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Abstract

For an integer b ≥ 2 and for x ∈ [0, 1), define ρb(x) =
∑∞

n=0
{{bnx}}

bn , where {{t}}
denotes the fractional part of the real number t. A number of properties of ρb are
derived, and then a connection between ρb and the rumor conjecture is established.
To form a rumor sequence {zn}, first select integers b ≥ 2 and k ≥ 1. Then select an
integer z0, and for n ≥ 1 let zn = bzn−1 mod (n + k), where the right side is the least
non-negative residue of bzn−1 modulo n + k. The rumor sequence conjecture asserts
that all such rumor sequences are eventually 0. A condition on ρb is shown to be
equivalent to the rumor conjecture.

1 Introduction

In this note, b ≥ 2 is a fixed integer. For x ∈ [0, 1), define ρb(x) =
∑∞

n=0
{{bnx}}

bn , where {{t}}
denotes the fractional part of the real number t.

A b-adic rational is a rational which can be written as a quotient of an integer and a
non-negative power of b. When a b-adic is written in the form a

bm , and m > 0, it will be
assumed b does not divide a.
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The ρb function is similar to the well known Takagi function τ(x) defined by τ(x) =
∑∞

n=0
<<2nx>>

2n , where <<t>> is the distance from t to the nearest integer. Whereas the sum-
mand of the Takagi function is a triangle wave, the summand of ρb(x) is a sawtooth wave.
(See Figures 1, 2.) The function y = <<2nx>> is continuous and periodic with period 2−n,
and it follows that τ is continuous. It turns out τ (see Figure 3) is also nowhere differentiable.

Figure 1: y = <<22x>> Figure 2: y = {{22x}}

Figure 3: y = τ(x) Figure 4: y = ρ2(x)

The Takagi function has interesting analytic properties not shared by ρb. For example,
while the Takagi function is continuous, ρb is easily seen to be continuous except at the
b-adics as suggested by Figure 4 for the case b = 2. In general, at each b-adic, a

bm , ρb is right
continuous with a jump discontinuity of − 1

bm−1(b−1)
. On the other hand, the ρb function

has interesting number theoretic features not shared by τ as we will show in the following
section.

In the final section of this note, we show that the ρb function is related to the rumor
conjecture described in Dearden and Metzger [1], and finally a conjecture concerning ρb that
is equivalent to the rumor sequence conjecture is stated.
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2 Arithmetic Properties of the ρb Function

An alternative expression for ρb(x) can be given in terms of the base-b expansion of x. In this
note we will follow the usual convention that base-b expansions of b-adics terminate rather
than end with an infinite string of (b − 1)’s.

Theorem 1. If
∑∞

j=1
dj

bj is the base-b expansion of x ∈ [0, 1), then ρb(x) =
∑∞

j=1
jdj

bj .

Proof. Let x =
∑∞

j=1
dj

bj ∈ [0, 1). Then

ρb(x) =
∞
∑

n=0

{{bnx}}

bn
=

∞
∑

n=0

{{bn
∑

j≥1 djb
−j}}

bn

=
∞
∑

n=0

1

bn

{{

n
∑

j=1

djb
n−j +

∑

j>n

djb
n−j

}}

=
∞
∑

n=0

1

bn

∑

j>n

djb
n−j

=
∞
∑

n=0

∑

j>n

dj

bj
=

∞
∑

j=1

j−1
∑

n=0

dj

bj
=

∞
∑

j=1

jdj

bj
.

Theorem 2. The range of ρb is [0, b
b−1

).

Proof. Let y ∈ [0, b
b−1

) be given. Integers dj ∈ D = {0, 1, . . . , b − 1} are selected recursively

as follows. First let d1 be the largest integer in D such that d1

b
≤ y. Assuming d1, d2, . . . , di−1

have been selected, take di to be the largest integer in D such that idi

bi ≤ y −
∑i−1

j=1
jdj

bj . In

this way, the base-b expansion of a number x =
∑∞

j=1
dj

bj is constructed.
We now show that this expansion of x does not end in an infinite sequence of (b − 1)’s,

and consequently x ∈ [0, 1) and ρb(x) =
∑∞

j=1
jdj

bj . To this end, by way of contradiction,
assume the expansion does end with an infinite sequence of (b − 1)’s. It can not be that all
the digits, dj, are b − 1 since, if they were, we would have

∞
∑

j=1

jdj

bj
=

∞
∑

j=1

j(b − 1)

bj
= (b − 1)

∞
∑

j=1

j

bj
= (b − 1)

b

(b − 1)2
=

b

b − 1
,

but
∑∞

j=1
jdj

bj ≤ y < b
b−1

. So there must be a last digit, dL, that is less than b − 1. It follows
that for all m > L,

m(b − 1)

bm
≤ y −

L−1
∑

j=1

jdj

bj
−

LdL

bL
−

m−1
∑

j=L+1

j(b − 1)

bj
.

Hence, for all m > L, we have

LdL

bL
+

m
∑

j=L+1

j(b − 1)

bj
≤ y −

L−1
∑

j=1

jdj

bj
.
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Consequently

LdL

bL
+

∞
∑

j=L+1

j(b − 1)

bj
≤ y −

L−1
∑

j=1

jdj

bj
.

Now
∞
∑

j=L+1

j(b − 1)

bj
=

(L + 1)b − L

bL(b − 1)
>

L

bL
.

Thus
L(dL + 1)

bL
=

LdL

bL
+

L

bL
≤ y −

L−1
∑

j=1

jdj

bj
,

contradicting the choice of dL.
For any i with di < b − 1, we have

idi

bi
≤ y −

i−1
∑

j=1

jdj

bj
<

i(di + 1)

bi
.

Since that holds for infinitely many i, and since
∑∞

j=1
jdj

bj is a positive series, it follows that

ρb(x) =
∑∞

j=0
jdj

bj = y.

The x constructed in the proof above is the largest of the inverses of the given y under
ρb. Call the x so constructed the greedy inverse image of y. In order to construct a valid
base-b number x as the greedy inverse of a given y, we explicitly required each di to be an
element of the set D = {0, 1, . . . , b − 1}, rather than using a floor function, as in









bi
(

y −
∑i−1

j=1
jdj

bj

)

i







 .

Since this integer may be larger than b − 1, the restriction on di was needed. We now show
that di is eventually given by this floor function expression.

Corollary 3. With the notation as in the proof of Theorem 2, for large enough i,

di =









bi
(

y −
∑i−1

j=1
jdj

bj

)

i







 and 0 ≤ y −

i
∑

j=1

jdj

bj
<

i

bi
.

Proof. We show, for i large enough, that the quantity z = bi
(

y −
∑i−1

j=1
jdj

bj

)

/i is less than

b, and, thus, ⌊z⌋ ∈ D. From the proof of Theorem 2, there is an integer n with dn < b − 1,
where dn is the largest integer in D = {0, 1, . . . , b − 1} such that

ndn

bn
≤ y −

n−1
∑

j=1

jdj

bj
.
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Thus, we see that

ndn

bn
≤ y −

n−1
∑

j=1

jdj

bj
<

n(dn + 1)

bn
. (1)

Equivalently, we have

dn ≤
bn
(

y −
∑n−1

j=1
jdj

bj

)

n
< dn + 1.

Now, since dn + 1 < b, we have that









bn
(

y −
∑n−1

j=1
jdj

bj

)

n







 ∈ D.

Therefore, dn may be expressed as

dn =









bn
(

y −
∑n−1

j=1
jdj

bj

)

n







 .

And, rearranging (1) we see that

0 ≤ y −

n
∑

j=1

jdj

bj
<

n

bn
.

Inductively, consider any i ≥ n where

0 ≤ y −

i
∑

j=1

jdj

bj
<

i

bi
. (2)

By definition, di+1 is the greatest integer in D such that

di+1 ≤
bi+1

(

y −
∑i

j=1
jdj

bj

)

i + 1
. (3)

Moreover, using (2), we have

bi+1
(

y −
∑i

j=1
jdj

bj

)

i + 1
<

i

i + 1
b < b.

Hence, as before, we have that

di+1 =









bi+1
(

y −
∑i

j=1
jdj

bj

)

i + 1







 ,
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since the value of the floor expression is an element of the set D. Finally, from (3), we have

(i + 1)di+1

bi+1
≤ y −

i
∑

j=1

jdj

bj
<

(i + 1)(di+1 + 1)

bi+1
.

From which we have

0 ≤ y −

i+1
∑

j=1

jdj

bj
<

i + 1

bi+1
,

completing the induction.

There are several easily verified functional identities satisfied by ρb stated in the next
theorem.

Theorem 4. The following identities hold for ρb:

(a) For the b-adic x = a
bm ∈ [0, 1), ρb(x) + ρb(1 − x) = b

b−1
− 1

bm−1(b−1)
.

(b) For any non-b-adic x ∈ [0, 1), ρb(x) + ρb(1 − x) = b
b−1

.

(c) For x ∈ [0, 1) and integer m ≥ 1, ρb

(

x
bm

)

= m
bm x + 1

bm ρb(x).

(d) If bmx ∈ [0, 1), then ρb(b
mx) = bmρb(x) − mbmx.

Theorem 5. Suppose s
t
is a rational number in lowest terms with gcd(t, b) = 1. If ρb(

s
t
) = u

v
,

a rational in lowest terms, then (1) there is a divisor t′ > 1 of t such that (t′)2 divides v,
and (2) b divides u.

Proof. Since t is relatively prime to b, the base-b expansion of s
t

is purely periodic. Let r be
the order of b modulo t, so that r is the period of that expansion. That means there is an
integer c so that ct = br − 1. Then

s

t
=

cs

ct
=

cs

br − 1
=
∑

m≥1

cs

bmr
=
∑

m≥1

∑r

i=1 br−idi

bmr
,

where
s

t
=
∑

j≥1

dj

bj
=
∑

m≥0

r
∑

i=1

di

bmr+i
has period r.
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First, calculate ρb(
s
t
) as follows:

u

v
= ρb

(s

t

)

=
∑

j≥1

jdj

bj
=
∑

m≥0

r
∑

i=1

(mr + i)dmr+i

bmr+i
=
∑

m≥0

r
∑

i=1

(mr + i)di

bmr+i

=
∑

m≥0

1

bmr

(

mr

r
∑

i=1

di

bi
+

r
∑

i=1

idi

bi

)

=
∑

m≥0

1

(br)m+1

(

mr
r
∑

i=1

br−idi +
r
∑

i=1

ibr−idi

)

=
∑

m≥0

1

(br)m+1
(mrcs + w) , where w =

∑

1≤i≤r

ibr−idi

=
rcs

(br − 1)2
+

w

br − 1
=

rcs + (br − 1)w

(br − 1)2
=

rcs + ctw

c2t2

=
rs + tw

ct2
.

Let d = gcd(t, r) and define t′ and r′ by t = t′d and r = r′d. Then, we have

ρb

(s

t

)

=
r′s + t′w

ctt′
=

r′s + t′w

cd(t′)2
.

Since r divides ϕ(t) we have

r ≤ ϕ(t) < t, hence, 1 ≤ r′ < t′.

In particular, we have that t′ 6= 1.
Since t′ is relatively prime to both s and r′, we have that (t′)2 does not cancel when the

fraction is reduced to lowest terms. That completes the proof of (1).
For the proof of (2), calculate ρb(

s
t
) as

u

v
= ρb

(s

t

)

=
∑

m≥0

r
∑

i=1

(mr + i)di

bmr+i
=

r
∑

i=1

∑

m≥0

(mr + i)di

bmr+i

=
1

(br − 1)2

r
∑

i=1

dib
r−i(r − i + bri).

Note that b is a factor of each term in the sum, including the term when i = r. Since b
is relatively prime to br − 1, it follows that b divides u.

Corollary 6. There are rationals in the range [0, b
b−1

) of ρb that are not images of any
rationals in its domain.
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Example 7. For b 6= 3, the rational 1
3

cannot be the image of a rational under ρb.

The conditions given in Theorem 5 apparently do not completely characterize the ra-
tionals that are images of rationals. In particular, for b = 2 we suspect that among
2k
9
, k = 1, 2, 4, 5, 7, 8, only 8

9
= ρ2(

1
3
) and 10

9
= ρ2(

2
3
) have rational inverse images.

In Theorem 8 we derive an expression for ρb(
a
br ) analogous to one for the Takagi function

given by Maddock [2]. If the base-b expansion of the positive integer a is given by a =
∑m−1

i=0 eib
i, define σb(a) by

σb(a) =
m−1
∑

i=0

ieib
i.

It is easy to check that σb(a) can be written in a way that does not specifically involve
the base-b expansion:

σb(a) =
∑

j≥1

bj
⌊ a

bj

⌋

=
∑

1≤bj≤a

(a − (a mod bj)).

The σb functions are related to several sequences in Sloane’s OEIS database. Specifically,
sequence A080277 is a + σ2(a) =

∑

j≥0 2j⌊ a
2j ⌋, while A080333 is a + σ3(a) =

∑

j≥0 3j⌊ a
3j ⌋.

Also, the sums sa =
∑

1≤bj≤a(a mod bj) appear in OEIS for b = 2 and b = 3 as A049802 and
A049803 respectively.

Theorem 8. For the b-adic rational a
br , where 0 ≤ a < br, we have

ρb

( a

br

)

=
ra − σb(a)

br
.

Proof. Let the base-b expansion of a be a =
∑r−1

i=0 eib
i. We then have

ρb

( a

br

)

= ρb

(

r−1
∑

i=0

ei

br−i

)

=
r−1
∑

i=0

(r − i)ei

br−i
,

=
1

br

[

r−1
∑

i=0

reib
i −

r−1
∑

i=0

ieib
i

]

,

=
1

br
[ra − σb(a)] .

Theorem 9. Consider the rational number s/t in reduced form with t relatively prime to b.
Let r = ordt(b), ct = br − 1, and a = cs. Then,

ρb

(s

t

)

= ρb

(

a

br − 1

)

=
rbra

(br − 1)2
−

σb(a)

br − 1
.
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Proof. Given the base-b expansion a =
∑r−1

i=0 eib
i, we have

a

br − 1
=
∑

k≥1

r−1
∑

i=0

ei

brk−i
.

Hence, we calculate

ρb

(s

t

)

= ρb

(

a

br − 1

)

=
∑

k≥1

r−1
∑

i=0

(rk − i)
ei

brk−i
,

=
∑

k≥1

1

brk

[

r−1
∑

i=0

rkeib
i −

r−1
∑

i=0

ieib
i

]

,

=
∑

k≥1

1

brk
[kra − σb(a)] ,

=
rbra

(br − 1)2
−

σb(a)

br − 1
.

Theorem 9 leads to a relation between two values of ρb. With s, t, r, a as in the proof of
that theorem, we see

ρb

(s

t

)

= ρb

(

a

br − 1

)

=
rbra

(br − 1)2
−

σb(a)

br − 1

=
rbra − (br − 1)σb (a)

(br − 1)2

=
ra + (br − 1) (ra − σb(a))

(br − 1)2

=
ra

(br − 1)2
+

br

br − 1
ρb

( a

br

)

.

3 The Connection Between ρb and Rumor Sequences

In Dearden and Metzger [1], rumor sequences (running modulus recursive sequences) were
introduced as follows:

Let b ≥ 2 and k ≥ 1 be integers. To construct an (integer) rumor sequence select an
integer z0, and for n ≥ 1 let zn = bzn−1 mod (n + k), where the right side is the least non-
negative residue of bzn−1 modulo n+ k. The rumor sequence conjecture asserts that all such
integer rumor sequences are eventually 0. Since the conjecture concerns only the eventual
behavior of such sequences and since 0 ≤ z1 < k + 1, nothing is lost by restricting z0 to the
interval [0, k).

To establish a connection between the rumor sequence conjecture and the ρb function, it
is convenient to generalize the notion of integer rumor sequences to real rumor sequences.
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Let b ≥ 2 and k ≥ 1 be integers. To construct a (real) rumor sequence, select any real
number x0 and for n ≥ 1 let xn = bxn−1 mod (n + k) where the right hand side is taken to
be

bxn−1 − (n + k)

⌊

bxn−1

n + k

⌋

. (4)

As with integer rumors, there is no loss if x0 is restricted to the interval [0, k). The real and
integer rumors are identical when x0 = z0 is an integer.

It will be shown that the rumor conjecture for integer rumor sequences is true if and only
if the greedy inverse image under ρb of every b-adic rational is a b-adic rational. It is worth
noting that, in general, not all inverse images of a b-adic under ρb need be b-adic.

Example 10. Consider the 3-adic rational y = 2
3

in the range of ρ3. With b = 3, let the
greedy ρ3 inverse image of 5

6
be x. Since 6 is not divisible by a square greater than 1, x must

be irrational. It follows that 1 − x is irrational and, by Theorem 4(b), we see

ρ3(1 − x) =
3

2
−

5

6
=

2

3
.

Theorem 11. For b ≥ 2, all integer rumor sequences are eventually 0 if and only if the
greedy inverse image under ρb of every b-adic is b-adic.

Proof. Suppose that all integer rumor sequences are eventually zero, and let y = a/bm be a
b-adic rational in [0, b/(b − 1)). By Corollary 3, there is an integer n so that for k ≥ n we
have

dk =









bk
(

y −
∑k−1

j=1 jdj/b
j
)

k







 and 0 ≤ y −
k
∑

j=1

jdj

bj
<

k

bk
.

Now, consider the real rumor sequence with initial value x0 ∈ [0, n) given by

x0 = bn

(

y −

n
∑

j=1

jdj

bj

)

.

Applying the rumor recursion (4), we have

x1 = bx0 − (n + 1)

⌊

bx0

n + 1

⌋

= bn+1

(

y −

n
∑

j=1

jdj

bj

)

− (n + 1)









bn+1
(

y −
∑n

j=1 jdj/b
j
)

n + 1









= bn+1

(

y −
n
∑

j=1

jdj

bj

)

− (n + 1)dn+1, by Corollary 3

= bn+1

(

y −
n+1
∑

j=1

jdj

bj

)

.
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More generally, induction shows that, for all i ≥ 0, we have

xi = bn+i

(

y −

n+i
∑

j=1

jdj

bj

)

= bn+i

(

a

bm
−

n+i
∑

j=1

jdj

bj

)

.

Now, for i ≥ m − n, the sequence xi is obtained from an integer rumor recursion, and by
our assumption that integer rumor sequence is eventually zero, say from term i0 on. That
means the greedy inverse image under ρb of the b-adic rational a/bm =

∑n+i0
j=1 jdj/b

j is the
b-adic rational

υ =

n+i0
∑

j=1

dj

bj
=

∑n+i0
j=1 djb

n+i0−j

bn+i0
.

Conversely, suppose that the greedy inverse image of b-adic rationals in [0, b/(b − 1)) are
b-adic rationals. Consider an integer rumor recursion with initial value z0 in [0, k). By our
assumption the greedy inverse of the b-adic rational y = z0/b

k is a b-adic rational
∑n

j=1 j/bj,
where

y =
n
∑

j=1

jdj

bj
, with dj ∈ {0, 1, . . . , b − 1}.

Since f(x) = x/bx is a nondecreasing function on positive integers for all integers b ≥ 2, we
have z0/b

k < k/bk ≤ m/bm for all m = 1, 2, 3, . . . , k. Therefore, it follows that

0 ≤
z0

bk
−

m−1
∑

j=1

jdj

bj
<

m

bm
, for m = 1, 2, . . . , k .

Hence,
dj = 0 for j = 1, 2, . . . , k.

It follows that
z0

bk
= y =

n−k
∑

j=k+1

(k + i)dk+i

bk+i
. (5)

Moreover, for all m = 1, 2, . . . , n − k, we have

(k + m)dk+m

bk+m
≤

z0

bk
−

m−1
∑

i=1

(k + i)dk+i

bk+i
<

(k + m)(dk+m + 1)

bk+m
.

Multiplying through by bk gives

(k + m)dk+m

bm
≤ z0 −

m−1
∑

i=1

(k + i)dk+i

bi
<

(k + m)(dk+m + 1)

bm
.

In particular, for m = 1 we have

(k + 1)dk+1

b
≤ z0 <

(k + 1)dk+1

b

11



or

dk+1 ≤

⌊

bz0

k + 1

⌋

< dk+1 + 1.

It follows that

z1 = bz0 − (k + 1)

⌊

bz0

k + 1

⌋

= bz0 − (k + 1)dk+1.

Hence,
z1

b
= z0 −

(k + 1)dk+1

b
.

In general, induction shows that, for all m ≥ 1,

zm

bm
= z0 −

m
∑

i=1

(k + i)dk+i

bi
.

Therefore, by equation (5), we have

zn−k

bn−k
= z0 −

n−k
∑

i=1

(k + i)dk+i

bi
= 0.

Thus, any integer rumor sequence is eventually zero.

The following corollary follows immediately from the proof of Theorem 11.

Corollary 12. Let b ≥ 2 be an integer. The integer rumor sequence with initial term z0,
where 0 ≤ z0 < k, is eventually 0 if and only if the greedy inverse image of z0

bk under ρb is
b-adic.

Conjecture 13. The greedy inverse image of every b-adic under ρb is b-adic.
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