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Abstract

We generalize well-known Catalan-type integrals for Euler’s constant to values of
the generalized Euler constant function and its derivatives. Using generating functions
appearing in these integral representations, we give new Vacca and Ramanujan-type
series for values of the generalized Euler constant function and Addison-type series for
values of the generalized Euler constant function and its derivative. As a consequence,

we get base-B rational series for log 4
π , G

π (where G is Catalan’s constant), ζ′(2)
π2 and

also for logarithms of the Somos and Glaisher-Kinkelin constants.

1 Introduction

J. Sondow [24] proved the following two formulas:

γ =
∞∑

n=1

N1,2(n) +N0,2(n)

2n(2n+ 1)
, (1)
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log
4

π
=

∞∑

n=1

N1,2(n) −N0,2(n)

2n(2n+ 1)
, (2)

where γ is Euler’s constant and Ni,2(n) is the number of i’s in the binary expansion of n (see
sequences A000120 and A023416 in Sloane’s database [23]). The series (1) is equivalent to
the well-known Vacca series [28]

γ =
∞∑

n=1

(−1)n ⌊log2 n⌋
n

=
∞∑

n=1

(−1)nN1,2

(
⌊n

2
⌋
)

+N0,2

(
⌊n

2
⌋
)

n
(3)

and both series (1) and (3) may be derived from Catalan’s integral [8]

γ =

∫ 1

0

1

1 + x

∞∑

n=1

x2n−1 dx. (4)

To see this it suffices to note that

G(x) =
1

1 − x

∞∑

n=0

x2n

=
∞∑

n=1

(N1,2(n) +N0,2(n))xn

is a generating function of the sequence N1,2(n)+N0,2(n), (see A070939), which is the binary
length of n, rewrite (4) as

γ =

∫ 1

0

(1 − x)
G(x2)

x
dx

and integrate the power series termwise. In view of the equality

1 =

∫ 1

0

∞∑

n=1

x2n−1 dx,

which is easily verified by termwise integration, (4) is equivalent to the formula

γ = 1 −
∫ 1

0

1

1 + x

∞∑

n=1

x2n

dx (5)

obtained independently by Ramanujan (see [5, Corollary 2.3]). Catalan’s integral (5) gives
the following rational series for γ :

γ = 1 −
∫ 1

0

(1 − x)G(x2) dx = 1 −
∞∑

n=1

N1,2(n) +N0,2(n)

(2n+ 1)(2n+ 2)
. (6)

Averaging (1), (6) and (4), (5), respectively, we get Addison’s series for γ [1]

γ =
1

2
+

∞∑

n=1

N1,2(n) +N0,2(n)

2n(2n+ 1)(2n+ 2)

2

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000120
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A023416
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A070939


and its corresponding integral

γ =
1

2
+

1

2

∫ 1

0

1 − x

1 + x

∞∑

n=1

x2n−1 dx, (7)

respectively. Integrals (5), (4) were generalized to an arbitrary integer base B > 1 by
S. Ramanujan and by B. C. Berndt and D. C. Bowman (see [5]):

γ = 1 −
∫ 1

0

(
1

1 − x
− BxB−1

1 − xB

) ∞∑

n=1

xBn

dx (Ramanujan), (8)

γ =

∫ 1

0

(
B

1 − xB
− 1

1 − x

) ∞∑

n=1

xBn−1 dx (Berndt-Bowman). (9)

Formula (9) implies the generalized Vacca series for γ (see [5, Theorem 2.6]) proposed by
L. Carlitz [7]:

γ =
∞∑

n=1

ε(n)

n
⌊logB n⌋, (10)

where

ε(n) =

{
B − 1, if B divides n;

−1, otherwise;
(11)

and the averaging integral of (8) and (9) produces the generalized Addison series for γ found
by Sondow [24]:

γ =
1

2
+

∞∑

n=1

⌊logB Bn⌋PB(n)

Bn(Bn+ 1) · · · (Bn+B)
, (12)

where PB(x) is a polynomial of degree B − 2 defined by

PB(x) = (Bx+ 1)(Bx+ 2) · · · (Bx+B − 1)
B−1∑

m=1

m(B −m)

Bx+m
. (13)

In this paper, we consider the generalized Euler constant function

γa,b(z) =
∞∑

n=0

(
1

an+ b
− log

(
an+ b+ 1

an+ b

))
zn, a, b ∈ N, |z| ≤ 1, (14)

which is related to the constants in (1), (2) as γ1,1(1) = γ, γ1,1(−1) = log 4
π
. Basic properties

of a special case of this function, γ1,1(z), were studied earlier in [25, 14]. In Section 2, we
show that γa,b(z) admits an analytic continuation to the domain C \ [1,+∞) in terms of the
Lerch transcendent. In Sections 3–4, we generalize Catalan-type integrals (8), (9) to values
of the generalized Euler constant function and its derivatives. Using generating functions
appearing in these integral representations, we give new Vacca- and Ramanujan-type series
for values of γa,b(z) and Addison-type series for values of γa,b(z) and its derivative. In Section

3



5, we get base-B rational series for log 4
π
, G

π
, (where G is Catalan’s constant), ζ′(2)

π2 and also
for logarithms of the Somos and Glaisher-Kinkelin constants. We also mention a connection
of our approach to summation of series of the form

∞∑

n=1

Nω,B(n)Q(n,B) and
∞∑

n=1

Nω,B(n)PB(n)

Bn(Bn+ 1) · · · (Bn+B)
,

where Q(n,B) is a rational function of B and n

Q(n,B) =
1

Bn(Bn+ 1)
+

2

Bn(Bn+ 2)
+ · · · + B − 1

Bn(Bn+B − 1)
, (15)

and Nω,B(n) is the number of occurrences of a word ω over the alphabet {0, 1, . . . , B− 1} in
the B-ary expansion of n, considered in [2]. Moreover, we answer some questions posed in
[2] concerning possible generalizations of the series (1) and (2) to any integer base B > 1.
Note that in the above notation, the generalized Vacca series (10) can be written as follows:

γ =
∞∑

k=1

LB(k)Q(k,B), (16)

where LB(k) := ⌊logB Bk⌋ =
∑B−1

α=0 Nα,B(k) is the B-ary length of k. Indeed, representing
n = Bk + r, 0 ≤ r ≤ B − 1 and summing in (10) over k ≥ 1 and 0 ≤ r ≤ B − 1 we get

γ =
∞∑

k=1

⌊logB Bk⌋
(
B − 1

Bk
− 1

Bk + 1
− · · · − 1

Bk +B − 1

)
=

∞∑

k=1

⌊logB Bk⌋Q(k,B).

Using the same notation, the generalized Addison series (12) gives another base-B expansion
of Euler’s constant

γ =
1

2
+

∞∑

n=1

LB(n)PB(n)

Bn(Bn+ 1) · · · (Bn+B)
=

1

2
+

∞∑

n=1

LB(n)

(
Q(n,B) − B − 1

2Bn(n+ 1)

)
(17)

which converges faster than (16) to γ. Here we used the fact that

∞∑

n=1

B−1∑

α=0

Nα,B(n)

n(n+ 1)
=

B

B − 1
,

which can be easily checked by [3, Section 3]. On the other hand,

Q(n,B) − B − 1

2Bn(n+ 1)
=

1

2

B−1∑

m=1

(
1

Bn
− 2

Bn+m
+

1

Bn+B

)

=
1

Bn(Bn+B)

B−1∑

m=1

(
2m−B +

2m(B −m)

Bn+m

)
=

PB(n)

Bn(Bn+ 1) · · · (Bn+B)
.

Finally, we give a brief description of some other generalized Euler constants that have
appeared in the literature in Section 6.
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2 Analytic continuation

We consider the generalized Euler constant function γa,b(z) defined in (14), where a, b are
positive real numbers, z ∈ C, and the series converges when |z| ≤ 1. We show that γa,b(z)
admits an analytic continuation to the domain C\ [1,+∞). The following theorem is a slight
modification of [25, Theorem 3].

Theorem 1. Let a, b be positive real numbers, z ∈ C, |z| ≤ 1. Then

γa,b(z) =

∫ 1

0

∫ 1

0

(xy)b−1(1 − x)

(1 − zxaya)(− log xy)
dxdy =

∫ 1

0

xb−1(1 − x)

1 − zxa

(
1

1 − x
+

1

log x

)
dx. (18)

The integrals converge for all z ∈ C \ (1,+∞) and give the analytic continuation of the
generalized Euler constant function γa,b(z) for z ∈ C \ [1,+∞).

Proof. Denoting the double integral in (18) by I(z) and for |z| ≤ 1, expanding (1− zxaya)−1

in a geometric series we have

I(z) =
∞∑

k=0

zk

∫ 1

0

∫ 1

0

(xy)ak+b−1(1 − x)

(− log xy)
dxdy

=
∞∑

k=0

zk

∫ 1

0

∫ 1

0

∫ +∞

0

(xy)t+ak+b−1(1 − x) dxdydt

=
∞∑

k=0

zk

∫ +∞

0

(
1

(t+ ak + b)2
−
( 1

t+ ak + b
− 1

t+ ak + b+ 1

))
dt = γa,b(z).

On the other hand, making the change of variables u = xa, v = ya in the double integral we
get

I(z) =
1

a

∫ 1

0

∫ 1

0

(uv)
b

a
−1(1 − u

1

a )

(1 − zuv)(− log uv)
dudv.

Now by [12, Corollary 3.3], for z ∈ C \ [1,+∞) we have

I(z) =
1

a
Φ
(
z, 1,

b

a

)
− ∂Φ

∂s

(
z, 0,

b

a

)
+
∂Φ

∂s

(
z, 0,

b+ 1

a

)
,

where Φ(z, s, u) is the Lerch transcendent, a holomorphic function in z and s, for z ∈
C \ [1,+∞) and all complex s (see [12, Lemma 2.2]), which is the analytic continuation of
the series

Φ(z, s, u) =
∞∑

n=0

zn

(n+ u)s
, u > 0.

To prove the second equality in (18), make the change of variables X = xy, Y = y and
integrate with respect to Y.

Corollary 2. Let a, b be positive real numbers, l ∈ N, z ∈ C \ [1,+∞). Then for the l-th
derivative we have

γ
(l)
a,b(z) =

∫ 1

0

∫ 1

0

(xy)al+b−1(x− 1)

(1 − zxaya)l+1 log xy
dxdy =

∫ 1

0

xla+b−1(1 − x)

(1 − zxa)l+1

(
1

1 − x
+

1

log x

)
dx.
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From Corollary 2, [12, Cor.3.3, 3.8, 3.9] and [2, Lemma 4] we get

Corollary 3. Let a, b be positive real numbers, z ∈ C\ [1,+∞). Then the following equalities
hold:

γa,b(1) = log Γ
(b+ 1

a

)
− log Γ

( b
a

)
− 1

a
ψ
( b
a

)
,

γa,b(z) =
1

a
Φ
(
z, 1,

b

a

)
− ∂Φ

∂s

(
z, 0,

b

a

)
+
∂Φ

∂s

(
z, 0,

b+ 1

a

)
,

γ′a,b(z) = − b

a2
Φ
(
z, 1,

b

a
+ 1
)

+
1

a(1 − z)
+
b

a

∂Φ

∂s

(
z, 0,

b

a
+ 1
)
− ∂Φ

∂s

(
z,−1,

b

a
+ 1
)
−

b+ 1

a

∂Φ

∂s

(
z, 0,

b+ 1

a
+ 1
)

+
∂Φ

∂s

(
z,−1,

b+ 1

a
+ 1
)
,

where Φ(z, s, u) is the Lerch transcendent and ψ(x) = d
dx

log Γ(x) is the logarithmic derivative
of the gamma function.

3 Catalan-type integrals for γ
(l)
a,b(z).

Berndt and Bowman [5] demonstrated that for x > 0 and any integer B > 1,

1

1 − x
+

1

log x
=

∞∑

k=1

(B − 1) + (B − 2)x
1

Bk + (B − 3)x
2

Bk + · · · + x
B−2

Bk

Bk(1 + x
1

Bk + x
2

Bk + · · · + x
B−1

Bk )
. (19)

The special cases B = 2, 3 of this equality can be found in Ramanujan’s third note book [21,
p. 364]. Using this key formula we prove the following generalization of the integral (9).

Theorem 4. Let a, b, B be positive integers with B > 1, l a non-negative integer. If either
z ∈ C \ [1,+∞) and l ≥ 1, or z ∈ C \ (1,+∞) and l = 0, then

γ
(l)
a,b(z) =

∫ 1

0

(
B

1 − xB
− 1

1 − x

)
Fl(z, x) dx (20)

where

Fl(z, x) =
∞∑

k=1

x(b+al)Bk−1(1 − xBk

)

(1 − zxaBk)l+1
. (21)

Proof. First we note that the series of variable x on the right-hand side of (19) converges
uniformly on [0, 1], since the absolute value of its general term does not exceed B−1

2Bk−1 . Then

for l ≥ 0, multiplying both sides of (19) by xla+b−1(1−x)
(1−zxa)l+1 and integrating over 0 ≤ x ≤ 1 we

get

γ
(l)
a,b(z) =

∞∑

k=1

∫ 1

0

xla+b−1(1 − x)

(1 − zxa)l+1
· (B − 1) + (B − 2)x

1

Bk + · · · + x
B−2

Bk

Bk(1 + x
1

Bk + x
2

Bk + · · · + x
B−1

Bk )
dx.

6



Replacing x by xBk

in each integral we find

γ
(l)
a,b(z) =

∞∑

k=1

∫ 1

0

x(la+b)Bk−1(1 − xBk

)

(1 − zxaBk)l+1
· (B − 1) + (B − 2)x+ · · · + xB−2

1 + x+ x2 + · · · + xB−1
dx

=

∫ 1

0

(
B

1 − xB
− 1

1 − x

)
Fl(z, x) dx,

as required.

From Theorem 4 we readily get a generalization of Ramanujan’s integral.

Corollary 5. Let a, b, B be positive integers with B > 1, l a non-negative integer. If either
z ∈ C \ [1,+∞) and l ≥ 1, or z ∈ C \ (1,+∞) and l = 0, then

γ
(l)
a,b(z) =

∫ 1

0

xb+al−1(1 − x)

(1 − zxa)l+1
dx+

∫ 1

0

(
BxB

1 − xB
− x

1 − x

)
Fl(z, x) dx. (22)

Proof. First we note that the series (21), considered as a sum of functions of the variable x
converges uniformly on [0, 1 − ε] for any ε > 0. Then integrating termwise we have

∫ 1−ε

0

Fl(z, x) dx =
∞∑

k=1

∫ 1−ε

0

x(b+al)Bk−1(1 − xBk

)

(1 − zxaBk)l+1
dx.

Making the change of variable y = xBk

in each integral we get

∫ 1−ε

0

Fl(z, x) dx =
∞∑

k=1

1

Bk

∫ (1−ε)B
k

0

yb+al−1(1 − y)

(1 − zya)l+1
dy.

Since the last series, considered as a series in the variable ε, converges uniformly on [0, 1],
letting ε tend to zero we get

∫ 1

0

Fl(z, x) dx =
1

B − 1

∫ 1

0

yb+al−1(1 − y)

(1 − zya)l+1
dy. (23)

Now from (20) and (23) it follows that

γ
(l)
a,b(z) −

∫ 1

0

yb+al−1(1 − y)

(1 − zya)l+1
dy =

∫ 1

0

(
BxB

1 − xB
− x

1 − x

)
Fl(z, x) dx,

and the proof is complete.

Averaging the formulas (20) and (22), we get the following generalization of the integral
(7).

Corollary 6. Let a, b, B be positive integers with B > 1, l a non-negative integer. If either
z ∈ C \ [1,+∞) and l ≥ 1, or z ∈ C \ (1,+∞) and l = 0, then

γ
(l)
a,b(z) =

1

2

∫ 1

0

xb+al−1(1 − x)

(1 − zxa)l+1
dx+

1

2

∫ 1

0

(
B(1 + xB)

1 − xB
− 1 + x

1 − x

)
Fl(z, x) dx.

7



4 Vacca-type series for γa,b(z) and γ′a,b(z).

Theorem 7. Let a, b, B be positive integers with B > 1, z ∈ C, |z| ≤ 1. Then for the
generalized Euler constant function γa,b(z), the following expansion is valid:

γa,b(z) =
∞∑

k=1

akQ(k,B) =
∞∑

k=1

a⌊ k

B
⌋

ε(k)

k
,

where Q(k,B) is a rational function given by (15), {ak}∞k=0 is a sequence defined by the
generating function

G(z, x) =
1

1 − x

∞∑

k=0

xbBk

(1 − xBk

)

1 − zxaBk
=

∞∑

k=0

akx
k (24)

and ε(k) is defined in (11).

Proof. For l = 0, rewrite (20) in the form

γa,b(z) =

∫ 1

0

1 − xB

x

(
B

1 − xB
− 1

1 − x

)
G(z, xB) dx

where G(z, x) is defined in (24). Then, since a0 = 0, we have

γa,b(z) =

∫ 1

0

(B − 1 − x− x2 − · · · − xB−1)
∞∑

k=1

akx
Bk−1 dx. (25)

Expanding G(z, x) in a power series of x,

G(z, x) =
∞∑

k=0

∞∑

m=0

zmx(am+b)Bk

(1 + x+ · · · + xBk−1),

we see that ak = O(lnB k). Therefore, by termwise integration in (25), which can be easily
justified by the same way as in the proof of Corollary 5, we get

γa,b(z) =
∞∑

k=1

ak

∫ 1

0

[(xBk−1 − xBk) + (xBk−1 − xBk+1) + · · · + (xBk−1 − xBk+B−2)] dx

=
∞∑

k=1

akQ(k,B).

Theorem 8. Let a, b, B be positive integers with B > 1, z ∈ C, |z| ≤ 1. Then for the
generalized Euler constant function, the following expansion is valid:

γa,b(z) =

∫ 1

0

xb−1(1 − x)

1 − zxa
dx−

∞∑

k=1

akQ̃(k,B),

8



where

Q̃(k,B) =
B − 1

Bk(k + 1)
−Q(k,B)

=
B − 1

(Bk +B)(Bk + 1)
+

B − 2

(Bk +B)(Bk + 2)
+ · · · + 1

(Bk +B)(Bk +B − 1)

and the sequence {ak}∞k=1 is defined in Theorem 7.

Proof. From Corollary 5 with l = 0, using the same method as in the proof of Theorem 7,
we get

∫ 1

0

(
BxB

1 − xB
− x

1 − x

)
F0(z, x) =

∫ 1

0

1 − xB

x

(
BxB

1 − xB
− x

1 − x

)
G(z, xB) dx

=

∫ 1

0

(BxB−1 − (1 + x+ · · · + xB−1))
∞∑

k=1

akx
Bk dx

=
∞∑

k=1

ak

∫ 1

0

[(xBk+B−1 − xBk+B−2) + · · · + (xBk+B−1 − xBk+1) + (xBk+B−1 − xBk)] dx

= −
∞∑

k=1

akQ̃(k,B).

Theorem 9. Let a, b, B be positive integers with B > 1, z ∈ C, |z| ≤ 1. Then for the
generalized Euler constant function γa,b(z) and its derivative, the following expansion is valid:

γ
(l)
a,b(z) =

1

2

∫ 1

0

xb+al−1(1 − x)

(1 − zxa)l+1
dx+

∞∑

k=1

ak,l
PB(k)

Bk(Bk + 1) · · · (Bk +B)
, l = 0, 1,

where PB(k) is a polynomial of degree B − 2 given by (13), z 6= 1 if l = 1, and the sequence
{ak,l}∞k=0 is defined by the generating function

Gl(z, x) =
1

1 − x

∞∑

k=0

x(b+al)Bk

(1 − xBk

)

(1 − zxaBk)l+1
=

∞∑

k=0

ak,lx
k, l = 0, 1. (26)

Proof. Expanding Gl(z, x) in a power series of x,

Gl(z, x) =
∞∑

k=0

∞∑

m=0

(
m+ l

l

)
zmx(b+al+am)Bk

(1 + x+ x2 + · · · + xBk−1),

9



we see that ak,l = O(kl lnB k). Therefore, for l = 0, 1, by termwise integration we get

∫ 1

0

(
B(1 + xB)

1 − xB
− 1 + x

1 − x

)
Fl(z, x)dx =

∫ 1

0

1 − xB

x

(
B(1 + xB)

1 − xB
− 1 + x

1 − x

)
Gl(z, x

B)dx

=

∫ 1

0

[(B − 1) − 2x− 2x2 − · · · − 2xB−1 + (B − 1)xB]
∞∑

k=1

ak,lx
Bk−1 dx

=
∞∑

k=1

ak,l

(
B − 1

Bk
− 2

Bk + 1
− 2

Bk + 2
− · · · − 2

Bk +B − 1
+

B − 1

Bk +B

)

= 2
∞∑

k=1

ak,l
PB(k)

Bk(Bk + 1) · · · (Bk +B)
,

where PB(k) is defined in (13) and the last series converges since PB(k)
Bk(Bk+1)···(Bk+B)

= O(k−3).
Now our theorem easily follows from Corollary 6.

5 Examples of rational series

It is easily seen that the generating function (26) satisfies the following functional equation:

Gl(z, x) −
1 − xB

1 − x
Gl(z, x

B) =
xb+al

(1 − zxa)l+1
, (27)

which is equivalent to the following identity for series:

∞∑

k=0

ak,lx
k − (1 + x+ · · · + xB−1)

∞∑

k=0

ak,lx
Bk =

∞∑

k=l

(
k

l

)
zk−lxak+b.

Comparing coefficients of powers of x we get an alternative definition of the sequence {ak,l}∞k=0

by means of the recursion
a0,l = a1,l = · · · = aal+b−1,l = 0

and for k ≥ al + b,

ak,l =

{
a⌊ k

B
⌋,l, if k 6≡ b (mod a);

a⌊ k

B
⌋,l +

(
(k−b)/a

l

)
z

k−b

a
−l, if k ≡ b (mod a).

(28)

On the other hand, in view of Corollary 3, γa,b(z) and γ′a,b(z) can be explicitly expressed
in terms of the Lerch transcendent, ψ-function and logarithm of the gamma function. This
allows us to sum the series in Theorems 7–9 in terms of these functions.

Example 10. Suppose that ω is a non-empty word over the alphabet {0, 1, . . . , B − 1}.
Then obviously ω is uniquely defined by its length |ω| and its size vB(ω) which is the value
of ω when interpreted as an integer in base B. Let Nω,B(k) be the number of (possibly
overlapping) occurrences of the block ω in the B-ary expansion of k. Note that for every
B and ω, Nω,B(0) = 0, since the B-ary expansion of zero is the empty word. If the word

10



ω begins with 0, but vB(ω) 6= 0, then in computing Nω,B(k) we assume that the B-ary
expansion of k starts with an arbitrary long prefix of 0’s. If vB(ω) = 0 we take for k the
usual shortest B-ary expansion of k.

Now we consider equation (27) with l = 0, z = 1

G(1, x) − 1 − xB

1 − x
G(1, xB) =

xb

1 − xa
(29)

and for a given non-empty word ω, set a = B|ω| in (29) and

b =

{
B|ω|, if vB(ω) = 0;

vB(ω), if vB(ω) 6= 0.

Then by (28), it is easily seen that ak := ak,0 = Nω,B(k), k = 1, 2, . . . , and by Theorem 7,
we get another proof of the following statement (see [2, Sections 3, 4.2]).

Corollary 11. Let ω be a non-empty word over the alphabet {0, 1, . . . , B − 1}. Then

∞∑

k=1

Nω,B(k)Q(k,B) =

{
γB|ω|,vB(ω)(1), if vB(ω) 6= 0;

γB|ω|,B|ω |(1), if vB(ω) = 0.

By Corollary 3, the right-hand side of the last equality can be calculated explicitly and
we have

∞∑

k=1

Nω,B(k)Q(k,B) =

{
log Γ

(
vB(ω)+1

B|ω|

)
− log Γ

(
vB(ω)

B|ω|

)
− 1

B|ω|ψ
(

vB(ω)

B|ω|

)
, if vB(ω) 6= 0;

log Γ
(

1
B|ω|

)
+ γ

B|ω| − |ω| logB, if vB(ω) = 0.

(30)

Corollary 12. Let ω be a non-empty word over the alphabet {0, 1, . . . , B − 1}. Then

∞∑

k=1

Nω,B(k)PB(k)

Bk(Bk + 1) · · · (Bk +B)

=




γB|ω|,vB(ω)(1) − 1

2B|ω|

(
ψ
(

vB(ω)+1

B|ω|

)
− ψ

(
vB(ω)

B|ω|

))
, if vB(ω) 6= 0;

γB|ω|,B|ω |(1) − 1
2B|ω|ψ

(
1

B|ω|

)
− γ

2B|ω| − 1
2
, if vB(ω) = 0.

Proof. The required statement easily follows from Theorem 9, Corollary 11 and the equality

∫ 1

0

xb−1(1 − x)

1 − xa
dx =

∞∑

k=0

(
1

ak + b
− 1

ak + b+ 1

)
=

1

a

(
ψ
(b+ 1

a

)
− ψ

( b
a

))
.

From Theorem 7, (27) and (28) with a = 1, l = 0 we have

11



Corollary 13. Let b, B be positive integers with B > 1, z ∈ C, |z| ≤ 1. Then

γ1,b(z) =
∞∑

k=1

akQ(k,B) =
∞∑

k=1

a⌊ k

B
⌋

ε(k)

k
,

where a0 = a1 = · · · = ab−1 = 0, ak = a⌊ k

B
⌋ + zk−b, k ≥ b.

Similarly, from Theorem 9 we have

Corollary 14. Let b, B be positive integers with B > 1, z ∈ C, |z| ≤ 1. Then

γ1,b(z) =
1

2

∞∑

k=0

zk

(k + b)(k + b+ 1)
+

∞∑

k=1

ak
PB(k)

Bk(Bk + 1) · · · (Bk +B)
,

where a0 = a1 = · · · = ab−1 = 0, ak = a⌊ k

B
⌋ + zk−b, k ≥ b.

Example 15. If in Corollary 13 we take z = 1, then we get that ak is equal to the B-ary
length of ⌊k

b
⌋, i. e.,

ak =
B−1∑

α=0

Nα,B

(⌊k
b

⌋)
= LB

(⌊k
b

⌋)
.

On the other hand,

γ1,b(1) = log b− ψ(b) = log b−
b−1∑

k=1

1

k
+ γ

and hence we get

log b− ψ(b) =
∞∑

k=1

LB

(⌊k
b

⌋)
Q(k,B). (31)

If b = 1, formula (31) gives (16). If b > 1, then from (31) and (16) we get

log b =
b−1∑

k=1

1

k
+

∞∑

k=1

(
LB

(⌊k
b

⌋)
− LB(k)

)
Q(k,B), (32)

which is equivalent to [5, Theorem 2.8]. Similarly, from Corollary 14 we obtain (17) and

log b =
b−1∑

k=1

1

k
− b− 1

2b
+

∞∑

k=1

(
LB(⌊k

b
⌋) − LB(k)

)
PB(k)

Bk(Bk + 1) · · · (Bk +B)
. (33)

Example 16. Using the fact that for any integer B > 1,

LB

(⌊ k
B

⌋)
− LB(k) = −1,

from (30), (16) and (32) we get the following rational series for log Γ(1/B) :

log Γ

(
1

B

)
=

B−1∑

k=1

1

k
+

∞∑

k=1

(
N0,B(k) − 1

B
LB(k) − 1

)
Q(k,B).

12



Example 17. Substituting b = 1, z = −1 in Corollary 13 we get the generalized Vacca
series for log 4

π
.

Corollary 18. Let B ∈ N, B > 1. Then

log
4

π
=

∞∑

k=1

akQ(k,B) =
∞∑

k=1

a⌊ k

B
⌋

ε(k)

k
,

where
a0 = 0, ak = a⌊ k

B
⌋ + (−1)k−1, k ≥ 1. (34)

In particular, if B is even, then

log
4

π
=

∞∑

k=1

(Nodd,B(k)−Neven,B(k))Q(k,B) =
∞∑

k=1

(
Nodd,B(⌊ k

B
⌋) −Neven,B(⌊ k

B
⌋)
)

k
ε(k), (35)

where Nodd,B(k) (respectively Neven,B(k)) is the number of occurrences of the odd (respectively
even) digits in the B-ary expansion of k.

Proof. To prove (35), we notice that if B is even, then the sequence ãk := Nodd,B(k) −
Neven,B(k) satisfies recurrence (34).

Substituting b = 1, z = −1 in Corollary 14 with the help of (33) we get the generalized
Addison series for log 4

π
.

Corollary 19. Let B > 1 be a positive integer. Then

log
4

π
=

1

4
+

∞∑

k=1

(
LB(⌊k

2
⌋) − LB(k) + ak

)
PB(k)

Bk(Bk + 1) · · · (Bk +B)
,

where the sequence ak is defined in Corollary 18. In particular, if B is even, then

log
4

π
=

1

4
+

∞∑

k=1

(
LB(⌊k

2
⌋) − 2Neven,B(k)

)
PB(k)

Bk(Bk + 1) · · · (Bk +B)
.

Example 20. For t > 1, the generalized Somos constant σt is defined by

σt =
t

√
1

t

√
2

t
√

3 · · · = 11/t21/t231/t3 · · · =
∞∏

n=1

n1/tn

(see [25, Section 3]). In view of the relation [25, Theorem 8]

γ1,1

(
1

t

)
= t log

t

(t− 1)σt−1
t

, (36)

by Corollary 13 and formula (32) we get

13



Corollary 21. Let B ∈ N, B > 1, t ∈ R, t > 1. Then

log σt =
1

(t− 1)2
+

1

t− 1

∞∑

k=1

(
LB

(⌊k
t

⌋)
− LB

(⌊ k

t− 1

⌋)
− ak

t

)
Q(k,B),

where a0 = 0, ak = a⌊ k

B
⌋ + t1−k, k ≥ 1.

In particular, setting B = t = 2 we get the following rational series for Somos’s quadratic
recurrence constant:

log σ2 = 1 − 1

2

∞∑

k=1

bk
2k(2k + 1)

,

where b1 = 3, bk = b⌊ k

2
⌋ + 1

2k−1 , k ≥ 2.

From (36), (33) and Theorem 9 we find

Corollary 22. Let B ∈ N, B > 1, t ∈ R, t > 1. Then

log σt =
3t− 1

4t(t− 1)2

+
t+ 1

2(t− 1)

∞∑

k=1

(
LB

(⌊k
t

⌋)
− LB

(⌊ k

t− 1

⌋)
− 2ak

t(t+ 1)

)
PB(k)

Bk(Bk + 1) · · · (Bk +B)
,

where the sequence ak is defined in Corollary 21.

In particular, if B = t = 2 we get

log σ2 =
5

8
− 1

2

∞∑

k=1

ck
2k(2k + 1)(2k + 2)

,

where c1 = 4, ck = c⌊ k

2
⌋ + 1

2k−1 , k ≥ 2.

Example 23. The Glaisher-Kinkelin constant is defined by the limit [11, p.135]

A := lim
n→∞

1222 · · ·nn

n
n2+n

2
+ 1

12 e−
n2

4

= 1.28242712 · · · .

Its connection to the generalized Euler constant function γa,b(z) is given by the formula [25,
Corollary 4]

γ′1,1(−1) = log
211/6A6

π3/2e
. (37)

By Theorem 9, since ∫ 1

0

x(1 − x)

(1 + x)2
dx = 3 log 2 − 2,

we have

logA =
4

9
log 2 − 1

4
log

4

π
+

1

6

∞∑

k=1

ak,1
PB(k)

Bk(Bk + 1) · · · (Bk +B)
,
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where the sequence ak,1 is defined by the generating function (26) with a = b = l = 1,
z = −1, or using the recursion (28):

a0,1 = a1,1 = 0, ak,1 = a⌊ k

B
⌋,1 + (−1)k(k − 1), k ≥ 2.

Now by Corollary 19 and (33) we get

Corollary 24. Let B > 1 be a positive integer. Then

logA =
13

48
− 1

36

∞∑

k=1

(
7LB(k) − 7LB

(⌊k
2

⌋)
+ bk

)
PB(k)

Bk(Bk + 1) · · · (Bk +B)
,

where b0 = 0, bk = b⌊ k

B
⌋ + (−1)k−1(6k + 3), k ≥ 1.

In particular, if B = 2 we get

logA =
13

48
− 1

36

∞∑

k=1

ck
2k(2k + 1)(2k + 2)

,

where c1 = 16, ck = c⌊ k

2
⌋ + (−1)k−1(6k + 3), k ≥ 2.

Using the formula expressing ζ′(2)
π2 in terms of the Glaisher-Kinkelin constant [11, p. 135],

logA = −ζ
′(2)

π2
+

log 2π + γ

12
,

by Corollaries 14, 19 and 24, we get

Corollary 25. Let B > 1 be a positive integer. Then

ζ ′(2)

π2
= − 1

16
+

1

36

∞∑

k=1

(
4LB(k) − LB

(⌊k
2

⌋)
+ ck

)
PB(k)

Bk(Bk + 1) · · · (Bk +B)
,

where c0 = 0, ck = c⌊ k

B
⌋ + (−1)k−16k, k ≥ 1.

Example 26. First we evaluate γ
(l)
2,1(−1) for l = 0, 1. From Corollaries 2, 3 and [12, Examples

3.9, 3.15] we have

γ2,1(−1) =

∫ 1

0

∫ 1

0

(x− 1) dxdy

(1 + x2y2) log xy
=
π

4
− 2 log Γ

(1

4

)
+ log

√
2π3

and

γ′2,1(−1) = − 1

4
Φ(−1, 1, 3/2) +

1

2
Φ(−1, 0, 3/2) +

1

2

∂Φ

∂s
(−1, 0, 3/2)

− ∂Φ

∂s
(−1,−1, 3/2) − ∂Φ

∂s
(−1, 0, 2) +

∂Φ

∂s
(−1,−1, 2).
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The last expression can be evaluated explicitly (see [12, Section 2]) and we get

γ′2,1(−1) =
G

π
+
π

8
− log Γ

(1

4

)
− 3 logA+ log π +

1

3
log 2,

or
G

π
= γ′2,1(−1) − 1

2
γ2,1(−1) +

1

4
log

4

π
+ 3 logA− 7

12
log 2. (38)

On the other hand, by Theorem 9 and (28) we have

γ2,1(−1) =
π

8
− 1

4
log 2 +

∞∑

k=1

ak,0
PB(k)

Bk(Bk + 1) · · · (Bk +B)
, (39)

where a0,0 = 0, a2k,0 = a⌊ 2k

B
⌋,0, k ≥ 1, a2k+1,0 = a⌊ 2k+1

B
⌋,0 + (−1)k, k ≥ 0, and

γ′2,1(−1) =
π

16
− 1

4
log 2 +

∞∑

k=1

ak,1
PB(k)

Bk(Bk + 1) · · · (Bk +B)
, (40)

where a0,1 = 0, a2k,1 = a⌊ 2k

B
⌋,1, k ≥ 1, a2k+1,1 = a⌊ 2k+1

B
⌋,1 + (−1)k−1k, k ≥ 0. Now from (38) –

(40), (33) and Corollary 19 we get the following expansion for G/π.

Corollary 27. Let B > 1 be a positive integer. Then

G

π
=

11

32
+

∞∑

k=1

(
1

8
LB

(⌊k
2

⌋)
− 1

8
LB(k) + ck

)
PB(k)

Bk(Bk + 1) · · · (Bk +B)
,

where c0 = 0, c2k = c⌊ 2k

B
⌋ + k, k ≥ 1, c2k+1 = c⌊ 2k+1

B
⌋ + (−1)k−1−1

2
(2k + 1), k ≥ 0.

In particular, if B = 2 we get

G

π
=

11

32
+

∞∑

k=1

bk
2k(2k + 1)(2k + 2)

,

where b1 = −9
8
, b2k = bk + k, b2k+1 = bk + (−1)k−1−1

2
(2k + 1), k ≥ 1.

6 Other generalized Euler constants

The purpose of this section is to draw attention to different generalizations of Euler’s constant
for which many interesting results remain to be discovered.

The simplest way to generalize Euler’s constant

γ = lim
n→∞

(
n∑

k=1

1

k
− log n

)
, (41)
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which is related to the digamma function by the equality γ = −ψ(1), is to consider for
0 < α ≤ 1,

γ(α) = lim
n→∞

(
n∑

k=1

1

k + α
− log n

)
= lim

n→∞

(
n∑

k=1

1

k + α
− log(n+ α)

)
.

Tasaka [27] proved that γ(α) = −ψ(α). Its connection to the generalized Euler constant
function γa,b(z) is given by the formula

γ(α) + logα = γ1,α(1).

Briggs [6] and Lehmer [20] studied the analog of γ corresponding to the arithmetical pro-
gression of positive integers r, r +m, r + 2m, . . . , (r ≤ m) :

γ(r,m) = lim
n→∞

(
H(n, r,m) − 1

m
log n

)
,

where H(n, r,m) =
∑

0<k≤n,

k≡r(mod m)

1
k
. Since H(n, r,m) =

∑
0≤k≤(n−r)/m

1
r+mk

, it is easily seen that

mγ(r,m) = γ(r/m) − logm = γ1,r/m(1) − log r.

Diamond and Ford [9] studied a family {γ(P)} of generalized Euler constants arising from
the sum of reciprocals of integers sieved by finite sets of primes P . More precisely, if P
represents a finite set of primes, let

1P(n) :=

{
1, if gcd

(
n,
∏

p∈P p
)

= 1;

0, otherwise;
and δP := lim

x→∞

1

x

∑

n≤x

1P(n).

A simple argument shows that δP =
∏

p∈P(1− 1/p) and that the generalized Euler constant

γ(P) := lim
x→∞

(
∑

n≤x

1P(n)

n
− δP log x

)

exists. Its connection to Euler’s constant is given by the formula [9]

γ(P) =
∏

p∈P

(
1 − 1

p

){
γ +

∑

p∈P

log p

p− 1

}
.

Another generalization of the Euler constant is connected with the well-known limit involving
the Riemann zeta function:

γ = lim
s→1

(
ζ(s) − 1

s− 1

)
. (42)

Expanding the Riemann zeta function into Laurent series in a neighborhood of its simple
pole at s = 1 gives

ζ(s) =
1

s− 1
+

∞∑

k=0

(−1)k

k!
γk(s− 1)k.
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Stieltjes [26] pointed out that the coefficients γk can be expressed as

γk = lim
n→∞

(
n∑

j=1

logk j

j
− logk+1 n

k + 1

)
, k = 0, 1, 2, . . . . (43)

(In the case k = 0, the first summand requires evaluation of 00, which is taken to be 1.) The
coefficients γk are usually called Stieltjes, or generalized Euler, constants (see [10, 11, 18].
In particular, the zero’th constant γ0 = γ is the Euler constant.

Hardy [13] gave an analog of the Vacca series (3) for γ1 containing logarithmic coefficients:

γ1 =
∞∑

k=1

(−1)k log(k)⌊log2(k)⌋
k

− log 2

2

∞∑

k=1

(−1)k ⌊log2(2k)⌋⌊log2(k)⌋
k

,

and Kluyver [16] presented more such series for higher-order constants.
The analog of γk corresponding to the arithmetical progression r, r+m, r+ 2m, . . . was

studied by Knopfmacher [17], Kanemitsu [15], and Dilcher [10]:

γk(r,m) = lim
n→∞

(
∑

0<j≤n

j≡r (mod m)

logk j

j
− 1

m

logk+1 n

k + 1

)
.

Another extension of γk can be derived from the Laurent series expansion of the Hurwitz
zeta function:

ζ(s, α) :=
∞∑

n=0

1

(n+ α)s
=

1

s− 1
+

∞∑

k=0

(−1)kγk(α)

k!
(s− 1)k.

Here 0 < α ≤ 1. Since ζ(s, 1) = ζ(s), we have γk(1) = γk. Berndt [4] showed that

γk(α) = lim
n→∞

(
n∑

j=0

logk(j + α)

(j + α)
− logk+1(n+ α)

k + 1

)
,

which is equivalent to (43) when α = 1. If k = 0 and α = r/m, r,m ∈ N, r ≤ m, then

γ0(r/m) = mγ(r,m) + logm = γ1,r/m(1) − log(r/m) = γ(r/m) = −ψ(r/m).

Recently, Lampret [19] considered the zeta-generalized Euler constant function

Υ(s) :=
∞∑

j=1

(
1

js
−
∫ j+1

j

dx

xs

)
(44)

and its alternating version

Υ∗(s) :=
∞∑

j=1

(−1)j+1

(
1

js
−
∫ j+1

j

dx

xs

)
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defined for s ≥ 0. The name of the function Υ(s) comes from the fact that Υ(1) = γ and
that the series

∑∞
j=1 1/js defines the Riemann zeta function. Moreover, it is easily seen that

Υ(1) = γ1,1(1) and Υ∗(1) = γ1,1(−1). In [19] it was shown that Υ(s) is infinitely differentiable
on R

+ and its k-th derivative Υ(k)(s) can be obtained by termwise k-times differentiation of
the series (44):

Υ(k)(s) = (−1)k

∞∑

j=1

(
logk j

js
−
∫ j+1

j

logk x

xs
dx

)
. (45)

Setting s = 1 in (45) we get the following relation between the zeta-generalized Euler constant
function and Stieltjes constants (43):

Υ(k)(1) = (−1)kγk.

The formula (41), as well as (44), can be further generalized to

γf = lim
n→∞

(
n∑

k=1

f(k) −
∫ n

1

f(x) dx

)

for some arbitrary positive decreasing function f (see [22]). For example, fn(x) = logn x
x

gives

rise to the Stieltjes constants, and fs(x) = x−s gives γfs
= (s−1)ζ(s)−1

s−1
, where again the limit

(42) appears.
There are other generalizations including a two-dimensional version of Euler’s constant

and a lattice sum form. For a survey of further results and an extended bibliography, see
[11, Sections 1.5, 1.10, 2.21, 7.2].
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