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Abstract

The present paper studies the diophantine equation GnHn + c = x2n and related

questions, where the integer binary recurrence sequences {G}, {H} and {x} satisfy the

same recurrence relation, and c is a given integer. We prove necessary and sufficient

conditions for the solubility of GnHn + c = x2n. Finally, a few relevant examples are

provided.
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1 Introduction

Let the binary recurrences {a}∞n=0, {b}∞n=0, {c}∞n=0 and {d}∞n=0 satisfy the recurrence relation

Xn+2 = 6Xn+1 − Xn, n ∈ N, (1)

with the initial values

a0 = −1, a1 = 1; b0 = 1, b1 = 5; c0 = 0, c1 = 2; d0 = 3, d1 = 17;

respectively (Sloane: {c} is A001542, {d} is A001541). Here, and in the sequel, N denotes
the set of non-negative integers. By the recurrences above, we can define a fifth sequence
{x}∞n=0 via

x2n = anbn + 1 , x2n+1 = cndn + 1, n ∈ N. (2)

The sequence {x} (the first few terms are: 0, 1, 6, 35, 204, 1189, . . . , Sloane: A001109)
also satisfies (1), in spite of the unusual method of its composition, which we discovered
while studying the terms of {x}, called balancing numbers. A positive integer x ≥ 2 is called
a balancing number for the integer y if

1 + · · · + (x − 1) = (x + 1) + · · · + (y − 1) (3)

holds. This definition was introduced by Finkelstein [3] (he called balancing numbers nu-
merical centers) when he solved a puzzle from the book [1]. For other properties of balancing
numbers see, for example [2]. Clearly, (3) leads to the Pell equation (2y − 1)2 − 2(2x)2 = 1,
and the possible values of x can be described by a suitable recurrence relation of type (1).
It is known that all real binary recurrences satisfying (1) form a vector space of dimension 2
over R. Definition (2) (and later (6)) does not fit the vector space structure. The question
arises which other integer binary recurrences can possess the interesting property described
by (2) or its generalization.

The phenomena appearing in (2) is a specific case of a more general property. Let t ∈ N
+

and put α = t +
√

t2 + 1, β = t −
√

t2 + 1. Define the sequences {T}∞n=0 and {U}∞n=0 by
αn = Tn + Un

√
t2 + 1. It is easy to see that the sequences {T} and {U} both satisfy the

recurrence relation Xn = 2tXn−1 + Xn−2 with the initial values T0 = 1, T1 = t and U0 = 0,
U1 = 1, respectively. The corresponding explicit formulae

Tn =
αn + βn

2
and Un =

αn − βn

2
√

t2 + 1

show that

Un∓(−1)nTn±(−1)n ∓ t =
1

2
U2n

holds. Subsequently, the choice an = T2n−1, bn = U2n+1, cn = T2n+2, dn = U2n implies
anbn + t = U4n/2 ∈ N and cndn + t = U4n+2/2 ∈ N. That is, the example given at the
start of the introduction is a particular case of this construction with t = 1. Observe, that
Xn = (4t2 + 2)Xn−1 − Xn−2 holds for all the sequences {a}, {b}, {c} and {d}, and also for
{xn} = {U2n/2}. Thus, we can provide infinitely many, but not all examples similar to (2)
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(see in Section 4) since the coefficients A = 4t2 + 2 and B = −1 do not represent the most
general case.

Now consider a slightly different property having a similar flavor. Assume that A > 0
and B 6= 0 are integers with non-vanishing D = A2 + 4B, further let B denote the set of all
integer binary recurrences {X}∞n=0 satisfying the recurrence relation

Xn+2 = AXn+1 + BXn, n ∈ N. (4)

If {u}∞n=0 and {v}∞n=0 are elements of B with the initial values u0 = 0, u1 = 1 and v0 = 2,
v1 = A, respectively, then the equality

unvn = u2n (5)

holds for any non-negative integer n. Identity (5) is well-known, and all books or papers
dealing, for instance, with the Fibonacci sequence mention the formula FnLn = F2n, where
Fn and Ln are the nth term of the Fibonacci (Sloane: A000045) and Lucas sequences (Sloane:
A000032), respectively. Note, that the sequences {F} and {L} both satisfy (4) with A =
B = 1.

In this paper, we examine how we can construct a binary recurrence {x} as a shifted
product of two binary recurrences satisfying the same recurrence relation. More precisely,
given the integers c and l, we consider the equation

GnHn + c = x2n+l, (6)

where {G}∞n=0, {H}∞n=0 and {x}∞n=0 belong to the class of binary recurrences given by (4).
There is no restriction in assuming that l = 0, since l causes only a translation in the
subscript.

Moreover, suppose that c is a fixed integer, and the binary recursive sequences {G}
and {J}∞n=0 also belong to B. Analogously to (2), we investigate and determine the binary
recurrences {H} and {K}∞n=0 of B, which generate a sequence {x} ∈ B satisfying

x2n = GnHn + c , x2n+1 = JnKn + c, n ∈ N.

It is worth noting that if one forgets about the integrality conditions, then obviously c can
be considered to be either 0 or 1. Indeed, if c 6= 0, then we can replace {xn} by {xn/c}, further
{Gn}, {Hn}, {Jn} and {Kn} by {Gn/

√
c}, {Hn/

√
c}, {Jn/

√
c} and {Kn/

√
c}, respectively,

which results in assuming that c = 1.

2 Preliminaries

For any complex numbers α, β, . . . and for any sequence {X}∞n=0 ∈ B put αX = X1 −αX0,
βX = X1 − βX0, etc. Recall, that A > 0 and B 6= 0 are integers and D = A2 + 4B 6= 0.

Lemma 1. Assume that {G} ∈ B. Then the zeros α = (A +
√

D)/2 and β = (A −
√

D)/2
of the companion polynomial p(x) = x2 − Ax − B of {G} are distinct and nonzero. Further
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• αβ = −B, α + β = A, α − β =
√

D,

• D > 0 implies β < α and 1 < α.

Moreover,

Gn =
βGαn − αGβn

√
D

. (7)

Proof. All formulae and statements of Lemma 1 are known. Nevertheless, the first two
conditions are immediate from the determination of α and β, while (7) can be derived from
the basic theorem concerning the linear recurrences (see, for instance, [4]). Note that α and
β are conjugate zeros of p(x) if they are not integers.

Remark 2. Later we will use the results of Lemma 1 without any comment.

In the present and next sections we assume that c ∈ Z, l = 0. Further {G} ∈ B, {H} ∈ B
and {x} ∈ B satisfy (6).

Lemma 3.

x1 =
G1H1 − BG0H0 + c(1 − B)

A
.

Proof. Combining x0 = G0H0 + c, x2 = G1H1 + c and x2 = Ax1 + Bx0, we immediately get
the desired statement.

Now we define some important constants which will be useful in studying our problems.
Put

Eα =
βGβH

D
− βx√

D
, Eβ =

αGαH

D
+

αx√
D

, Eαβ =
βGαH + αGβH

D
. (8)

Further, let
∆ = (2G1 − AG0)H1 − (2BG0 + AG1)H0 ∈ Z. (9)

Remark 4. We call {G̃}∞n=0 the companion sequence of {G} ∈ B if {G̃} is also in B and

G̃0 = 2G1 − AG0, G̃1 = 2BG0 + AG1. Thus, ∆ can be simplified as G̃0H1 − G̃1H0.
Sometimes it is more convenient to write (9) in the form ∆ = 2G1H1 − 2BG0H0 −

A(G1H0 + G0H1).

Lemma 5. The quantities from (8) can also be given in the forms

Eα =
β

AD

(
∆ − 1 − β2

β

√
Dc

)
, Eβ =

α

AD

(
∆ +

1 − α2

α

√
Dc

)
, Eαβ =

∆

D
. (10)

Proof. Recall the definition of Eα and βG = G1 − βG0, βH = H1 − βH0, βx = x1 − βx0,
x0 = G0H0 + c. These formulae, together with Lemma 3, yield

Eα =
β

AD

(
2G1H1 − 2BG0H0 − A(G1H0 + G0H1) −

1 − β2

β

√
Dc

)
.

In order to complete the proof on Eα, observe that the first three terms in the paranthesis
above make up ∆ (see Remark 4).

If α 6∈ Z, then Eβ is a conjugate of Eα; hence, the second part of the lemma is obvious.
Otherwise, we can use the same procedure we applied to Eα.

Finally, one can easily get Eαβ = ∆/D from the parts of definition (8) concerned with
Eαβ.
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3 The equation GnHn + c = x2n

Now we proceed to the solution of the first problem. The following result provides necessary
conditions for the solubility of equation (6).

Theorem 6. Let c ∈ Z. If there exist sequences {G} ∈ B, {H} ∈ B and {x} ∈ B such that
GnHn + c = x2n then one of the following cases holds.

• If c = 0 then ∆ = 0;

• if c 6= 0 then either B = −1, ∆ = Dc; or β = ±1, ∆ = 0.

Remark 7. The assertion B = −1, together with β ∈ R implies 0 < β < 1. Then the
two instances in the second part of Theorem 6 are not-overlapping.

Proof. GnHn + c = x2n is equivalent to

Eαα2n + Eββ2n − Eαβ(αβ)n + c = 0, n ∈ N. (11)

Since (11) is true for all n, therefore it is true for n = 0, 1, 2, 3. Consequently, (11) at
n = 0, 1, 2, 3 is a homogeneous linear system of four equations in the unknowns Eα, Eβ, Eαβ

and c. The determinant

D =

∣∣∣∣∣∣∣∣

1 1 −1 1
α2 β2 −αβ 1
α4 β4 −(αβ)2 1
α6 β6 −(αβ)3 1

∣∣∣∣∣∣∣∣

of the coefficient matrix is the negative of the Vandermonde of α2, β2, αβ and 1. Hence,

D = −V (α2, β2, αβ, 1) = αβ(α − β)3(α + β)(1 − α2)(1 − β2)(1 − αβ). (12)

If the homogeneous system has only the trivial solution c = 0 and Eα = Eβ = Eαβ = 0,
then, by Lemma 5, we obtain

Eα =
β

AD
∆ = 0, Eβ =

α

AD
∆ = 0, Eαβ =

1

D
∆ = 0.

The coefficient of ∆ is nonzero in any of the three equalities. Subsequently, ∆ = 0 follows.
If the system has infinitely many solutions, then D = 0. Recalling (12) and the conditions

αβ 6= 0, α 6= β (see Lemma 1), we distinguish four cases.

1. α + β = 0. We deduce a degenerate recursion characterized by α/β = −1. Thus A = 0,
and we have arrived at a contradiction.

2. 1 − α2 = 0. Now α = ±1 ∈ R. This is impossible since α > 1 holds.

3. 1 − β2 = 0. Both cases β = ±1 lead to the solutions Eα = Eαβ = 0 and Eβ = −c, where
c is a free variable. Clearly, by (10), Eαβ implies ∆ = 0.
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4. 1 − αβ = 0. Obviously, B = −1. Moreover D = A2 − 4 6= 0 yields A 6= 2. The infinitely
many solutions of the system can be described by Eα = Eβ = 0 and

c = − αβ(α − β)2

(α2 − 1)(β2 − 1)
Eαβ. (13)

Since αβ = B and (α − β)2 = A2 − 4, relation (13) together with (α2 − 1)(β2 − 1) =
(Aα− 2)(Aβ − 2) = −A2 + 4 gives Eαβ = c, where c is a free variable. Then, again by
(10), ∆ = Dc.

Theorem 6 provides necessary conditions for the sequences {G}, {H} and {x} satisfying
GnHn + c = x2n. Now we show that the conditions are, essentially, sufficient as well. More
precisely, we prove the following theorem.

Theorem 8. Suppose that the integers c, G0, G1, H0 and H1 are fixed. Put x0 = G0H0 + c.
If

c = 0, ∆ = 0; or

c 6= 0, B = −1, ∆ = Dc; or

c 6= 0, β = ±1, ∆ = 0,

hold, as well as

x1 =
G1H1 − BG0H0

A
∈ Z, or

x1 =
G1H1 + G0H0 + 2c

A
∈ Z, or

x1 =
G1H1 − BG0H0 + (1 − B)c

A
∈ Z,

respectively, then the terms of the sequences {G} ∈ B, {H} ∈ B and {x} ∈ B satisfy

GnHn + c = x2n, n ∈ N.

Remark 9. Theorem 8 asserts necessarily that x1 is an integer, otherwise {x} would not
be an integer sequence although it satisfies GnHn + c = x2n. For example, let c = 0, A = 14,
B = −5, G0 = 2, G1 = 3, H0 = −1, H1 = 1. Then ∆ = 0, x1 = −1/2, and

{G} : 2, 3, 32, 433, . . . ;

{H} : −1, 1, 19, 261, . . . ;

{x} : −2 = G0H0, −1

2
, 3 = G1H1,

89

2
, 608 = G2H2,

16579

2
, 113013 = G3H3, . . . .

Proof. We will use the notation of the previous sections. By (9), it is easy to verify that
G1H0 + G0H1 = (2G1H1 − 2BG0H0 − ∆)/A. Combining it with

βGβH = G1H1+β2G0H0−β(G1H0+G0H1) and αGαH = G1H1+α2G0H0−α(G1H0+G0H1),
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respectively, we obtain

βGβH =

√
D(G1H1 − β2G0H0) + β∆

A
and αGαH =

√
D(−G1H1 + α2G0H0) + α∆

A
.

(14)
By x0 = G0H0 + c and Lemma 3, we also have

βx = x1−βx0 =
G1H1 − β2G0H0 + (1 − β2)c

A
and αx = x1−αx0 =

G1H1 − α2G0H0 + (1 − α2)c

A
.

(15)
Thus, by (14) and (15),

GnHn + c =
βGαn − αGβn

√
D

βHαn − αHβn

√
D

+ c =
βGβHα2n + αGαHβ2n − ∆(αβ)n + cD

D
,

which is equivalent to

βxα
2n − αxβ

2n

√
D

+
1

A

(
β∆

D
− 1 − β2

√
D

c

)
α2n +

1

A

(
α∆

D
+

1 − α2

√
D

c

)
β2n −

(
∆

D
(αβ)n − c

)

︸ ︷︷ ︸
W

.

(16)
Here, the first summand is just x2n. Now we show that the remaining part of (16), denoted
by W , vanishes under certain conditions. First, suppose that c = 0 and ∆ = 0. Then,
obviously W = 0.

Assume now c 6= 0, and consider the case B = −1 (i.e., αβ = 1) with ∆ = cD. It follows
that

W =
c

A

(
β − 1 − β2

√
D

)
α2n +

c

A

(
α +

1 − α2

√
D

)
β2n =

c

A
√

D

(
α2n − β2n

)
(αβ − 1).

But the last factor vanishes since αβ = 1. Consequently, W is zero again.
In the third case, we have β = ±1 and ∆ = 0. Thus,

W =
c

A

(
−1 − β2

√
D

)
α2n +

c

A

(
1 − α2

√
D

)
β2n + c =

c

A

(
1 − α2

√
D

)
+ c =

c

A
√

D
(1 − β2) = 0.

The proof is therefore complete.

4 The system x2n = GnHn + c, x2n+1 = JnKn + c

The investigation here is based on the results of the previous sections. We have to handle
only two more problems, namely the question of the translation by 1 in the subscript, and
the question of putting two subsequences of {x} together.

According to the definition of ∆, we introduce the notation ∆2 = (2J1 − AJ0)K1 −
(2BJ0 + AJ1)K0 ∈ Z. The next statement is an immediate consequence of Theorem 6.

Theorem 10. Suppose that c ∈ Z and the sequences {G}, {H}, {J}, {K} and {x}, all are
in B, satisfy x2n = GnHn + c and x2n+1 = JnKn + c. Suppose furthermore that the following
two conditions
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• If c = 0 then ∆ = ∆2 = 0,

• if c 6= 0 then either B = −1, ∆ = ∆2 = Dc or β = ±1, ∆ = ∆2 = 0

hold.

Recall, that A > 0, B 6= 0 with D 6= 0. Now we are going to formulate the reciprocal of
Theorem 10.

Theorem 11. Let c ∈ Z be given. Suppose that {Gn}, {Hn}, {Jn}, {Kn} all are elements
of the set B, and the integers Gi, Hi, Ji, Ki (i = 0, 1) fulfill one of the following conditions

• ∆ = ∆2 = 0 if c = 0;

• B = −1 and ∆ = ∆2 = Dc if c 6= 0;

• β = ±1 and ∆ = ∆2 = 0 if c 6= 0.

If x0 = G0H0 + c, x1 = J0K0 + c, x2 = G1H1 + c and x3 = J1K1 + c satisfy x2 = Ax1 + Bx0

and x3 = Ax2 + Bx1, then the sequence {xn} given by

x2n = GnHn + c , x2n+1 = JnKn + c, n ∈ N

belongs to B.

Proof. First we prove that, under the given conditions, the relation x2n+2 = Ax2n+1 + Bx2n

holds, i.e.,
Gn+1Hn+1 + c = A(JnKn + c) + B(GnHn + c).

By (7), it is equivalent to

βGαn+1 − αGβn+1

√
D

βHαn+1 − αHβn+1

√
D

+ c =

= A

(
βJαn − αJβn

√
D

βKαn − αKβn

√
D

+ c

)
+ B

(
βGαn − αGβn

√
D

βHαn − αHβn

√
D

+ c

)
,

which in turn is equivalent to

α2n
(
(α2 − B)βGβH − AβJβK

)
︸ ︷︷ ︸

W1

+β2n
(
(β2 − B)αGαH − AαJαK

)
︸ ︷︷ ︸

W2

+

(−B) (2B∆ + A∆2) + (1 − A − B)Dc︸ ︷︷ ︸
W3

= 0. (17)

The value of W3 seems to be the simplest to determine. Obviously, ∆ = ∆2 = 0, and
c = 0 provide immediately W3 = 0. If c 6= 0 and ∆ = ∆2 = Dc, B = −1, then again W3 = 0.
Otherwise, when c 6= 0 and ∆ = ∆2 = 0, β = ±1, we must distinguish two cases. When
β = 1, we obtain W3 = 0, while β = −1 we get W3 = 2(1 − α)Dc.
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We next compute W1. Here condition α2 − B = Aα, together with the definition of
βG, βH , βJ and βK , provides

W1 = A (αG1H1 − βBG0H0 + B(G1H0 + G0H1))−
A

α
(αJ1K1 − βBJ0K0 + B(J1K0 + J0K1)) .

(18)
We can replace the terms G1H0 + G0H1 and J1K0 + J0K1 in (18) by

2G1H1 − 2BG0H0 − ∆

A
and

2J1K1 − 2BJ0K0 − ∆2

A
,

respectively. Thus,

W1 = (Aα + 2B)G1H1 − B(βA + 2B)G0H0 − B∆ −
1

α
((Aα + 2B)J1K1 − B(βA + 2B)J0K0 − B∆2)

=
(
α
√

DG1H1 + βB
√

DG0H0 − B∆
)
−

1

α

(
α
√

DJ1K1 + βB
√

DJ0K0 − B∆2

)
,

since αA + 2B = α
√

D and B(βA + 2B) = −βB
√

D. Using G0H0 = x0 − c, etc., it follows
that

W1 =
√

D

(
(αx2 − x3) +

βB

α
(αx0 − x1) +

(
1 − α − βB +

βB

α

)
c

)
+

(
∆2

α
− ∆

)
B.

We use x3 = Ax2 +Bx1 and x2 = Ax1 +Bx0 to get αx2 −x3 = β2(αx0 −x1). Consequently,
we get (αx2 − x3) + βB

α
(αx0 − x1) = 0. Since 1 − α − βB + βB/α = (α − 1)(β2 − 1), we

conclude that

W1 =
√

D(α − 1)(β2 − 1)c + B

(
∆2

α
− ∆

)
. (19)

Similar arguments applied to W2 give

W2 = −
√

D(β − 1)(α2 − 1)c + B

(
∆2

β
− ∆

)
. (20)

Note that if α 6∈ Z then W1 and W2 are conjugates, therefore (20) comes directly from (19).
Clearly, W1 = W2 = 0 if c = 0 and ∆ = ∆2 = 0 hold. Now consider the second possibility,

when c 6= 0, ∆ = ∆2 = Dc and B = −1. The last condition shows that β is the reciprocal of
α. Thus, the coefficients (α − 1)(β2 − 1) and (β − 1)(α2 − 1) in (19) and (20), respectively,
coincide (β−1)

√
D and −(α−1)

√
D, respectively. Hence, W1 = W2 = 0 holds again. Finally,

c 6= 0 and ∆ = ∆2 = 0 yield W1 =
√

Dc(1−α)(1−β2) and W2 = −
√

Dc(1−β)(1−α2). This
leads to β = ±1. Subsequently, W1 = 0, while W2 = 0, or W2 = −2

√
D(1 − α2) depending

on the sign of β.
Consider now W1, W2 and W3 again. Ignoring the trivial cases, it is sufficient to look at

only the case β = −1. Now W1 = 0, W2 = −2
√

Dc(1−α2) and W3 = 2(1−α)Dc. Therefore,

x2n+2−Ax2n+1−Bx2n = 0·α2n−2
√

Dc(1−α2)(−1)2n+2(1−α)Dc = −2
√

Dc(1−α)(1+β) = 0.

So, we have showed that x2n+2 = Ax2n+1+Bx2n. The argument for x2n+3 = Ax2n+2+Bx2n

is entirely similar to the procedure we have just applied.
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5 Examples

Example 12. This example indicates some difficulties arising if c ∈ Z, the sequence
{G} ∈ B is fixed, and one intends to determine a sequence {H} ∈ B (and {x} ∈ B) such
that GnHn + c = x2n.

Let A = 3, B = −1 and c = 7, G0 = 1, G1 = 2 (Sloane: A001519). Thus, D = 5,
∆ = Dc = 35. To find {H}, it is necessary to solve the linear diophantine equation

H1 − 4H0 = 35

(see Remark 4). Clearly, it is solvable. For example, put H0 = t ∈ Z and H1 = 4t + 35.
Now, by Theorem 8, we must verify that x1 is an integer. Here, x1 = 3t+28. The sequences
are given by

{G} : 1, 2, 5, 13, . . . ;

{H} : t, 4t + 35, 11t + 105, 29t + 280, . . . ;

{x} : t + 7, 3t + 28, 8t + 77, 21t + 203, 55t + 532, 144t + 1393, 377t + 3467, . . . .

It is easy to see that for any G1 ∈ Z there exist suitable sequences {H}. Indeed, for an
arbitrary G1 we obtain the diophantine equation

(2G1 − 3)H1 + (2 − 3G1)H0 = 35. (21)

But (21) is solvable in H1 and H0 since gcd(2G1 − 3, 2 − 3G1) divides 5.

Note, that there are fewer problems in the other two cases of Theorem 8, since, instead of
Dc, the right hand side of the corresponding linear diophantine equations is zero. Therefore,
we only have to guarantee x1 ∈ Z.

Example 13. We give a class of recurrences {G} having no pair {H} with the desired
property. Suppose that B = −1, c = 1, and to facilitate the calculations, let G1 = G0.

Thus gcd(2G1 − AG0,−2G0 + AG1) = G0 gcd(2 − A,−2 + A) = G0(A − 2). But D =
A2 − 4 6= 0 excludes A = 2, therefore

G0(A − 2) 6 | (A2 − 4) ⇐⇒ G0 6 | (A + 2).

Hence, if we choose an integer G0 which does not divide A + 2, then the linear diophantine
equation

G0(2 − A)H1 + G0(A − 2)H0 = A2 − 4

is not solvable in integers H1 and H0.

Example 14. Consider now the first example in the Introduction, where the composition
of four sequences was defined. Let A = 6, B = −1 and c = 1. Let also G0 = −1, G1 = 1,
J0 = 0, and J1 = 2. We have D = 32, ∆ = 32. Both of the diophantine equations

8H1 − 8H0 = 32

4K1 − 12K0 = 32
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are solvable. Take the parametrizations H0 = t ∈ Z, H1 = t+4 and K0 = s ∈ Z, K1 = 3s+8.
To join the subsequences with even and odd subscripts, we must check the recurrence relation
xn+2 = 6xn+1 − xn. Since the four sequences

{G} : −1, 1, 7, 41, . . . ;

{H} : t, t + 4, 5t + 24, 29t + 140, . . . ;

{J} : 0, 2, 12, 70, . . . ;

{K} : s, 3s + 8, 17s + 48, 99s + 280, . . .

generate

{x} : −t + 1, 1, t + 5, 6s + 17, 35t + 169, 204s + 577, . . . ,

therefore, by the given recurrence rule, 6(t+5)− 1 = 6s+17, or equivalently s = t+2 must
hold. So we obtain

{x} : −t + 1, 1, t + 5, 6t + 29, 35t + 169, 204t + 985, . . .

where the particular case t = 1 gives the sequence

{x} : 0, 1, 6, 35, 204, 1189, . . . .

of balancing numbers.
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