0. We will show that if € > 0 is sufficiently small, then the upper density of the set
of n for which (1) holds is at most 26. We start by assuming that both o(n)/n < B and
o(n+1)/(n+1) < B, where B > 0 is chosen so that these conditions exclude a set of n of
upper density at most §. To see that such a choice is possible, we can use a first moment
argument; indeed, since

tends to zero.

o(n 1 1
Z%:ch—lgxzﬁ<2x,

n<x n<z dln d<z

we can take B = 4/§. Moreover, Proposition 2.1 shows that by excluding an additional set
of density 0, we can assume that

o(s"(n)) o(n+ 1)‘ €
s7(n) n+1 2B

Now write

(s () s (m)s (s~ (n)
s7(n)

n n

Z(y—l—%) <0§_—<?>))‘1‘s—1<n>>‘

If n is a large natural number satisfying (1) and our above conditions, then a short compu-

tation shows L;(")) is within e of the product (# — 1)(0(:—;1) —1). (Keep in mind that

since n is composite, we have s~ (n) > y/n.) Thus,

1—26<(#—1) (ﬁn—_:_ll)—l)<1+26.

Finally, Proposition (2.2) shows that if € is chosen sufficiently small, then these remaining n
make up a set of upper density < 4. O]

3 The proof of Proposition 2.1

3.1 Preparation

The proof of the proposition is very similar to the proof, due to Erdds, Granville, Pomerance,
and Spiro, that s(s(n))/s(n) = s(n)/n+ o(1), as n — oo along a sequence of density 1 (see
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Erdés et al. [7, p. 195]). We follow their argument, as well as the author’s adaptation [15],
very closely.

We begin by recalling some auxiliary estimates. The first of these is due to Pomerance
[16, Theorem 2.

Lemma 3.1. Let D be a natural number, and let x > 2. The number of n < x for which
Dto(n)is < z/(logx)t/#P)

For a given a, we call the natural number n an a-primitive number if o(n)/n > 1+ «
while o(d)/d < 1+ « for every proper divisor d of n. The following estimate is due to Erdés

[5, p. 6]:
Lemma 3.2. Fix a positive rational number . There is a constant ¢ = ¢(a) > 0 and an
xog = zo(e) so that for z > x¢, the number of a-primitive n < x is at most

T

exp(cy/logrloglogz)

As a consequence of Lemma 3.2, we obtain the following convergence result, which we
will need to conclude the proof of Proposition 2.1.

Lemma 3.3. Fix a positive rational number a. Then

D

a a-primitive

Qw(a)

< Q.

Proof. We split the values of a appearing in the sum into two classes, putting those a for
which w(a) < 20logloga in the first class and all other a in the second. If a belongs to
the first class, then 2°(® < (loga)?°'22, and Lemma 3.2 shows that the sum over these a
converges (by partial summation). To handle the a in the second class, we ignore the a-
primitivity condition altogether and invoke a lemma of Pollack [15, Lemma 2.4|, according

. qw(a)
to which Za: w(a)>20logloga a < 0. [

3.2 Proof proper

We proceed to prove Proposition 2.1 in two stages; first we prove that the lower-bound holds
almost always, and then we do the same for the upper bound. The following lemma is needed
for both parts.

Lemma 3.4. Fix a natural number T'. For each composite value of n with 1 <n < x, write
n+1=mms and s (n)= M;Ms,

where P(m;M;) < T and every prime dividing moM; exceeds T'. Then, except for o(x) (as
x — 00) choices of n, we have m; = M;.

Proof. At the cost of excluding o(x) values of n < z, we may assume that

-1
my < (loglogz)'/? (H p) = R.

p<T
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Indeed, in the opposite case, n + 1 has a T-smooth divisor exceeding R, and the number of

such n < z is |
< - = ,
x Z . o(x)

e T-smooth
e>

as r — o0o. Here we use that the sum of the reciprocals of the T-smooth numbers is
[T<r(1 —1/p)~" < co. Hence, mi[[,.;p < (loglogx)'/?, and so Lemma 3.1 shows that
excluding o(z) values of n < z, we can assume that m, [[ ., p divides o(n). Since

s (n)=o(n) = (n+1),
it follows that m; is the T-smooth part of s~(n). That is, m; = M;. O

Proof of the lower bound half of Proposition 2.1. Fix 6 > 0. We will show that the number
of n <z for which the left-hand inequality in (2) fails is smaller than 3dx, once x is large.
Fix B large enough that o(n+1)/(n+ 1) < B except for at most dx exceptional n < x.
That this is possible follows from the first moment argument used in the proof of Theorem
1.1 (e.g., we may take B = 4/6 again). Next, fix T large enough so that with msy defined as

in Lemma 3.4, we have
o(ms)

o~ < exp(e/B)

except for at most dx exceptional n < x. To see that a suitable choice of T' exists, observe
that

Y log? <ZZlog(1+ +pi+ )

n<lzx n<z p|n+1
p>T

<ZZ—<2xZ

n<w p\n—&-l
p>T

Hence, we may take T'= [2B/(d€)].

For large z, we have that n is composite (so that M; is defined) and that m; = Mj,
except for at most dx values of n < x. This follows from Lemma 3.4 and the fact that the
primes have density 0.

If n is not in any of the exceptional classes defined above, then

o(s~(n)) _ o(MiMy) _ o(My) _o(m) _ o(n+1)/(n+1)

3—(n) M1M2 - M1 mq N U(mg)/mg
on+1) € o(n+1) € o(n+1)
> . >—<1——>>——,
= Tnt1 eXp( B) nt1 B)= ny1 €

which is the desired lower bound. Note that at most 36z values of n < x are exceptional, as
claimed. O]



Proof of the upper bound half of Proposition 2.1. We may suppose that 0 < e < 1. Let § > 0
be given. Fix 1 € (0,1) so small that the number of n < x which are either prime or which
fail to satisfy

P(n) > 2" and P(n)*fn (4)

is smaller than dx, once z is large. The existence of such an 7 follows either from Brun’s
sieve or well-known work of Dickman on smooth numbers. Next, using the first moment
argument from the proof of Theorem 1.1, choose a fixed number B > 1 so that all but at
most dx of the numbers n < z satisfy

o(n+1)
———~> < B. 5
n+1 = (5)
We fix rational numbers o and «y satisfying
€ arm
< — < —.
0<061_4B, 0<042_12

Finally, we fix a natural number T which is sufficiently large, depending only on the «;, 9,
1, and B. The precise meaning of “sufficiently large” will be specified in the course of the
proof.

Suppose that the right-hand inequality (2) fails for n, where we assume that n is composite

and satisfies both (4) and (5). Write
n+1=myms and s (n)= MM,

where P(myM;) < T and every prime dividing moMs exceeds T. By Lemma 3.4, we can
assume my; = M, excluding at most dx values of n < x. Thus,

o(Ma)/Mz _ o(s”(m)/s”(n) : € >144a
sm)fmy otk D/ ) = oG -
In particular,
o(Ms) > 14 day. .

2
We can assume our choice of T" was such that, apart from at most dz exceptional n < x,

we have
a(my)

<1 . 7
gy = + o (7)

Indeed, the argument for the analogous claim in the proof of the lower-bound shows it is
sufficient that T' > 2(dlog(1 + a1))~!. Henceforth, we assume (7). Now write My = MzMy,
where every prime dividing M3 divides n + 1, while M, is coprime to n + 1. Note that every
prime dividing M3 divides ms. Hence,

O'M3 1 2 1
<Mg)§H<1+z:): szp—l quzr

p|Ms p| M3 q| M3
2
(H 2p 1) Zi) < 1+ 2ay,
p>Tp o ma



using (7) and assuming an initial appropriate choice of 7. So from (6),

O'(M4) o U(Mg)/MQ > 1—|—40él

= > 14+ o.
M4 O'(Mg)/Mg - 1+20é1 - !

It follows that there is an «i-primitive number a; dividing My, where each prime dividing
a, exceeds T'.

We claim next that there is a squarefree, as-primitive number ay dividing a; with
ay < a?/ 2

List the distinct prime factors of a; in increasing order, say T' < ¢1 < g2 < --- < ¢, and put
ao = q1q2 " * " qnt/2), SO that

ao S (ql .. .qt)LUt/QJ/t S a717/2‘

We will show that o(ag)/ag > 1+ ag; then we can take ay as any ao-primitive divisor of ay.
First, observe that |nt/2] > nt/3. Otherwise, t < 6/n and

o(ay) 1 1\ 6
1 < < 1 <1+ = < —
+a; < @ _H(+qi—1)_(+T> < exp 0T

1<i<t

which is false, assuming a suitable initial choice of T'. It follows that

olag z]- 2_1 %
et U1 e B

Wil b p>1 P 1<i< e BT
while
[nt/2]/t
di di
>
H ¢—1- (H Qi_1>
1<i<|nt/2] 1<i<t
n/3
> <a(a1)) > (1 +a1)n/3 >14 .
aq 6
Thus,

6 12

o(agp) . (H 1

><1+%>21+w21+a2,
p>T p

again assuming a suitable choice of T' to justify the middle inequality.
Observe that ay satisfies

as < a? < (s™(n))"? < 22113,
for large x. Write n = Pr, where P = P(n). Then r > 1 (since n is composite) and also, by

(4),

r<z/P <z
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Moreover, ay divides
s (Pr)=P(o(r)—r)+o(r)—1,

and so
P(o(r)—r)=1—o0(r) (mod ay).

We view this as a linear congruence condition on P modulo as. If there are any solutions,
then D := ged(o(r) —r,a2) | 1 —o(r), and in this case there are exactly D solutions modulo
as. Note that if there are any solutions, then D | r — 1. Also note that D is squarefree, since
as is squarefree.

We now sum over pairs ay and r, for each pair counting the number of possible values of
P < z/r. By the Brun—Titchmarsh inequality and the preceding remarks about D, we have
that the number of possible values of n = Pr is

x/r
< X2 D DS i)

a2 ag-primitive 1<r<zl=7 D|(az,r—1)
T<as<z21/3 D squarefree

x 1
D
n IOg X az ag-pgmitive (GQ) D|Za,2 1<7§$1ﬂ

T<as<z"/3 D squarefree Dlr—1

The sum on 7 is < <+ log . Moreover, since ay is as-primitive, we have
D ) )

a a 3
2 9@) 34, )«
p(as) as 2

and so p(az) > ap. Thus, the remaining sum is

gw(az)

x 1 T
<<Eza_21<<_z -

a2 ao-primitive Dlaz ag ao-primitive
T<as<z21/3 D squarefree az>T

But if 7" was chosen sufficiently large, then this last sum is bounded by ndz (by Lemma 3.3),
leading to an upper bound of < dz. Since the number of exceptional n appearing earlier in
the argument is also < dx, and 6 > 0 was arbitrary, the proof is complete. O

4 Proof of Proposition 2.2

We start by quoting two lemmas. The first was developed by Erdés [3] to estimate the decay
of the distribution function of o(n)/n near infinity. We state the lemma in a slightly stronger
form which is supported by his proof.

Lemma 4.1. For x > 0, the number of positive integers n < z with o(n)/n > y is
< z/exp(exp((e”” +o(1))y)), asy — oo,

uniformly in z, where 7 is the Euler-Mascheroni constant.
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The next lemma, also due to Erdds [6], supplies an estimate for how often o(n)/n lands
in a short interval; note the uniformity in the parameter a.

Lemma 4.2. Let x >t > 2 and let a € R. The number of n <z with a < o(n)/n <a+ 1/t
is < x/logt.

The next two lemmas develop the philosophy that the rough size of o(n)/n is usually
determined by the small prime factors of n. Put h(n) := 3", <, 50 that h(n) = o(n)/n. For

each natural number T, set hr(n) := >, pay<r <. The next lemma says that b and hy are
usually close once T is large.

Lemma 4.3. Let € > 0 and = > 1. The number of n < z with h(n) — hy(n) > € is < x/(Te).

Proof. Again, we use a first moment argument. We have

So(h(n) ~ () < SO0 2 <030 /T,

n<z n<z dn d>T
d>T

from which the result is immediate. ]

Lemma 4.4. Let T be a natural number. Let S be any set of real numbers, and define &(5)
as the set of T-smooth numbers e for which hr(e) — 1 € S. Then for n € N, we have
hr(n) — 1 € S precisely when n has T-smooth part e for some e € &(S). Moreover, the
density of such n exists and is given by

Z H (1—1/p). (8)

ecs (S p<T

Proof. 1t is clear that hr(n) depends only on the T-smooth part of n. So it suffices to prove
that the density of n with T-smooth part in &(S) is given by (8).

For each set of T-smooth numbers &, let ds and de denote the upper and lower densities
of the set of n whose T-smooth part belongs to &. If dg = d, then the density of this set
exists; denote it by dg.

For each T-smooth number e, a natural number n has T-smooth part e precisely when e
divides n and n/e is coprime to [] ; p, so that the set of such n has density ¢ [T .,(1—1/p).
Since density is finitely additive, it follows that for any finite subset & C &(.5),

3 | CEV
ec&  p<T
Now let x > 0, and put &(S) = & U &, where & = &(S) N[l,z] and & = &(9) \ 1.
Then dg5) > dg for all z, and so letting © — oo, we find that dgg) is bounded below by
(8). On the other hand, dg(s) < dg, + dg,. But dg, is bounded above by (8) for all x, while
dg, < ZeTsmoothe L = 0(1), as  — oo. Thus, letting # — oo, we obtain that dg(s) is

bounded above by (8). O



Proof of Proposition 2.2. Let § > 0 be sufficiently small. We will show that for
e < exp(—4/9), (9)

the number of n < z satisfying (3) is < §(log log %)x, for large x. Note that since d log log % —
0 as 0 | 0, this proves the proposition. In what follows, we fix § and ¢, always assuming that
J is small and that e > 0 satisfies (9).

Put T := ¢ '6~!. We can assume that both n and n + 1 have T-smooth part < log .
Indeed, for large x, this excludes a set of n size < dx, since

e T-smooth
e>logx

as T — 00.

Let I be the closed interval defined by I := [exp(—l/é), 2log log ﬂ For large x, Lemmas
4.1 and 4.2 imply that all but < dx values of n < z are such that h(n) — 1 € I and
h(n+1)—1 € I. By Lemma 4.3, excluding < dz additional values of n < z, we can assume
that hr(n) > h(n) — e and hr(n + 1) > h(n + 1) — €. Recalling the upper bound (9) on e,
we see that both hy(n) — 1 and hp(n + 1) — 1 belong to the interval J, where

J = %exp(—l/d)ﬂloglog% :
Moreover (always assuming ¢ sufficiently small),
(hr(n) = 1)(hp(n+1)—=1) > ((h(n) = 1) —e)((h(n+ 1) — 1) —€) > 1 — belog log%, (10)
and
(hr(n) —)(hr(n+1)—=1) < (h(n) —1)(h(n+1) —1) < 1+e (11)

Write J as the disjoint union of N := [1/¢] consecutive intervals Jy, Ji, ..., Jy_1, each
of length 1/N. We estimate, for each 0 < ¢ < N, the number of n for which hy(n) — 1
belongs to J;. Fix 0 <i < N. Since hy(n) — 1 belongs to J;, (10) and (11) show that

1 —5elog10g% 1+4€

hr(n+1)—1¢€ =:J], (12)

Tit1 X

where z; and x;,; are the left and right endpoints of J;, respectively. So in the notation of
Lemma 4.4, n has T-smooth part e € &(.J;) and n+1 has T-smooth part ¢’ € &(J]). Clearly,
ged(e,€’) = 1. That n and n + 1 have T-smooth parts e and €', respectively, amounts to a
congruence condition on n modulo M := ee’ [, p, where the number of allowable residue

classes is [[ .o (p = 1) I I peer per(p — 2). For large z,

M < (log z)? Hp < (logz)* < .

p<T
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(Recall that e, e’ <logx.) Thus, the Chinese remainder theorem shows that the number of
such n < z is

<= Jla-vynla-2/p

plee’ ptee’
p<T

<z (% [Ta- 1/19)) (é [Ta- 1/1?)) [[a-1/p"

p<T p<T plee

But

B e e o(e)o(e) orlo 1 2
10 - 0™ = oty < 2070 (tsoe )

plee’
since h(e) — 1, h(e’) — 1 < 2loglog . Summing over e € &(J;) and € € &(J]), we find that
the number of n under consideration is

<<x<loglog%) Z H 1-1/p) Z H 1—1/p)

e€&(J, p<T e'es(J]) p<T

Now sum over 0 < ¢ < N. We obtain that the number of remaining n satisfying (3) is
< Lz(loglog )%, where

L:= sup Z Hl—l/p Z Z Hl—l/p

0<i<N | e © per 0<i<N | eee(h) € p<T
< sup Z H (1—=1/p) ¢;
0<i<N
e'e&(J)) p<T
we use here that the J; are disjoint, so that
DD U ED S | (BT
, e e
0<i<N e€é&(J;) e T-smooth p<T
The proof will be completed by showing that L < . It is enough to argue that each sum
> STla-vw
e'es(J)) P<T

is < 4, uniformly for 0 < ¢ < N. By Lemma 4.4, this sum describes the density of those
natural numbers m for which hr(m)—1 € J!. We split these m into two classes, according to
whether h(m) — hr(m) > € or not. The set of m in the former class has upper density < 4,
by Lemma 4.3. Suppose now that h(m) belongs to the second class. From the expression

11



(12) defining J! and a short computation, we see that hr(m) is trapped within a specific
interval of length

2
< exp(2/0) <log log %) € < exp(3/d)e.

Since m belongs to the second class, h(m) is also trapped within a specific interval of length
< exp(3/0)e. By (9), exp(3/0)e < exp(—1/0), and so by Lemma 4.2, the upper density of
the set of those m in the second class is

1

<5
Sirom €

assuming again that ¢ is sufficiently small. m

Remark. Our argument also shows that the set of augmented amicable numbers has density
zero (see sequences A007992, A015630). Here an augmented amicable number is an integer
which generates a 2-cycle under iteration of the function s™(n) :== 1+ 32, ,_, d, eg.,
n = 6160.
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