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Abstract

A concept of “guessability” is defined for sets of sequences of naturals. Eventually,

these sets are thoroughly characterized. To do this, a nonstandard logic is developed,

a logic containing symbols for the ellipsis as well as for functions without fixed arity.

1 Motivation

Suppose Alice and Bob are playing a game. Alice is reading a fixed sequence, one entry at
a time. Bob is trying to guess whether 0 is in the sequence. He can revise his guess with
each new revealed entry, and he wins if his guesses converge to the correct answer. He has
an obvious strategy: always guess no, until 0 appears (if ever), then guess yes forever. The
set of sequences containing 0 is guessable.

Suppose, instead, Bob is trying to guess whether Alice’s sequence contains infinitely many
zeroes. We will see there is no strategy, not even if Bob has unlimited computation power.
The set of sequences with infinitely many zeroes is unguessable.

A sequence f : N → N is onto if ∀m ∃n f(n) = m. This definition uses nested quanti-
fiers: quantifiers appear in the scope of other quantifiers. Is it possible to give an alternate
definition without nested quantifiers? The answer is “no”, but how to prove it? We will give
a proof of a very strong negative answer, strong in the sense that nested quantifiers cannot
be eliminated even in an extremely powerful language. Of course, the technique generalizes
to a wide class of sets of sequences, not just the onto sequences.
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2 Basics

Let N
N be the set of sequences f : N → N, and let N

<N be the set of finite sequences.

Definition 1. A function G : N
<N → {0, 1} guesses (and is a guesser for) a set S ⊆ N

N if
for every f : N → N, there exists some m > 0 such that for all n > m,

G(f(0), . . . , f(n)) =

{

1, if f ∈ S;

0, if f 6∈ S.

A set S ⊆ N
N is guessable if it has a guesser.

The next test is very useful for showing nonguessability, though its converse is not true.

Theorem 2. Let S ⊆ N
N. Suppose that, for every finite sequence g ∈ N

<N, there are
sequences g1, g2 ∈ N

N extending g with g1 ∈ S and g2 6∈ S. Then S is nonguessable.

Proof. Suppose S has a guesserG. I will define a sequence f : N → N such thatG(f(0), . . . , f(n))
fails to converge, which violates the definition of guesser.

Clearly S 6= ∅, so let s1 : N → N be some sequence in S. By definition of guesser, we can
find some x1 such that G(s1(0), . . . , s1(x1)) = 1. Let f(0) = s1(0), . . . , f(x1) = s1(x1).

Inductively, suppose x1 < · · · < xk and f(0), . . . , f(xk) are defined such that

G(f(0), . . . , f(xi)) ≡ i (mod 2)

for i = 1, . . . , k. By the theorem’s hypothesis, we can find some sk+1 : N → N, extending
the finite sequence (f(0), . . . , f(xk)), such that sk+1 is in S iff k + 1 ≡ 1 (mod 2). By
definition of guesser, find xk+1 > xk such that G(sk+1(0), . . . , sk+1(xk+1)) ≡ k + 1 (mod 2).
Let f(xk + 1) = sk+1(xk + 1), . . . , f(xk+1) = sk+1(xk+1).

This defines sequences f : N → N and x1 < x2 < · · · with the property that

G(f(0), . . . , f(xi)) ≡ i (mod 2)

for every i > 0. This contradicts that G(f(0), . . . , f(n)) is supposed to converge.

Using the above test, we can immediately confirm, for example, the set of sequences
containing infinitely many zeroes is nonguessable, as is the set of onto sequences.

Remark 3. Theorem 2 is constructive up to certain choices. Starting with a set S satisfying
the hypotheses of Theorem 2 and naively trying to guess it, and being systematic in the
choices from the proof, can lead to the creation of a concrete sequence which thwarts the
naive guessing attempt. In an informal sense, it should be especially difficult for someone not
in the know to guess whether the resulting sequence lies in S. And the more sophisticated
the futile guessing attempt, the more difficult the resulting sequence becomes. For some
explicit examples, see sequences A082691, A182659, and A182660 in Sloane’s OEIS [5].

Tsaban and Zdomskyy also briefly mention a somewhat similar notion of guessable sets
in their paper [6].
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3 A Logic for Ellipses

Because guessers are functions which do not have “arity” in the usual sense, instead be-
ing defined on the whole space N

<N of finite sequences, and since we care so much about
expressions like G(f(0), . . . , f(n)), we will extend logic to mesh better with these sorts of
expressions. I assume familiarity with basic first-order logic, which Enderton [2] has written
about extensively, as has Bilaniuk [1].

Definition 4. A language with ellipses is a standard language of first-order logic, with a
constant symbol 0, together with a set of function symbols of arity N

<N and a special logical
symbol · · ·x for every variable x.

To avoid confusion, we will use · · ·x for the syntactical symbol and . . . for meta-ellipses.
For example, G(s(0), . . . , s(2)) is a meta-abbreviation for

G(s(0), s(1), s(2)),

different than G(s(0), · · ·x , s(2)) which has no counterpart in classical logic.

Definition 5. If L is a language with ellipses, then the terms of L (and their free variables)
are defined inductively:

1. For any variable x, x is a term and FV (x) = {x}.

2. For any constant symbol c, c is a term and FV (c) = ∅.

3. If f is a function symbol of arity n or arity N
<N, and t1, . . . , tn are terms, then

f(t1, . . . , tn) is a term with free vars FV (t1) ∪ · · · ∪ FV (tn).

4. If G is an N
<N-ary function symbol, and u, v are terms, and x is a variable, then

G(u(0), · · ·x , u(v)) is a term with free variables

(FV (u)\{x}) ∪ FV (v).

The well-formed formulas of L are defined as usual from these terms. Term substitution is
defined by the usual induction with two new cases:

• If y 6= x then

G(u(0), · · ·x , u(v))(y|t) = G(u(y|t)(0), · · ·x , u(y|t)(v(y|t))).

• G(u(0), · · ·x , u(v))(x|t) = G(u(0), · · ·x , u(v(x|t))).

A model for a language with ellipses L is a model M for the classical part of L , together
with a function GM : M <N → M for each N

<N-ary function symbol G in L . However,
defining how an arbitrary model evaluates terms is difficult. We will only be interested in
one very specific family of models, where there is no trouble evaluating terms.

Definition 6. The following models lie at the heart of all later results.
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• Lmax is the language with ellipses which contains a constant symbol n for every n ∈ N,
an n-ary function symbol w̃ for every function w : N

n → N (n > 0), an n-ary predicate
symbol p̃ for every subset p ⊆ N

n (n > 0), an N
<N-ary function symbol G̃ for every

function G : N
<N → N, and one additional unary function symbol f .

• For every function f : N → N, Mf is the model for the language Lmax with universe
N, which interprets n as n for every n, w̃ as w for every w : N

n → N, p̃ as p for every
p ⊆ N

n, and G̃ as G for every G : N
<N → N, and which interprets f as f .

If n ∈ N then n̄ denotes the numeral n of n.

Definition 7. Let f : N → N. The semantics of Mf are defined as follows. Let s be any
assignment from the variables to N.

• (Mf , s) interprets terms t into naturals tMf ,s, or ts if there is no ambiguity, according
to the usual inductive definition, with one new case:

– If u, v are terms and x is a variable and G is an N
<N-ary function symbol, then

G(u(0), · · ·x , u(v))
s = GMf (u(x|0)s, . . . , u (x |vs )

s
) .

• For example, the interpretation of G̃(f(x)(0), · · ·x , f(x)(99)) is

G(f(0), . . . , f(99)),

while the interpretation of G̃(f(x)(0), · · ·x , f(x)(f(y))) is

G(f(0), . . . , f(f(ys))).

• From here, the remaining semantics of Mf are defined as usual.

In classical logic, every term with no free variables has the property that its interpretation
in any model depends only on finitely many values of the interpretations of the function
symbols in that model. For example, the interpretation of 5 + (2 · 3) depends only on one
value of · and one value of +. Similar properties are true of our Mf models.

Lemma 8. Suppose u is a term with no free variables, and c is a constant symbol. For
any f : N → N, Mf |= u = c iff there is some k such that whenever g : N → N extends
(f(0), . . . , f(k)), Mg |= u = c and to check whether Mg |= u = c using the inductive
definition of semantics for Mg, it is not necessary to query g(i) for any i > k.

Proof. (⇒) Induction on complexity of u.

• Since u has no free variables, u cannot be a variable. If u is a constant symbol, the
lemma is trivial.
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• Suppose that u is h(u1, . . . , un) for some n-ary (or N
<N-ary) function symbol h other

than f , and some terms u1, . . . , un with no free variables. If Mf |= h(u1, . . . , un) = c,
then there are a1, . . . , an ∈ N such that hMf (a1, . . . , an) = cMf and Mf |= ui = āi

for i = 1, . . . , n. Since āi is a constant symbol, by induction find k1, . . . , kn such
that for any i = 1, . . . , n and any g : N → N with g(0) = f(0), . . . , g(ki) = f(ki),
Mg |= ui = āi, and checking this by definition of semantics does not require querying
g(j) for any j > ai. Then k = max{k1, . . . , kn} works (using the fact hMg does not
depend on g since h is not f).

• Next, suppose u is f(v) where v is a term with no free variables. If Mf |= f(v) = c

then there iss a ∈ N such that f(a) = cMf and Mf |= v = ā. Since ā is a constant
symbol, by induction find k0 such that whenever g(0) = f(0), . . . , g(k0) = f(k0),
then Mg |= v = ā, and checking Mg |= v = ā does not require querying g(i) for
any i > k0. Let k = max{k0, a}. Suppose g(0) = f(0), . . . , g(k) = f(k). Then
f(v)Mg = fMg(vMg) = g(a) = f(a) = cMf . So Mg |= f(v) = c, and to check so, we only
had to query g(a) in addition to any queries we had to make to check Mg |= v = ā, so
we did not have to query g(i) for any i > k.

• Finally, suppose u is G(v(0), · · ·x , v(w)) where v, w are terms, x is a variable, FV (w) =
∅, FV (v) ⊆ {x}, and G is an N

<N-ary function symbol. If Mf |= G(v(0), · · ·x , v(w)) =
c then

GMf

(

v(x|0)Mf , . . . , v
(

x
∣

∣

∣
wMf

)Mf

)

= cMf .

Since Mf |= w = wMf , find some number k−1 such that whenever g extends (f(0), ..., f(k−1)),

Mg |= w = wMf and checking so does not require queries beyond g(k−1). Since

Mf |= v(x|i) = v(x|i) for i = 0, . . . , wMf , find k0, . . . , kw
Mf such that for each

i = 0, . . . , wMf , if g(0) = f(0), . . . , g(ki) = f(ki) then Mg |= v(x|i) = v(x|i) can
be confirmed without querying g beyond g(ki).

Let k = max{k−1, k0, . . . , kw
Mf }. Suppose g(0) = f(0), . . . , g(k) = f(k). Then Mg |=

w = wMf , so wMg = wMf . Similarly v(x|i)Mg = v(x|i)Mf for i = 0, . . . , wMf . And
GMg = GMf . It follows that

Mg |= G(v(0), · · ·x , v(w)) = c,

and checking so does not require any queries to g(j) for any j > k.

(⇐) Suppose there is some k so that whenever g extends (f(0), . . . , f(k)) then Mg |=
u = c. In particular, f itself extends (f(0), . . . , f(k)), so Mf |= u = c.

Corollary 9. Let φ be a quantifier-free sentence. For any f : N → N, Mf |= φ iff there is
some k such that for every g : N → N extending (f(0), . . . , f(k)), Mg |= φ, and in checking
Mg |= φ by the inductive definition of semantics, we never need to query g(i) for any i > k.

Proof. By induction on the complexity of φ.
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• Suppose φ is u = v for terms u, v with no free variables. Assume Mf |= u = v. Then

Mf |= u = uMf and Mf |= v = uMf . By Lemma 8, find k big enough that whenever

g(0) = f(0), . . . , g(k) = f(k), then Mg |= u = uMf and Mg |= v = uMf and both
facts can be confirmed without querying g beyond g(k). For any such g, Mg |= u = v,
verifiable with no additional g-queries. The converse is trivial.

• Next, suppose φ is p̃(u1, . . . , un) for an n-ary predicate symbol p̃ and terms u1, . . . , un

with no free variables. Then φ is equivalent (in every M·) to g̃(u1, . . . , un) = 1 where
g is the characteristic function of p, so we are done by the previous case.

• Suppose φ is φ1∧φ2. Assume Mf |= φ. Inductively, find k1 and k2 such that if g extends
(f(0), . . . , f(ki)) then Mg |= φi is verifiable with no g-queries beyond g(ki). Then any g
extending (f(0), . . . , f(max{k1, k2})) has Mg |= φ, verifiable without querying beyond
g(max{k1, k2}). The converse is trivial.

• The cases of other propositional connectives are similar.

If s is an assignment from the variables of a language onto the universe of the language,
and if x is a variable, and n is a number, then s(x|n) denotes the assignment which is
identical to s except that it maps x to n. Similarly if a model is understood by context and
c is a constant symbol then s(x|c) denotes the assignment identical to s except that it maps
x to the interpretation of c in the model.

Lemma 10. (The Weak Substitution Lemma) For a formula φ, an assignment s, and a
constant symbol c, and for any f : N → N, Mf |= φ[s(x|cs)] iff Mf |= φ(x|c)[s].

Proof. By the inductive argument used to prove the full Substitution Lemma in classical
logic, most of which we omit. But there are tricky new cases for our new terms.

Claim: For any terms u, v, constant symbol c, variables x 6= y, and assignment s,

G(u(0), · · ·x , u(v))(y|c)
s = G(u(0), · · ·x , u(v))

s(y|c).

The details are (using the induction hypothesis repeatedly) as follows:

G(u(0), · · ·x , u(v))(y|c)
s = G (u(y|c)(0), · · ·x , u(y|c)(v(y|c)))

s

= GMf

(

u(y|c)(x|0)s, . . . , u(y|c)
(

x
∣

∣

∣
v(y|c)s

)s)

= GMf

(

u(x|0)s(y|c), . . . , u
(

x
∣

∣

∣
vs(y|c)

)s(y|c)
)

= G(u(0), · · ·x , u(v))
s(y|c).

Claim: For any terms u, v, constant symbol c, and variable x and assignment s,

G(u(0), · · ·x , u(v))(x|c)
s = G(u(0), · · ·x , u(v))

s(x|c).
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Using the induction hypothesis repeatedly:

G(u(0), · · ·x , u(v))(x|c)
s = G(u(0), · · ·x , u(v(x|c)))

s

= GMf

(

u(x|0)s, . . . , u
(

x
∣

∣

∣
v(x|c)s

)s)

= GMf

(

u(x|0)s, . . . , u
(

x
∣

∣

∣
vs(x|c)

)s)

= GMf

(

u(x|0)s(x|c), . . . , u
(

x
∣

∣

∣
vs(x|c)

)s(x|c)
)

= G(u(0), · · ·x , u(v))
s(x|c).

The next to last equation is justified because the terms whose “exponents” are changed do
not depend on x.

A full Substitution Lemma is also true, but it requires a nonclassical definition of substi-
tutable, which would take us too far afield.

4 Guessability and Quantifiers

Definition 11. Let S ⊆ N
N be a set of sequences. Let φ be a sentence in Lmax. We say

that φ defines S if, for every f : N → N, Mf |= φ iff f ∈ S.

Theorem 12. A set S ⊆ N
N is guessable if and only if it is defined by some sentence ∀x∃y φ

and also by some sentence ∃x∀y ψ, where φ and ψ are quantifier-free.

We divide the proof of the theorem above into a sequence of lemmata.

Lemma 13. Suppose S ⊆ N
N is guessable. Then S is defined by some sentence ∃x∀y φ and

also by some sentence ∀x∃y ψ, where φ and ψ are quantifier-free.

Proof. Let G be a guesser for S. For any f : N → N, f ∈ S if and only if G(f(0), . . . , f(n)) =
1 for all n sufficiently large. Therefore S is defined by

∃x∀y ((y > x) → G̃(f(z)(0), · · ·z , f(z)(y)) = 1),

where “y > x” is shorthand for >̃(y, x). Similarly, S is also defined by

∀x∃y ((y > x) ∧ G̃(f(z)(0), · · ·z , f(z)(y)) = 1).

We will prove the converse of Lemma 13 shortly. To that end, a piece of technical
machinery is needed.

Definition 14. A set S ⊆ N
N is overguessable if there is a function µ : N

<N → N ∪ {∞}
such that:

1. For every f ∈ S, µ(f(0), . . . , f(n)) is eventually bounded by a finite number.
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2. For every f 6∈ S, µ(f(0), . . . , f(n)) → ∞ as n→ ∞.

Lemma 15. Suppose S ⊆ N
N is defined by the sentence ∃x∀y φ where φ is quantifier-free.

Then S is overguessable.

Proof. Given a tuple (n0, . . . , nk), define µ(n0, . . . , nk) as follows. Let h : N → N be defined
by h(i) = ni if i ≤ k, h(i) = 0 otherwise. Given a pair (a, b) ∈ N

2, consider the sentence
φ(x, y|ā, b̄). Attempt to check whether Mh |= φ(x, y|ā, b̄), using the inductive definition of
the semantics of Mh. If, in so doing, you must query h(i) for some i > k, say that the attempt
failed. Otherwise, say the attempt succeeded. If the attempt failed, or if Mh |= φ(x, y|ā, b̄),
then say that (a, b) is nice.

Call a number a very nice if (a, b) is nice for every b. If there is any very nice number,
then let µ(n0, . . . , nk) be the smallest very nice number. Otherwise let µ(n0, . . . , nk) = ∞.

I claim the above µ witnesses that S is overguessable.
First, suppose f ∈ S. Since S is defined by ∃x∀y φ, Mf |= ∃x∀y φ. By the Weak

Substitution Lemma, for some a, Mf |= φ(x, y|ā, b̄) for every b. When we attempt to check
whether Mh |= φ(x, y|ā, b̄) in the definition of µ(f(0), . . . , f(k)), if the attempt succeeds,
then Mh |= φ(x, y|ā, b̄) because Mf |= φ(x, y|ā, b̄) and we never had to look at the part of h
which disagrees with f . So (a, b) is nice for every b, so a is very nice, so µ(f(0), . . . , f(k)) is
bounded by a.

Next, suppose f 6∈ S. Let a ∈ N, I claim µ(f(0), ..., f(n)) 6= a for all n sufficiently
large. Since f 6∈ S, Mf 6|= ∃x∀y φ. By the Weak Substitution Lemma, there is some b
such that Mf 6|= φ(x, y|ā, b̄). Since φ is quantifier-free, we invoke Corollary 9 on ¬φ(x, y|ā, b̄)
and find k such that Mg 6|= φ(x, y|ā, b̄) whenever g extends (f(0), . . . , f(k)), and, to check
whether Mg |= φ(x, y|ā, b̄), we do not need to query g(i) for i > k. Then, in the definition
of µ(f(0), . . . , f(k)), for pair (a, b), the attempt succeeds and Mh 6|= φ(x, y|ā, b̄), so (a, b) is
not nice, so a is not very nice, so µ(f(0), . . . , f(k)) 6= a, in fact, µ(f(0), . . . , f(j)) 6= a for all
j ≥ k. By arbitrariness of a, µ(f(0), ..., f(n)) → ∞.

Lemma 16. Suppose a set S ⊆ N
N is defined by some sentence ∀x∃y φ and also by some

sentence ∃x∀y ψ, where φ and ψ are quantifier-free. Then S is guessable.

Proof. By Lemma 15, find µ : N
<N → N∪{∞} which overguesses S. And since Sc is defined

by ∃x∀y ¬φ, use Lemma 15 again to find ν : N
<N → N ∪ {∞} which overguesses Sc.

Define G : N
<N → {0, 1} by saying G(n0, . . . , nk) = 1 if µ(n0, . . . , nk) ≤ ν(n0, . . . , nk) and

0 otherwise. If f ∈ S then µ(f(0), . . . , f(k)) is eventually bounded by a finite number and
ν(f(0), . . . , f(k)) → ∞, so G(f(0), . . . , f(k)) converges to 1. The other case is similar.

Combining Lemmata 13 and 16 proves Theorem 12.

Proposition 17. If S ⊂ N
N is overguessable, then it is defined by some sentence ∃x∀yφ

with φ quantifier-free.

Proof. Suppose S is overguessed by µ : N
<N → N ∪ {∞}. Define µ′ : N

N → N by saying
µ′(n) = µ(n) + 1 if µ(n) 6= ∞, µ′(n) = 0 if µ(n) = ∞. If f : N → N, then f ∈ S if and only
if the sequence µ(f(0), . . . , f(n)) is eventually bounded by some finite number. This is true
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if and only if µ′(f(0), . . . , f(n)) is eventually bounded by some finite number and eventually
nonzero. This latter equivalence can be expressed by

∃m1 ∃m2 ∀m3 ((m3 > m2) → (0 < µ′(f(0), . . . , f(m3)) < m1)).

Let d : N → N
2 be any onto map from N to N

2. Write d(n) = (d1(n), d2(n)), thus defining
two functions d1, d2 : N → N. Then the above formula is equivalent to

∃m ∀m3 ((m3 > d2(m)) → (0 < µ′(f(0), . . . , f(m3)) < d1(m))).

This can be formalized in Lmax, providing a sentence ∃x∀y φ which defines S, with φ

quantifier-free.

Example 18. Every countable subset of N
N is overguessable.

Proof. Let S ⊆ N
N be countable. Define g : N

2 → N by saying g(m,n) = hm(n) where hm is
the mth element of S. Then S is defined by

∃x∀y g̃(x, y) = f(y).

By Lemma 15, S is overguessable.

Remark 19. Guessable and overguessable sets of sequences are analogous to computable and
computably enumerable sets of naturals, respectively. One shows that ∆1 sets (in a much
weaker logical setting than Lmax) of naturals are computable by showing that they and
their complements are c.e. by using the characterization of c.e. sets as sets which are Σ1-
definable (in the weaker setting). By comparison, I have shown that ∆2 sets of sequences
(in a very strong logical setting) are guessable by showing that they and their complements
are overguessable by using the characterization of overguessable sets as Σ2-definable (in the
stronger setting). These analogous phenomena in computability theory have been written
about by Rogers [3], Enderton [2], Bilaniuk [1], and many other authors.

We will elaborate more on Remark 19 in Section 5.

Lemma 20. Suppose S ⊆ N
N is definable by a sentence ∀x∃y φ where φ is quantifier-free.

If S is countable then S is guessable.

Proof. Suppose S is countable. In the proof of Example 18, we showed S is definable by a
sentence ∃x∀y ψ where ψ is quantifier-free. By Theorem 12, S is guessable.

Example 21. There are uncountably many permutations of N.

Proof. A function f : N → N is a permutation iff

∀m1 ∀m2 ∃n ((f(m1) = f(m2) → m1 = m2) ∧ f(n) = m2).

By appropriately coding 〈m1,m2〉, the set S of permutations is defined by a sentence ∀x∃y φ
where φ is quantifier-free.

Permutations are not guessable. If G were a permutation-guesser, it would diverge on
the following sequence. Let f(0) = 0, f(1) = 1, and so on until G(f(0), . . . , f(k1)) = 1 (this
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must happen since G would converge to 1 if we kept going forever). Then skip a number,
f(k1 + 1) = k1 + 2, f(k1 + 2) = k1 + 3, and keep going until G(f(0), . . . , f(k2)) = 0. Then
fill in the gap, f(k2 + 1) = k1 + 1, and resume where we left off, f(k2 + 2) = k2 + 2, and so
on until G(f(0), . . . , f(k3)) = 1. This process shows permutations are unguessable.

By Lemma 20, S is uncountable.

Example 22. (Cantor) There are uncountably many real numbers.

Proof. Consider the set A of numbers in the interval (0, 1) which have infinitely many 5s in
their decimal expansions. There is an obvious bijection between A and the set S of sequences
f : N → {0, 9} such that f(n) = 5 infinitely often. This set S is defined by

∀x∃y ((y > x) ∧ f(y) = 5 ∧ f(x) ≥ 0 ∧ f(x) ≤ 9).

By Lemma 20, if S is countable then it is guessable. But it is not: if G were a guesser for
S, then we could define a sequence on whose initial segments G does not converge. Namely,
let f(0) = . . . = f(xk) = 0 where xk is big enough that G(f(0), ..., f(xk)) = 0, and then let
f(xk + 1) = · · · = f(xk+1) = 5, where xk+1 > xk is big enough that G(f(0), ..., f(xk+1)) = 1.
And so on, alternating, forever. This shows S is not guessable, so S is not countable, so A
is uncountable, so R is uncountable.

Lemma 23. If S ⊆ N
N is definable by a sentence φ without nested quantifiers (that is, no

quantifier appearing in the scope of another), then S is guessable.

Proof. If so, then φ is a propositional combination of quantifier-free sentences and sentences
of the form ∀xφ0 and ∃xφ1 where φ0, φ1 are quantifier-free. The sets defined by these
component sentences are guessable by Theorem 12. Clearly guessable sets are closed under
union, intersection, and complement, so S itself is guessable.

Example 24. The definition of onto functions cannot be simplified to get rid of nested
quantifiers, not even with the full power of Lmax.

Proof. By Lemma 23 and the fact the set of onto functions is not guessable, see Theorem 2.

5 Descriptive Set Theory

In this section we will elaborate further on Remark 19. In descriptive set theory, N
N is

endowed with the topology whose basic open sets are those sets of the form

{f ∈ N
N : f extends f0}

where f0 ∈ N
<N. Since N

<N is countable, N
N is second countable in the sense of basic

topology. A set is called Gδ if it is a countable intersection of open sets, and Fσ if it is a
countable union of closed sets. A set is ∆0

2 if it is both Gδ and Fσ (equivalently, if it and its
complement are both Gδ). This ∆0

2 is one of the levels of the Borel hierarchy which many
authors, including Moschovakis [4], have written about.
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Theorem 25. Let S ⊆ N
N. Then S is guessable if and only if S is ∆0

2.

Proof. (⇒) Suppose S is guessable. By Lemma 13, S is defined by a sentence ∀x∃y φ where
φ is quantifier-free. For every i, j ∈ N, let Si ⊆ N

N be the set defined by ∃y φ(x|i) and let
Tij ⊆ N

N be the set defined by φ(x, y|i, j). It follows from Corollary 9 that each Tij is open.
Each Si = ∪jTij, so each Si is open. Since S = ∩iSi, S is Gδ. Since Sc is also guessable,
identical reasoning shows Sc is Gδ, so S is ∆0

2.
(⇐) Suppose S is ∆0

2. Write S = ∩i∈NSi where each Si is open. By second countability,
write Si = ∪j∈NTij where each Tij is basic open. By the nature of basic open sets of
N

N, there are T 0
ij ∈ N

<N such that each Tij is exactly the set of infinite extensions of T 0
ij.

Let τ : N
<N → N be defined by saying τ(i, j, x0, . . . , xk) = 1 if (x0, . . . , xk) = T 0

ij, τ is 0
everywhere else. Define ℓ : N

2 → N by letting ℓ(i, j) be the length of T 0
ij. Then for any

f : N → N, f extends T 0
ij if and only if τ(i, j, f(0), . . . , f(ℓ(i, j))) = 1. Thus, f ∈ S if and

only if
∀i∃j τ(i, j, f(0), . . . , f(ℓ(i, j))) = 1.

This can be formalized in Lmax. By dual reasoning applied to Sc, S can also be defined by
some ∃i∀j φ where φ is quantifier-free. By Theorem 12, S is guessable.

6 Addendum – January 20 2012

In January 2012, we learned that the notion of guessability was introduced some time ago
in the Ph. D. dissertation of William W. Wadge (1983, Reducibility and Determinateness
on the Baire Space, UC Berkeley, pp. 141–145). Instead of considering guesser functions,
Wadge considered guesser sets, calling a subset S ⊆ N

N guessable if there are disjoint sets
U,W ⊆ N

<N such that for every sequence f , f ∈ S iff f |k ∈ U for all but finitely many
k, and f 6∈ S iff f |k ∈ W for all but finitely many k. This is clearly equivalent to our
definition. Wadge gave a game-theoretical proof that guessability is equivalent to being ∆0

2

(our Theorem 25) and then used this fact to show a special case, for ∆0
2 sets, of what is now

known as Wadge’s lemma, an important result about Wadge degrees studied by descriptive
set theorists.
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