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Abstract

Chou, Hsu and Shiue gave some applications of Faà di Bruno’s formula for the

characterization of inverse relations. In this paper, we use partial Bell polynomials and

binomial-type sequence of polynomials to develop complementary inverse relations.

1 Introduction

Recall that the (exponential) partial Bell polynomials Bn,k are defined by their generating
function

∞
∑

n=k

Bn,k(x1, x2, · · · )
tn

n!
=

1

k!

(

∞
∑

m=1

xm
tm

m!

)k
(1)

and are given explicitly by the formula

Bn,k(x1, x2, . . .) =
∑

π(n,k)

n!

k1!k2! · · ·
(x1

1!

)k1
(x2

2!

)k2 · · · ,

where π(n, k) is the set of all nonnegative integers (k1, k2, . . .) such that

k1 + k2 + k3 + · · · = k and k1 + 2k2 + 3k3 + · · · = n,
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Comtet [3] has studied the partial and complete Bell polynomials and has given their basic
properties. Riordan [6] has shown the applications of the Bell polynomials in combinatorial
analysis and Roman [7] in umbral calculus. Chou, Hsu and Shiue [2] have used these poly-
nomials to characterize some inverse relations. They have proved that, for any function F

having power formal series with compositional inverse F 〈−1〉, the following inverse relations
hold

yn =
∑n

j=1 Dj
x=aF (x)Bn,j(x1, x2, . . .),

xn =
∑n

j=1 D
j
x=f(a)F

〈−1〉(x)Bn,j(y1, y2, . . .).

In this paper, we link their results to those of Mihoubi [5, 6, 7] on partial Bell polynomials
and binomial-type sequence of polynomials.

2 Bell polynomials and inverse relations

Using the compositional inverse function with binomial-type sequence of polynomials, we
determine some inverse relations and the connections with the partial Bell polynomials.

Theorem 1. Let {fn(x)} be a binomial-type sequence of polynomials with exponential gen-

erating function (f(t))x. Then the compositional inverse function of

h(t) = t(f(t))x =
∑

n≥1

nfn−1(x)
tn

n!

is given by

h〈−1〉(t) =
∑

n≥1

fn−1(−nx)
tn

n!
.

Proof. To obtain the compositional inverse function of h it suffices to solve the equation
z = tf(z)−x. The Lagrange inversion formula ensures that the last equation has an unique
solution defined around zero by

z = h〈−1〉(t) =
∑

n≥1

Dn−1
z=0 (f(z)−nx)

tn

n!
=

∑

n≥1

fn−1(−nx)
tn

n!
.

Corollary 2. Let {fn(x)} be a binomial-type sequence of polynomials and let a be a real

number. Then the compositional inverse function of

h(t; a) =
∑

n≥1

nx

a(n − 1) + x
fn−1(a(n − 1) + x)

tn

n!

is given by

h〈−1〉(t; a) = −
∑

n≥1

nx

a(n − 1) − nx
fn−1(a(n − 1) − nx)

tn

n!
.
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Proof. This result follows by replacing {fn(x)} in Theorem 1, by the binomial-type sequence
of polynomials {fn(x; a)}, where

fn(x; a) =
x

an + x
fn(an + x), (2)

see Mihoubi [5, 6, 7].

Theorem 3. Let {fn(x)} be a binomial-type sequence of polynomials and a be a real number.

Then the following inverse relations hold

yn =
∑n

j=1
xj

a(j−1)+x
fj−1(a(j − 1) + x)Bn,j(x1, x2, . . .)

xn = −∑n
j=1

xj
a(j−1)−jx

fj−1(a(j − 1) − jx)Bn,j(y1, y2, . . .).
(3)

Proof. For any function F having power formal series with compositional inverse F 〈−1〉,

Chou, Hsu and Shiue [2, Remark 1] have proved that

yn =
∑n

j=1 Dj
x=aF (x)Bn,j(x1, x2, . . .)

xn =
∑n

j=1 D
j
x=f(a)F

〈−1〉(x)Bn,j(y1, y2, . . .).

To prove (3), it suffices to take

F (t) :=
∞

∑

n=1

nx

a(n − 1) + x
fn−1(a(n − 1) + x)

tn

n!

and then use Corollary 2.

Now, let fn(x) in Theorem 3 be one of the next binomial-type sequence of polynomials

fn(x) = xn,

fn(x) = (x)(n) := x(x − 1) · · · (x − n + 1), n ≥ 1, with (x)(o) = 1,
fn(x) = (x)(n) := x(x + 1) · · · (x + n − 1), n ≥ 1, with (x)(o) = 1,

fn(x) = n!

(

x

n

)

q

:=
∑n

j=o Bn,j(
(

1
1

)

q
, . . . , i!

(

1
i

)

q
, . . .)(x)(j),

fn(x) = Bn(x) :=
∑n

j=o S(n, k)xk,

where Bn(.), S(n, k) and

(

k

n

)

q

are, respectively, the single variable Bell polynomials, the

Stirling numbers of second kind and the coefficients defined by

(1 + x + x2 + · · · + xq)k =
∑

n≥0

(

k

n

)

q

xn,

see Belbachir, Bouroubi and Khelladi [4]. We deduce the following results:
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Corollary 4. Let a and x be real numbers. Then the following inverse relations hold:

For fn(x) = xn, we get

yn =
∑n

j=1 xj(a(j − 1) + x)j−2Bn,j(x1, x2, . . .),

xn = −
∑n

j=1 xj(a(j − 1) − jx)j−2Bn,j(y1, y2, . . .).
(4)

For fn(x) = (x)(n), we get

yn =
∑n

j=1
xj

a(j−1)+x
(a(j − 1) + x)(j−1)Bn,j(x1, x2, . . .),

xn = −∑n
j=1

xj
a(j−1)−jx

(a(j − 1) − jx)(j−1)Bn,j(y1, y2, . . .).
(5)

For fn(x) = (x)(n), we get

yn =
∑n

j=1
xj

a(j−1)+x
(a(j − 1) + x)(j−1)Bn,j(x1, x2, . . .),

xn = −
∑n

j=1
xj

a(j−1)−jx
(a(j − 1) − jx)(j−1)Bn,j(y1, y2, . . .).

(6)

For fn(x) = n!

(

x

n

)

q

, we get

yn =
∑n

j=1
x(j−1)!

a(j−1)+x

(

a(j−1)+x
j−1

)

q
Bn,j(x1, x2, . . .),

xn = −
∑n

j=1
xj!

a(j−1)−jx

(

a(j−1)−jx
j−1

)

q
Bn,j(y1, y2, . . .).

(7)

For fn(x) = Bn(x), we get

yn =
∑n

j=1
xj

a(j−1)+x
Bj−1(a(j − 1) + x)Bn,j(x1, x2, . . .),

xn = −∑n
j=1

xj
a(j−1)−jx

Bj−1(a(j − 1) − jx)Bn,j(y1, y2, . . .).
(8)

Example 5. For a = 0, x = 1 in (5), we obtain

yn =
∑n

j=0

(

n
j

)

xjxn−j with x0 =
1

2
,

xn =
∑n−1

j=0 (−1)j (2j)!
(j)!

Bn,j+1(y1, y2, . . .).

(9)

For xn = 2(n−2)/2, xn =
1

2
or xn = 1

2n+1 in (9), we get

n−1
∑

j=0

(2j)!

(j)!
(−4)n−jS(n, j + 1) = (−1)n2n+1.

For x1 = 1, xn = 0, n ≥ 2, in (9), we get

n+1
∑

j=n−[n/2]

(−1)j

(

n + 1

j

)(

2j

n

)

= 0, n ≥ 0.
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Take x = a = x1 = 1, x2 = 2 and xn = 0, n ≥ 3, in (5) and from the identity of Ceralosi [1]

n
∑

j=1

j!Bn,j(1!, 2!, 0, 0, . . .) = n!Fn, n ≥ 1,

we obtain
n

∑

j=1

(−1)jj!Bn,j(1!F1, 2!F2, . . .) = 0, n ≥ 3,

where Fn, n = 0, 1, 2, · · · , are the Fibonacci numbers.
Take x = 1, a = x1 = 0, x2 = 2 and xn = n!, n ≥ 3, in (5), from the identity of Ceralosi [1]

n
∑

j=1

j!Bn,j(0, 2!, 3!, . . .) = n!Fn−2, n ≥ 2,

we obtain
n

∑

j=1

(−1)j−1j!Bn,j(0, 2!F0, 3!F1, . . .) = n!, n ≥ 2.

Theorem 6. Let r, s be nonnegative integers, rs 6= 0, and let {un} be a sequence of real

numbers with u1 = 1. Then

yn = s
∑n

j=1
j

Uj

(

Uj+j−1
Uj

)−1
BUj+j−1,Uj

(1, u2, u3, . . .)Bn,j(x1, x2, . . .),

x1 = y1 and for n ≥ 2 we have

xn = yn − s
∑n

j=2
j
Vj

(

Vj+j−1
Vj

)−1
BVj+j−1,Vj

(1, u2, u3, . . .)Bn,j(y1, y2, . . .),

(10)

where Uj = (r + 2s)(j − 1) + s and Vj = (r + s)(j − 1) − s.

Proof. Let n, r, s be nonnegative integers, nr(nr + s) ≥ 1, zn(r) :=
B(r+1)n,nr(1,u2,u3,...)

nr((r+1)n
nr )

, and

consider the binomial-type sequence of polynomials {fn(x)} defined by

fn(x) :=
n

∑

j=1

Bn,j(z1(r), z2(r), . . .)x
j with fo(x) = 1,

see Roman [8]. Then from the identity

∑n
j=1 Bn,j(z1(r), z2(r), . . .)s

j =
s

nr + s

(

(r + 1)n + s

nr + s

)−1

B(r+1)n+s,nr+s(1, u2, u3, . . .),

see Mihoubi [5, 6, 7], we get

fn(s) =
s

nr + s

(

(r + 1)n + s

nr + s

)−1

B(r+1)n+s,nr+s(1, u2, u3, . . .). (11)

To obtain (10), we set a = 0, x = s in (3) and use the expression of fn(s) given by (11),
with r + 2s instead of r.
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Example 7. From the well-known identity Bn,k(1!, 2!, . . . , i!, . . .) =
(

n−1
k−1

)

n!
k!

, we get

yn = s
∑n

j=1 j! ((r+2s+1)(j−1)+s−1)!
((r+2s)(j−1)+s)!

Bn,j(x1, x2, . . .),

x1 = y1 and for n ≥ 2 we have

xn = yn − s
∑n

j=2 j! ((r+s+1)(j−1)+s−1)!
((r+s)(j−1)+s)!

Bn,j(y1, y2, . . .).

Similar relations can be obtained for the Stirling numbers of the first kind, the unsigned
Stirling numbers of the first kind and the Stirling numbers of the second kind by setting
un = (−1)n−1(n − 1)!, un = (n − 1)! and un = 1 for all n ≥ 1, respectively.

Corollary 8. Let u, r, s be nonnegative integers, a, α be real numbers, αurs 6= 0, and {fn(x)}
be a binomial-type sequence of polynomials. Then

yn = s
∑n

j=1
j

αTj−u(j−1)Tj

D
Tj

z=0(e
αzfj−1(Tjx + z; a))Bn,j(x1, x2, . . .),

x1 = y1 and for n ≥ 2 we have

xn = yn − s
∑n

j=2
j

αRj−u(j−1)Rj

D
Rj

z=0(e
αzfj−1(Rjx + z; a))Bn,j(y1, y2, . . .),

where Tj = (u + r + 2s)(j − 1) + s and Rj = (u + r + s)(j − 1) − s.

Proof. Set in Theorem 6

un =
n

(u(n − 1) + 1)α
D

u(n−1)+1
z=0 (eαzfn−1((u(n − 1) + 1)x + z; a))

and use the first identity of Mihoubi [6, Theorem 2].

Corollary 9. Let u, r, s be nonnegative integers, urs 6= 0, a be real number and let {fn(x)}
be a binomial-type sequence of polynomials. Then

yn = s
∑n

j=1
j!

αTj−u(j−1)(Tj+j−1)!Tj

D
Tj

z=0fTj+j−1(Tjx + z; a)Bn,j(x1, x2, . . .),

x1 = y1 and for n ≥ 2 we have

xn = yn − s
∑n

j=2
j!

αRj−u(j−1)(Rj+j−1)!Rj

D
Rj

z=0fRj+j−1(Rjx + z; a)Bn,j(y1, y2, . . .),

where Tj = (u + r + 2s)(j − 1) + s and Rj = (u + r + s)(j − 1) − s.

Proof. Set in Theorem 6

un =
n!D

u(n−1)+1
z=0 f((u+1)(n−1)+1)((u(n − 1) + 1)x + z; a)

((u + 1)(n − 1) + 1)!(u(n − 1) + 1)α

and use the second identity of Mihoubi [6, Theorem 2].
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Theorem 10. Let d be an integer ≥ 1. The inverse relations hold

yn =
n
∑

j=1

(−1)j(dn + j)(j−1)Bn,j(x1, x2, . . .),

xn =
n
∑

j=1

(−1)j(dn + j)(j−1)Bn,j(y1, y2, . . .).
(12)

Proof. Let

f(t) = t
(

1 +
∑

n≥1

xn
tdn

n!

)

and f 〈−1〉(t) = t
(

1 +
∑

n≥1

yn
tdn

n!

)

.

The proof now follows from Comtet [3, Theorem F, p. 151].

Example 11. Take d = 1 and xn = n!, n ≥ 1, in Theorem 10, we get

f(t) =
t

1 − t
and f 〈−1〉(t) =

t

1 + t
,

i.e. yn = (−1)nn!, and the relations (12) give

n
∑

j=1

(−1)n−j

(

n

j

)(

n + j

n + 1

)

= n.

Take d = 2 and xn = n!, n ≥ 1, we get

f(t) =
t

1 − t2
and f 〈−1〉(t) =

1

2t

(

−1 +
√

1 + 4t2
)

,

i.e. yn = (−1)n (2n)!

(n + 1)!
, n ≥ 1, and the relations (12) give

n
∑

j=1

(−1)n−j

(

n

j

)(

2n + j

2n + 1

)

=
n

n + 1

(

2n

n

)

= nCn,

where Cn, n = 0, 1, 2, · · · , are the Catalan numbers.

Theorem 12. The following inverse relations hold

yn = 1
nr

(

(r+1)n
nr

)−1
B(r+1)n,nr(1, x1, x2, . . .), r ≥ 1,

xn = (n + 1)
∑n

j=1 Bn, j(y1, y2, . . .)(−1)j−1(nr − 1)j−1.

Proof. From Mihoubi [7, Theorem 1] we have

xk
1

n
∑

j=1

Bn,j(y1, y2, . . .)(k − nr)j−1 =
xnr

1

k

(

n + k

k

)−1

Bn+k,k(x1, x2, x3, . . .),

with yn = 1
nr

(

(r+1)n
nr

)−1
B(r+1)n,nr(1, x1, x2, . . .), nrk ≥ 1.

It just suffices to set k = 1, x1 = 1, and replace xn by xn−1.
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