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Abstract

In this paper we study several arithmetic functions connected with the exponen-
tial divisors of integers. We establish some asymptotic formulas under the Riemann
hypothesis, which improve previous results. We also prove some asymptotic lower
bounds.

1 Introduction and results

Suppose n > 1 is an integer with prime factorization n = p{* - - - p%~. An integer d is called an
exponential divisor (e-divisor) of n if d = p}* - - - pbr with bj|a;(1 < j < r), which is denoted
by the notation d|.n. For convenience 1|.1. The properties of the exponential divisors attract
the interests of many authors(see, for example, [4, 6, 7, 9, 11, 12, 14, 15, 16, 19, 20, 21, 22]).
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An integer n = pi'---pi is called exponentially squarefree (e-squarefree) if all the ex-
ponents aq,--- ,a, are squarefree. The integer 1 is also considered to be an e-squarefree
number.

Suppose f and g are two arithmetic functions and n = p{*---p%. Subbarao [17] first
introduced the exponential convolution (e-convolution) by

(fogm) = D - > for--p)gpi-pin),

bici=ay brcr=ar

which is an analogue of the classical Dirichlet convolution. The e-convolution ® is com-
mutative, associative and has the identity element p2, where p is the Mobius function.
Furthermore, a function f has an inverse with respect to ® iff f(1) # 0 and f(p;---p.) #0
for any distinct primes py, -, p,.

The inverse of the constant function f(n) = 1 with respect to ® is called the exponential
analogue of the Mdbius function and it is denoted by (). Hence Y dlen pO(d) = p?(n)
forn > 1, p9(1) = 1, and p®(n) = p(ay)---pla,) for n = p*---p2 > 1. Note that
|11)(n)| = 1 or 0, according as n is e-squarefree or not.

An integer d is called an exponential squarefree exponential divisor (e-squarefree e-
divisor) of n if d = p}* - p¥ with bj|a;(1 < j < r) and by,--- ,b, are squarefree Observe
that the integer 1 is an e-squarefree and it is not an e-divisor of n > 1. Let t©) denote the
number of e-sqaurefree e-divisors of n.

Now we introduce some notation for later use. As usual, let u(n) and w(n) denote the
Mobius function , and the number of distinct prime factors of n respectively. If ¢ is real,
then {t} denotes the fractional part of ¢, (t) = {t} — 1/2. Throughout this paper, ¢ is a
small fixed positive constant and m ~ M means that cM < m < C'M for some constants
0 < ¢ < C. For any fixed integers a and b, define the function d(a, b;n) = Zmlmb,n 1 and
let A(a,b;t) denote the error term in the asymptotic formula of the sum ) __d(a,b;n).

Many authors have studied the properties of the above three functions; see, for example,
[4, 7, 15, 17, 19, 20, 22]. Téth [20] proved that

> 19(n) = Az + (" eap(—ei(log 2)2)), (1)

n<x

where 0 < A < 9/25 and ¢; > 0 are constants and

Al — m(,u(e)) _ H <1 + i :u(k) _p/z(k — 1)) .

p

Téth [20] proved that if the Riemann hypothesis (RH) is true, then
S 9(n) = Ay + O("1/202+), (2)
n<z
Subbarao [17] and Wu [22] studied the asymptotic properties of the sum > |uc(n)].
Té6th [20] proved that if RH is true, then

> 19 (n)| = Bix + O(x!/7+), (3)

n<x



where

B =0+ i 1*(a) —plf(a — 1)>.

For the function ¢(¢)(n), Téth [20] proved the asymptotic formula

Y t9(n) = Cra + Coz'? + O(2'/**9), (4)
n<x
where
0 2w(k) _ 2w(k71)
Cl = H (1 + . ,
p k=2 p

0 2w(lc) o 2w(l€—1) o 2w(k—2) =+ 2w(k—3)>

T (143

k
k=4 p

Pétermann [13] proved the formula (4) with a better error term O(z'/*), which is the best
unconditional result up to date. In order to further reduce the exponent 1/4, we have
to know more information about the distribution of the non-trivial zeros of the Riemann
zeta-function.

In this short paper we shall prove the following theorem.

Theorem 1. If RH is true, then

S um) = Aw+0 (2t (5)

n<x
S uOMm) = Bia + Bort + O(atie), (6)
n<x
Z t@(n)  =Cix+Cox'?+0 (x%“) : (7)
n<x

where By 1s a computable constant.

Remark 1. Numerically, we have

37 91

- =0.39361--- . — = 0.45049 - - -

94 " 202 '

38 3728

S —0.1968--- < 1/5. —— —=0.240--- < 1/4.
03 0.1968 - - - < /5,15469 0.240--- < 1/

Let A (), Ao (), Ao (z) denote the error terms in (5), (6) and (7) respectively.
We have the following result.

Theorem 2. We have

Ayeo(r) = Q(x'/1), (8)
Ao(x) =), (9)
Ao (z) = Q(2'9). (10)
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2 Some generating functions

In this section we shall study the generating Dirichlet series of the functions () (n), | (n)|
and t®(n), respectively. We consider only |u(®(n)| and t(¢)(n), since Téth [20] already
proved the following formula, which is enough for our purpose,

e
pn) ()
= 1 11
I R LCIC R (1)
where U(s) :== >, “752) is absolutely convergent for Rs > 1/5.

We first consider the function |(¢)(n)|. The function p(®) is multiplicative and z(¢)(
p(a) for every prime power p®, namely for every prime p, u(®) (p) = 1, u(® (p?) = —1, u®)(

=1, 1@ (p*) = 0,19 (p°) = =1, p O (p°) = 1, O (p") = 1, @ (p*) = 0, @ (p°) = 0, 9 (p'°) =
1, (p') = —1,--- . Hence by the Euler product we have for s > 1 that

o0 (e) o0
ngw:HG+Zm%U_ 2)
n=1 n p m=1 p
Applying the product representation of Riemann zeta-function
() =Ja+p+p >+ ) =[[a-p)" Rs>1), (13)
p P

we have for s > 1

-1

C(s)¢(Gs) = [T (@ =p7)(1 =p7™)) (14)
p
Let
fuo(z): =1+ |p(m)]z" (15)
m=1
=1+2+22+22+25+20 42" +210+ 2+ Z lp(m)|=z".
m=12
For |z| < 1, it is easy to verify that
fiuen(2)(1 = 2)(L = 2°) (16)
= (1—|—z—|—22+z3+z5+z6+z7+210+211+ Z |u(m)|zm> (1—2—2°+2%
m=12
=1-2*-224+2+ Z cDm,
m=12
where
e = lpm) = |u(m = 1) — [u(m = 5)| + [u(m — 6)|. (m > 12)
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Furthermore, we have

Fiuen(2) (1 = 2)(1 = 2")(1 = 21) 71 (1 = 2%) (17)
:(1—,2 z+z+Zc > I+t +22 4+ )+ 28+ 20 )

=142+ ) COz

m=12

We get from (12), (13), (15) and (17) by taking z = p~* that

Z Iu Ciﬁfgf;j)w (Rs > 1), (18)

where V(s) :== >, @ is absolutely convergent for R®s > 3.

We now consider the function #(¢)(n), which is also multiplicative and () (p®) = 2*(@ for
every prime power p®. Therefore for every prime p, t()(p) = 1, (p? ) =t (p*) =t (p*) =
tOp°) = 2,0 (%) = 4,19 (p7) = t9p%) = t)(p°) = 2,t)(p'%) = 4,-

By the Euler product we have for s > 1 that

© 1) (n 2 ouw(m)
> (e 2. w
n=1 P m=1 p
Let
fio(z) =1+ Z gu(m) ;m (20)
=1+42+22"+22° + 22" +22° + 425+ 227 + 225+ 22° + 4210+ 221 4 )~ 2007
m=12
For |z| < 1, it is easy to check that
fun(2)(1 = 2)(1 = 2)(1 — 2
=1—2"—22" - 22427+ Z cffb)z
m=10
and
o (2)(1 = 2)(1 = 2%)(1 = 2°)*(1 = 2%) (21)
= (1—z4—2z7—228+229+ Z cg)zm> 14+t +284--0)
m=10

=1-2:"+) CP
m=8



Combining (13) and (19)—(21) we get

i": t9n) _ C(S)C(2S)CQ(6S)W(3) (Rs > 1), (22)

n? ((4s)

n=1

where W(s) := > 7 % is absolutely convergent for Rs > 1.

n=1

3 Proof of Theorem 2

We see from (11) that the generating Dirichlet series of the function u(®(n) is ngl)U (s),
1

which has infinitely many poles on the line #¢s = ;, whence the estimate (8) follows. From
the expression (18) we see that the generating Dirichlet series of the function [u(®)(n)] is

MV(S), which has infinitely many poles on the line Rs = %,

C(4s) whence the estimate (9)
follows. Via (22), we get the estimate (10) with the help of Theorem 2 of Kiileitner and

Nowak [8] (or by Balasubramanian, Ramachandra and Subbarao’s method in [1]).

4 The Proofs of (5) and (7)

We follow the approach of Theorem 1 in Montgomery and Vaughan [10]. Throughout this
section, we assume RH.

We first prove (5). It is well-known that the characteristic function of the set of squarefree
integers is

P (n) = |p(n)| =) pu(d), (23)

d?|n
We write

Alx) =Y p*(d) — == = D(z) — —. (24)

ai(n) = Y pF(m)u(d), (25)

it is easy to see that

o0 @) e et 20
Thus
Li(2) =Y am) = Y pmu(d) = > uld)D(Z). (27)
nse md? <z A<z



Suppose 1 < y < 2'/? is a parameter to be determined. We now write 7}(z) in the form

Ti(x) = Si(w) + Sa(z),

where

= > uld)D ().

d<y

and

Sae) = Y wdD (F) = D mmu(d).

1 2
5 md4<x
y<d<z d>y

We first evaluate Si(z). From (24) we get

Sifw) =D _uld (d?g A (%))

d<y

w(d

d<y

To treat Sy(z), we let

gy(s Z (s =0 +it),

so that for Rs =0 > 1

Hence

for ¢ > 1, where

md2=n
d>y

Let 3 <o <2,6= . Assume RH, from 14.25 in Titchmarsh [18] we have

p(d)
ds

d<y

=)+ 0 (v + 1))

()

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)



In addition, RH implies that ((s) < [¢|°+ 1 and (~'(s) < (|¢|° + 1) uniformly for o > £ + 6
and |s — 1| > &, and 3 _, pu(n) < y2*°. From (32), (33) and (36), we have

n<y

1 1
9y(28) <y 2 ([t]’ +1), (0 2 5 +9).

Thus
C(s) g3 1
2 > — — .

w29 o < P+ 1.0 2 40 s = 11> <) (37)

From (30), (34), (35) and Perron’s formula([18], Lemma 3.19), we obtain

I4etiz?
¢(s) g1

by ( / gy(2s x%s ds+ O 38
; 1 2777/ +€_ir2 ( )C<23) ( ) ( )

since b(n) < n° by a divisor argument. If we move the line of integration to o = % + 0, then
by the residue theorem

1 1+e+ix? C(S)
— 2s) s d 39
210 Sy e ia2 9 S)C(Qs)x T (39)
=1 +1,—I3+Res g (23)ﬁx83_1
X 9
where
1 1+e+iz? ¢(s) 1 1+o+ia? ¢(s)
L =— 2 2°sds, I = 2s)—~a°sd
L 2w 1 4o+ia? 9l S>C(25) nee 2mi 146—ia? 9 S)C(Zs)x T
1 14e—ia? C(S)
Iy=— 2 s ds.
iy P
From (37) it is not difficult to see that
L <y 222t (j=1,2,3). (40)
Combining (38)—(40), we get
d 1 1
So(z) = 2 pld) +0 <y75x5+5 + x€> . (41)
¢(2) d?
d>y
Finally, combining (27), (28), (31) and (41) we obtain
Ty (2 ( ;) -0 (attey 4 a). (42)

In [5], Jia proved the estimate A(u) < w5 . Inserting this estimate into (42) and on
taking y = 1%7 we get
T

T1(2) = 75+ O (x+> . (43)
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The asymptotic formula (5) follows form (25)-(27) and (43) by the well-known convolution
method.

Now we prove the asymptotic formula (7). We define the functions as(n) by the following
identity

—C(ZzigS) = “"’n(f), Rs > 1. (44)
Hence
G’Q(n) = N(d)d(1727m)

Thus by the same approach as (42), we easily get that for 1 <y < 21

Ty(x) := > az(n) (45)

- G D@ (12 ) o ().

Graham and Kolesnik [2] proved that A(1,2;u) < wims <. Inserting this estimate into
(45) and on taking y =116, we get

Ty(x) = Zag(n) = %x - %mé +0 (x%JrE) . (46)

The asymptotic formula (7) follows from (22), (44) and (46) by the convolution method.

n<x

5 Proof of (6)

Throughout this section we assume RH.
Define the function as(n) by

C(s)C(5s) _ ymas(n) o
Clis) _nz:; o Rs> 1 (47)

Similar to (45) we have for some 1 <y < r7 that

T3(x) = Z as(n)

o, o 3
= %x + %xs + ;u(dm (1, 5; %) + O (g;5+ey—§ Foastey 4 xf) '

Unfortunately, we can not improve T6th’s exponent % in (3) by the above formula even if we

use the conjectural bound A(1,5;t) < /2%, So we use a different approach to prove (6).
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Let g4(n) denote the characteristic function of the set of 4-free numbers, then

—a(n) _ ((s)
; - —C(4S),§Rs>1.

We write

x
Ay(x) = q(n) — —. 48
From (47) and (48), it follows from the Dirichlet hyperbolic approach that for some
1<y<as,

By(2) =Y as(n) = 3 qulm) (49)

n<w md® <z

= Z Z qa(m) + Z qa(m) 1

d<y m< d% m<-%

T 1 1 4\m
:@gﬁﬂs ! )—Z/Zq4(m)

In addition, we have by Euler-Maclaurin formula

> 5 =600~ pr — vl + Ol 1)

d<y

If RH is true, Graham and Pintz [3] showed that

Ay(z) = O(2357°), (52)



and so

T

/1 CA /1 N A4§(t)dt— / N A;§t>dt (53)

t3 ts =
Yy
_ / A;G(ﬂ dt + O (l,—l%o—i-ay%) )
1 5

Combining (49)—(53) and taking on y = 23/19% we obtain

Ty(z) = ) am) (54)

mdS<z
R e T
("5 T T aw)”
. ;@L(m)’éb ((%)%) +0 (:L‘38+5y38 +xy 6)
N %x + C3a™® + O(a+yss + ay~5),
= %$+035E1/5 + O(«T%+6)7

where we used the trivial estimate

and where

Now the asymptotic formula (6) follows from (18), (47), (49) and (54) by the convolution
approach.
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