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Abstract

Fix integers b ≥ 2 and k ≥ 1. Define the sequence {zn} recursively by taking z0 to be
any integer, and for n ≥ 1, take zn to be the least nonnegative residue of bzn−1 modulo
(n + k). Since the modulus increases by 1 when stepping from one term to the next,
such a definition will be called a running modulus recursion or rumor for short. While
the terms of such sequences appear to bounce around irregularly, empirical evidence
suggests the terms will eventually be zero. We prove this is so when one additional
assumption is made, and we conjecture that this additional condition is always met.

1 Introduction

Fix integers b ≥ 2 and k ≥ 1. Define the sequence {zn} recursively by taking z0 to be
any integer, and for n ≥ 1, zn = bzn−1 mod (n + k), the least nonnegative residue of bzn−1

modulo (n+ k). Since the modulus increases by 1 when stepping from one term to the next,
a sequence generated in this fashion will be called running modulus recursion or rumor for
short.

Since only the eventual behavior of rumors is of interest, we may as well assume 0 ≤
z0 ≤ k: using the same b parameter, the sequence with z′0 = z0 mod (k + 1), and, for n ≥ 1,
z′n = bz′n−1 mod (n + k), differs from the original sequence only in the first term.

The terms of such sequences appear to bounce around irregularly, at least for a while,
but empirical evidence suggests that eventually a 0 term will occur in the sequence, and of
course, if 0 occurs in the sequence, all following terms will also be 0.
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For example, with z0 = 1, and for n ≥ 1, zn = 3zn−1 mod (n + 11), the sequence begins

1, 3, 9, 13, 9, 11, 16, 12, 17, 11, 12, 14, 19, 9, 2, 6, 18, 26, 20, 0, . . . .

For this example, z19 is the first 0 term.
While there are many tantalizing patterns, the location of the first 0 does not seem to

obey any simple general rule. For example, for k ≥ 1, let sb,k denote the index of the first 0
in the rumor defined by z0 = 1, and zn = bzn−1 mod (n + k). The sequence {s2,k} begins

1, 2, 5, 10, 3, 18, 7, 24, 23, 22, 13, 4, 19, 18, 9, 6, 15, 374, 13, 12, 11, 370, 369, . . . .

This erratic behavior continues, as evidenced by the few additional values given in the
tables below.

z0 b k first 0 term, s2,k

1 2 68 324
1 2 69 12161
1 2 70 322
1 2 71 25

z0 b k first 0 term, s3,k

1 3 68 784
1 3 69 783
1 3 70 782
1 3 71 10

2 Eventual Behavior: Condition and Conjecture

We show that the initial value z0 of a rumor may be naturally written in terms of a series
expansion related to the base-b expansion of a related real number ζ0. Under the additional
condition that ζ0 is rational we show that the rumor is eventually zero. First we establish
the natural expansion of z0 relative to the base-b and basic properties of its coefficients.

Lemma 1. Let b ≥ 2 and k ≥ 1. Suppose z0 is any integer and, for n ≥ 1, let zn =

bzn−1 mod (n + k). For n ≥ 1, let dn =
⌊

bzn−1

n+k

⌋

so that zn = bzn−1 − dn(n + k). Then

(a)
∑

n≥1

dn(n + k)

bn
= z0,

(b) For n ≥ 2, 0 ≤ dn ≤ b − 1,

(c) dn < b − 1 infinitely often,

(d) zn is eventually 0 iff dn is eventually 0.

Proof. (a) Since
zn−1

bn−1
−

zn

bn
=

dn(n + k)

bn
,

we have the telescoping sum

∑

1≤n≤j

dn(n + k)

bn
=

z0

b0
−

zj

bj
.
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The last term on the right goes to 0 as j → ∞ since 0 ≤ zj < (j + k) and b ≥ 2.
(b) For n ≥ 2, 0 ≤ zn−1 < n − 1 + k, and so

0 ≤ dn =

⌊

bzn−1

n + k

⌋

≤
bzn−1

n + k
≤

b(n + k) − b

n + k
= b −

b

n + k
< b.

(c) Suppose dn = b − 1 for all n ≥ n0 for some n0. Then, since zn−1 < n + k − 1,

zn = bzn−1 − (b − 1)(n + k) < bzn−1 − (b − 1)zn−1 = zn−1.

So {zn} would be an eventually strictly decreasing sequence of nonnegative integers.
(d) Suppose dn is eventually 0. Then for large enough n,

zn = bzn−1 − 0(n + k) = bzn−1,

which means zn grows like a constant times bn. Since zn < n+k, that implies zn is eventually
0. The converse is obvious.

We now turn to the main result of this note.

Theorem 2. Let b ≥ 2 and k ≥ 1 be integers. Let {zn} be the integer sequence with initial
term z0, and for n ≥ 1, zn = bzn−1 mod (n + k), the least nonnegative residue of bzn−1

modulo (n + k). Let dn =
⌊

bzn−1

n+k

⌋

. If ζ0 =
∑

n≥1

dn

bn
is rational, then zn is eventually zero.

Proof. Suppose {zn} and {dn} are constructed as described in the statement of the theorem.
Notice that for any m ≥ 0, we can generate the tail {zn}n≥m of the sequence {zn} as a

rumor. To do that we set z′0 = zm, and, for n ≥ 1, let z′n = bz′n−1 mod (n + k + m). Refer
to this operation as restarting the sequence {zn} (at m).

Now suppose w =
∑

n≥1

dn

bn
is rational. Since, by Lemma 1(b), 0 ≤ dn ≤ b − 1 for n ≥ 2,

we can, after restarting {zn} at 2 if necessary, view
∑

n≥1

dn

bn
as the base-b expansion of w.

Because w is rational, that expansion will be eventually periodic. Again, restarting {zn} at
some index if necessary, we may as well assume that expansion of w is purely periodic. Let
p be the minimal period length of that expansion.
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From Lemma 1(a) we see

z0 =
∑

m≥1

dm(m + k)

bm
=
∑

j≥0

∑

1≤n≤p

dpj+n(pj + n + k)

bpj+n

=
∑

1≤n≤p

∑

j≥0

dpj+n(pj + n + k)

bpj+n

=
∑

1≤n≤p

(

dnp

bn

∑

j≥0

j

(bp)j
+

ndn

bn

∑

j≥0

1

(bp)j
+

kdn

bn

∑

j≥0

1

(bp)j

)

=
∑

1≤n≤p

(

dnp

bn

1
bp

(1 − 1
bp )2

+
ndn

bn

1

1 − 1
bp

+
kdn

bn

1

1 − 1
bp

)

=
∑

1≤n≤p

(

dnp

bn

bp

(bp − 1)2
+

ndn

bn

bp

bp − 1
+

kdn

bn

bp

bp − 1

)

=
pbp

(bp − 1)2

∑

1≤n≤p

dn

bn
+

bp

bp − 1

∑

1≤n≤p

ndn

bn
+

kbp

bp − 1

∑

1≤n≤p

dn

bn
.

Multiplying both sides of

z0 =
pbp

(bp − 1)2

∑

1≤n≤p

dn

bn
+

bp

bp − 1

∑

1≤n≤p

ndn

bn
+

kbp

bp − 1

∑

1≤n≤p

dn

bn

by bp − 1 gives

z0(b
p − 1) =

p
∑

1≤n≤p dnb
p−n

bp − 1
+
∑

1≤n≤p

ndnbp−n + k
∑

1≤n≤p

dnb
p−n

Since the terms z0(b
p − 1),

∑

1≤n≤p ndnbp−n, and k
∑

1≤n≤p dnb
p−n are integers, it must be

that
p

P

1≤n≤p
dnbp−n

bp−1
is also an integer, and so bp − 1 must divide p

∑

1≤n≤p dnb
p−n. From

Lemma 1(c), dn < b − 1 for at least one n with 1 ≤ n ≤ p, and so
∑

1≤n≤p dnb
p−n <

∑

1≤n≤p(b − 1)bp−n = bp − 1. It follows that either (1)
∑

1≤n≤p dnb
p−n = 0, and hence

p = 1, and d1 = 0 or (2)
∑

1≤n≤p dnb
p−n > 0, and hence gcd(p, bp − 1) > 1 and p > 1.

To complete the proof, we will show case (1) must be correct, and so, by Lemma 1(d), the
(original) sequence {zn} is eventually 0. To that end, we assume gcd(p, bp − 1) = s > 1 (and
consequently p > 1) and derive a contradiction.

Let r be the order of b modulo s, so that r ≤ ϕ(s) where ϕ is Euler’s phi function. Since
bp ≡ 1 (mod s), it follows that r divides p.

Now s > 1 and s|p, and so it follows that r < p since r ≤ ϕ(s) < s ≤ p. Since r is a
divisor of p, but strictly less than p, we have p = mr for some integer m > 1. Moreover,
there is an integer a, with 1 ≤ a < br − 1, such that sa = br − 1. By telescoping we see

s
[

a + abr + ab2r + · · · + ab(m−1)r
]

= bp − 1.
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It follows that

u =
bp − 1

s
= a + abr + ab2r + · · · + ab(m−1)r

has periodic base-b digits with a period length r.
Now u = bp−1

s
and p

s
are relatively prime, while

u =
bp − 1

s
divides

p

s

∑

1≤n≤p

dnb
p−n.

So for some v > 0, we have that

vu =
∑

1≤n≤p

dnb
p−n < bp − 1 = su.

That implies 0 < v < s and consequently 0 < va < sa = br − 1.
Hence, the integer va has base-b expansion involving only powers of b less than r. Con-

sequently
∑

1≤n≤p

dnb
p−n = vu = v

[

a + abr + ab2r + · · · + ab(m−1)r
]

has periodic base-b digits with period length r. It follows that the base-b expansion
∑

n≥1
dn

bn

is periodic with a period r < p, which violates the choice of p as the minimal period length
and the proof is complete.

Without regard to the rationality condition, our data shows that, in every tested instance,
a rumor as in Theorem 2 is eventually zero. Thus, we have been led to postulate the following
conjecture.

Conjecture 3. With the notation as in Theorem 2,
∑

n≥1

dn

bn
is rational, and hence every such

rumor is eventually 0.

3 Rumors and the Josephus Problem

Rumors are related to the Josephus problem variation as described by Graham, Knuth, and
Patashnik [1] and Jensen [2]. Arrange the integers 0 to n − 1 in a circle. Beginning at 0,
delete every second remaining number until only one number remains. That last remaining
value is denoted by Jn. Taking J0 = 0, it is easy to see that the numbers Jn obey the running
modulus recursion

J0 = 0

Jn = (Jn−1 + 2) mod n for n ≥ 1.

Generalizing that rumor leads to consideration of rumors of the form
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x0 = some nonnegative integer

xn = (bxn−1 + c) mod n for n ≥ 1

where b, c are positive integers.
Such generalized Josephus rumors exhibit a number of unexpected behaviors, most of

which are supported presently by empirical evidence only. The most remarkable observation
is that, for certain pairs b, c, all such sequences appear to synchronize in the sense described
in the following conjecture.

Conjecture 4. For the sequence {xn} given above, if c = j(b − 1) + 1 for some j ≥ 2, then
eventually xn = n − j + 1.

So when b and c are related as in the conjecture, it appears the sequence eventually
becomes a sequence of consecutive integers. In this case we say the rumor sequence eventually
walks. In particular then, for any initial term, x0, as long as c = j(b − 1) + 1, any two such
sequences will eventually synchronize in the sense that eventually corresponding terms will
differ by a fixed constant, and for a fixed j ≥ 2 for any two b ≥ 2 and any x0, the sequences
are eventually identical.

On the other hand, if b and c are not related as described, it appears the sequence never
walks, and in fact the terms show no easily discernible pattern at all.

When a sequence does walk, the point at which the walk begins is surprisingly variable,
which may partly explain the difficulty establishing the conjecture. For example, the rumor

x0 = 0

xn = (2xn−1 + 291) mod n for n ≥ 1

begins walking at term number 570.
On the other hand, the rumor

x0 = 0

xn = (2xn−1 + 292) mod n for n ≥ 1

begins walking at term number 69921608358, while

x0 = 0

xn = (2xn−1 + 293) mod n for n ≥ 1

begins walking at term number 13942.
The rumor given by x0 = 0 and xn = (2xn−1 + c) mod n for n ≥ 1 will eventually walk

for all c ≥ 3 according to Conjecture 4. For 3 ≤ c ≤ 23, the walks begin at

1, 2, 8, 32, 6, 8, 38, 38, 48, 16, 384, 174, 24, 34, 16, 120, 26, 26, 680, 680, 5600, . . .
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